Research article

Estimates for functions of generalized Marcinkiewicz operators related to surfaces of revolution

  • Received: 09 May 2024 Revised: 03 July 2024 Accepted: 10 July 2024 Published: 17 July 2024
  • MSC : 42B20, 42B25

  • In this paper, specific $ L^p $ estimates for generalized Marcinkiewicz operators correlated to surfaces of revolution are proved. These estimates and the extrapolation procedure of Yano are employed to confirm the $ L^p $ boundedness of the above-mentioned integrals under weaker assumptions on the singular kernels. Our findings generalize and improve several known results.

    Citation: Mohammed Ali, Qutaibeh Katatbeh, Oqlah Al-Refai, Basma Al-Shutnawi. Estimates for functions of generalized Marcinkiewicz operators related to surfaces of revolution[J]. AIMS Mathematics, 2024, 9(8): 22287-22300. doi: 10.3934/math.20241085

    Related Papers:

  • In this paper, specific $ L^p $ estimates for generalized Marcinkiewicz operators correlated to surfaces of revolution are proved. These estimates and the extrapolation procedure of Yano are employed to confirm the $ L^p $ boundedness of the above-mentioned integrals under weaker assumptions on the singular kernels. Our findings generalize and improve several known results.



    加载中


    [1] E. Stein, On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430–466. https://doi.org/10.1090/S0002-9947-1958-0112932-2 doi: 10.1090/S0002-9947-1958-0112932-2
    [2] T. Walsh, On the function of Marcinkiewicz, Stud. Math., 44 (1972), 203–217. https://doi.org/10.4064/sm-44-3-203-217 doi: 10.4064/sm-44-3-203-217
    [3] A. Al-Salman, H. Al-Qassem, L. Cheng, Y. Pan, $L^p$ bounds for the function of Marcinkiewicz, Math. Res. Lett., 9 (2002), 697–700. http://dx.doi.org/10.4310/MRL.2002.v9.n5.a11 doi: 10.4310/MRL.2002.v9.n5.a11
    [4] H. M. Al-Qassem, A. J. Al-Salman, A note on Marcinkiewicz integral operators, J. Math. Anal. Appl., 282 (2003), 698–710. https://doi.org/10.1016/S0022-247X(03)00244-0 doi: 10.1016/S0022-247X(03)00244-0
    [5] H. Al-Qassem, A. Al-Salman, Rough Marcinkiewicz integrals related to surfaces of revolution, Asian J. Math., 7 (2003), 219–230. http://dx.doi.org/10.4310/AJM.2003.v7.n2.a4 doi: 10.4310/AJM.2003.v7.n2.a4
    [6] L. Hörmander, Estimates for translation invariant operators in $L^{p}$ space, Acta Math., 104 (1960), 93–139. https://doi.org/10.1007/BF02547187 doi: 10.1007/BF02547187
    [7] M. Sakamota, K. Yabuta, Boundedness of Marcinkiewicz functions, Stud. Math., 135 (1999), 103–142.
    [8] Y. Ding, S. Lu, K. Yabuta, A problem on rough parametric Marcinkiewicz functions, J. Aust. Math. Soc., 72 (2002), 13–21. https://doi.org/10.1017/S1446788700003542 doi: 10.1017/S1446788700003542
    [9] Y. Ding, D. Fan, Y. Pan, On the $L^p$ boundedness of Marcinkiewicz integrals, Michigan Math. J., 50 (2002), 17–26. https://doi.org/10.1307/mmj/1022636747 doi: 10.1307/mmj/1022636747
    [10] H. Al-Qassem, Y. Pan, $L^{p}$ estimates for singular integrals with kernels belonging to certain block spaces, Rev. Mat. Iberoam., 18 (2002), 701–730. http://dx.doi.org/10.4171/RMI/333 doi: 10.4171/RMI/333
    [11] A. Torchinsky, S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60 (1990), 235–243. https://doi.org/10.4064/cm-60-61-1-235-243 doi: 10.4064/cm-60-61-1-235-243
    [12] M. Ali, A. Al-Senjlawi, Boundedness of Marcinkiewicz integrals on product spaces and extrapolation, Int. J. Pure Appl. Math., 97 (2014), 49–66. http://dx.doi.org/10.12732/ijpam.v97i1.6 doi: 10.12732/ijpam.v97i1.6
    [13] M. Ali, $L^p$ Estimates for Marcinkiewicz integral operators and extrapolation, J. Inequal. Appl., 2014 (2014), 269. https://doi.org/10.1186/1029-242X-2014-269 doi: 10.1186/1029-242X-2014-269
    [14] J. Chen, D. Fan, Y. Ying, Singular integral operators on function spaces, J. Math. Anal. Appl., 276 (2002), 691–708. http://dx.doi.org/10.1016/S0022-247X(02)00419-5 doi: 10.1016/S0022-247X(02)00419-5
    [15] H. V. Le, Singular integrals with mixed homogeneity in Triebel-Lizorkin spaces, J. Math. Anal. Appl., 345 (2008), 903–916. https://doi.org/10.1016/j.jmaa.2008.05.018 doi: 10.1016/j.jmaa.2008.05.018
    [16] H. Al-Qassem, L. Cheng, Y. Pan, On rough generalized parametric Marcinkiewicz integrals, J. Math. Inequal., 11 (2017), 763–780. http://dx.doi.org/10.7153/jmi-11-60 doi: 10.7153/jmi-11-60
    [17] H. Al-Qassem, L. Cheng, Y. Pan, On generalized Littlewood–Paley functions, Collec. Math., 69 (2018), 297–314. https://doi.org/10.1007/s13348-017-0208-4 doi: 10.1007/s13348-017-0208-4
    [18] D. Fan, H. Wu, On the generalized Marcinkiewicz integral operators with rough kernels, Canad. Math. Bull., 54 (2011), 100–112. http://dx.doi.org/10.4153/CMB-2010-085-3 doi: 10.4153/CMB-2010-085-3
    [19] M. Ali, H. Al-Qassem, A note on a class of generalized parabolic Marcinkiewicz integrals along surfaces of revolution, Mathematics, 10 (2022), 3727. https://doi.org/10.3390/math10203727 doi: 10.3390/math10203727
    [20] F. Liu, Z. Fu, S. Jhang, Boundedness and continuity of Marcinkiewicz integrals associated to homogeneous mappings on Triebel-Lizorkin spaces, Front. Math. China, 14 (2019), 95–122. https://doi.org/10.1007/s11464-019-0742-3 doi: 10.1007/s11464-019-0742-3
    [21] M. Ali, O. Al-Refai, Boundedness of generalized parametric Marcinkiewicz integrals associated to surfaces, Mathematics, 7 (2019), 886. https://doi.org/10.3390/math7100886 doi: 10.3390/math7100886
    [22] M. Ali, O. Al-Mohammed, Boundedness of a class of rough maximal functions, J. Inequal. Appl., 305 (2018), 1900. https://doi.org/10.1186/s13660-018-1900-y doi: 10.1186/s13660-018-1900-y
    [23] S. Yano, Notes on Fourier analysis. XXIX. An extrapolation theorem, J. Math. Soc. Japan, 3 (1951), 296–305. https://doi.org/10.2969/jmsj/00320296
    [24] S. Sato, Estimates for singular integrals and extrapolation, Stud. Math., 192 (2009), 219–233. http://dx.doi.org/10.4064/sm192-3-2 doi: 10.4064/sm192-3-2
    [25] H. Al-Qassem, Y. Pan, On rough maximal operators and Marcinkiewicz integrals along submanifolds, Stud. Math., 190 (2009), 73–98. http://dx.doi.org/10.4064/sm190-1-3 doi: 10.4064/sm190-1-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(461) PDF downloads(29) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog