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1. Introduction

Throughout this article, assume that S7-! (5 > 2) is the unit sphere in the Euclidean space R”, that
is equipped with the spherical measure do,(+). Also, assume that v’ = v/[v| for v € R\ {O}.

Forn = @+ i (@ € R" and B8 € R), let Ky ,(v) = %}ﬂvl), where A is a measurable mapping on R*
and ¥ € L!(S"!) is a measurable mapping satisfying the following conditions:

Y(tv) = ¥(v), Yt>0, (1.1)
Y()do(') = 0. (1.2)
-1
(7)

For an appropriate mapping ¢ : R* — R, we define the generalized Marcinkiewicz operator G
by

WY,¢,h
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1
Q%,,z(F)(w)z( fR = f| PO = v = D)K., (v)dy

Y dt 1/y
R
where F € CZ(R™), w = (W, wyy1) € R"! and y > 1.

Wheny = 2, ¢ = 0, and 2 = 1, we denote Q%),h by Gy, and when n = 1, we denote Gy,
by Gy. The operator Gy is basically the traditional Marcinkiewicz operator defined in [1] where the
author studied the L” (1 < p < 2) boundedness of Gy whenever the singular kernel ¥ belongs to the
space Lip.(S™!) with T € (0, 1]. This result was improved in [2], in which the author obtained the L?
boundedness of Gy under the condition ¥ € L(logL)'/*(S"!). Also, he obtained that the assumption
¥ € L(log L)'/>(S™!) is optimal in the sense that when it is replaced by any weaker assumption ¥ €
L(log L)"(S™!) with n € (0,1/2), then Gy will not be bounded on L?(R"). Later, the authors of [3]
confirmed the results in [2] not only for p = 2, but for all p € (1,00). On the other side, the L”
boundedness of Gy was proved by Al-Qassem and Al-Salman in [4] for all p € (1, o) provided that ¥ €
BEIO’_I/ 2(S™1) for some g > 1. Also, they proved the optimality of the assumption ¥ € Bfio’_l/ 2(srh,
When y = 2, ¥ € L(logL)!/?(S"™"), h € V(R*) with ¥ > 1, and ¢ € H, the L” boundedness of

g@)’ , Was established in [5] for all '22_—;‘ < min{l/«’,1/2}. Here, V,(R*) indicates the set of measurable

mappings 4 on R,
2j+l dl‘ 1/«
lAllv, @) = sup (f Ih(t)IKT) < oo,
2

JEZ J

The integral operator Qfﬁ?(p’h under several assumptions has been investigated by many researchers:
For the case h € L*(R)* [6,7], along surfaces [8—11], using extrapolation [12, 13].

The study of the generalized Marcinkiewicz operator gfg; , Was started in [14], in which the authors

proved that whenever ¥ € LI(S"") withg > 1, ¢(f) = t, h = 0, and 1 < y < oo, then the inequality

< ClIFll .or (1.3)

LP(RT) F, (RT)

(CHREG!

holds for all p € (1, 0). This result was improved in [15] where the author satisfied inequality (1.3)
under the weaker conditions that &1 € Vv 2;(R") and ¥ € L(log L)(ST1).

Later, the authors of [16] extended and improved these results. Precisely, they used the extrapolation
argument of Yano to show that if ¢(f) = t, h € V(R") with k > 2 and ¥ € L(logL)!”(S"") U

B, (s"), then G, , is bounded on LP(R") for all p € (1,) withy’ > x and also for all p € (', o)
()

with y > «’. For recent advances on the investigation of the operator G, o
readers can refer to [17-22], among others.

and their developments, the

For r e Rand y, p € (1, o), the homogeneous Triebel-Lizorkin space F :y(R”) is given by

Iy
(Z 2777 |9 % F|7) < oo} :
LP(R7)

JEZ
where &’ is the tempered distribution class on R, 1/9\]-(77) = AR7/n), and A € Cy(R") is a radial
mapping with the following properties:
@0<A<LI,

r r,y / . —
F R = {F € S'®) : Fllpor e, =
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(b) A(p) = K > 0if |yl € [£,3]
(¢) supp (A) C {n - Inl € [1/2,2]},
) X ARy =1if n#0.

JEZ

It was proved in [18] that the space F ;y(R”) satisfies the following:

(i) S(RY) is dense in ', (R"),

(ii) For p € (1, 00), LP(R") = FE’Z(R”),

Gii) £, R C F, R if y1 < 7.

For d # 0, let H, be the set of all mappings ¢ : R* — R that satisfies the following conditions:

(a) lp(0)] < Ky,

(b) kot < |¢' ()] < kat*,

(©) 19" (D] < ky1?2,
where ki, k>, k3, and k4 are positive numbers independent of ¢.

In the light of the findings in [16] about the estimates for the generalized Marcinkiewicz operator
gfg; , Whenever ¢(#) = ¢, and of the findings in [5] concerning the boundedness of Marcinkiewicz
integral operator Q\P » » 1t 1s natural to ask whether the operator Qg)q& , 18 bounded under the same
assumptions in [5] replacmg v=2byanyy > 1?

In this paper, the above question will be answered affirmatively. Our main results is described as
follows.

Theorem 1.1. Assume that ¥ € L (S"™"), q € (1,2] satisfies (1.1). Let h € V(R*) with x € (1,2] and
¢ € Hy. Then there is a constant C, > 0 such that the inequalities

) 1 1y Ky
y < —_— <p<
ng""‘” LP(RU*‘) < Cpn ((K - (g - 1)) ”F”FOY(RW) fysps Y -k
1 Ky=y+K
) H & Ky
"gT’¢h( ) Lp(R+1) Cp,\{”h ((K — 1)(q _ 1) ” ”F (R’IH) lf Ky —7 + K < p < Y,

and
Kky—y+1

1 " K
) _
ngh( )Hmw“) C"’T’h((K—l)(q—l)) ¥ ”F ey ky—y+1 p=Yy

-0,
hOldfor allF € pr(RT]_H), where Cp,‘P,h = Cp ”\P”L‘I(SU’I) ”h”VK(R*)'

Theorem 1.2. Assume that ¥ and ¢ are given as in Theorem 1.1, and that h € V (R*) with 2 < k < oo.
Then, a bounded number C,, > 0 exists so that
(a) If y > k', we have for k¥ < p < oo,

/K
1
(¥)
<
HQ‘PW‘ LI’(R'l“) < G (q — 1) I ”F 7R+l

(b) If y < k', we have for 1 < p <,

()
|69, 0, < Cp,w,(q )IIFIIF )
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The estimates come from Theorems 1.1 and 1.2 allow us to utilize the extrapolation argument of
Yano (see also [23-25]) to obtain the following results.

Theorem 1.3. Assume that ¢ € H; and h € V (R*) with k € (1,2].
(a) If ¥ € L(log L)!/(S™Y), then for p € [y, ;,L],

()
16955, g, < P ) (14 I¥ltog o) Whll, ey €

Lp (le )

(b) If ¥ € L(log L) o (S” 1), then for p € (Ky y+/<’7)

62, .. <1l

. P @y (1 FIP . am (Sn_l)) lly, sy Cp-

L(logL) ~r

(c) If Y € L(log L) e (S" 1), then for p € (y Ky+1’7)’

|6,

< Wl (1+ 10, g Yl ) €.
P

'Ll’(R"”) LlogL)” ®  (Sn1)

() If¥ € By (ST with g > 1, then for p € [y, 25,

< IFIl 00

@ity — 0 UE, (R (1 + ||\P||q(0rl/v’)(gn—1)) lAlly, ) Cp-

65,

(e)If‘I’eB O (S" Y with g > 1, then for p € (==

Ky— y+K ’ Y)’

()
Hgl;/,¢ h(F)' LP(R11) ”F”FE’V(RUH) (1 + ”‘{’H (0 s y)( ) ”h”VK(R*) C

1,

(f)If‘PeB (S" Y with g > 1, then for p € (=—2=,v),

y—yk+1’

™)
162P],, g, < WP (1 ' ”LP”B;W&SU-I)) Wil sy C-
Theorem 1.4. Assume that ¢ € Hy and h € V,(R") for some 2 < k < o0,

(a) If¥ € L(log L)"/¥ (S"™"), then

()
|G, g, < Wl ey (14 ¥l 30500 P35 ) o

LP(R”*I)

fork < p<ooandy>«.
(b) If ¥ € L(log L)(S"™"), then we have

65, < Whllg, e (1 + IN¥llqog 1) IFL o

C,,
Lp(R7+1) F 7 @)
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forl <p<yandy <«K.
(c) If'¥ € B/ "y with g > 1, then

|65, .

fork < p <ooandk <v.
(@) If'¥ € BYO(S") with g > 1, then

(G
foralll < p<vyandy <K.

Remark 1.5. (i) For the special cases ¢ =0, h =1,y =2,and n = 1, the L” (1 < p < 2) boundedness

of QSJ)M was established in [1] only whenever ¥ € Lip.(S7!) for some 7 € (0,1]. As Lip.(S™") C

Llog L) (S"1) U Bfio’r)(S”‘l), then our results generalize, extend, and also improve what was proved
in [1].

(ii) For the cases h € V,(R"), ¢ = 0, and y = 2, n = 1, the authors of [8] only obtained the
L? boundedness of Qfg’)&h under the condition ¥ € L(log L)(S7!). Hence, our results are essential
generalization and improvement to the results in [8].

(iii) For the cases ¢ = 0, h = 0, and y = 2, the conditions on ¥ in our results are the best possible
among their respective classes, (see [2,4]).

(iv) In Theorem 1.3, if we take y = 2 and « € (1, 2], then the range of p is better than the range of p
in the results found in [5]: (K?f,z, 227’(/( .

(v) In Theorem 1.3, the conditions on ¥ in (c¢) and (e) are stronger than the conditions on ¥ in (b)
and (d). However, the range of p in (c) and (e) are better than the range of p in (b) and (d).

(vi) In Theorem 1.4, the spaces that the singular kerenels belong to in (a) and (c) are better than the
spaces in (b) and (d).

< Wl oy (1 Il 0

C
Lp (R”* 1 ) p>

< Wy, e (1 + 1¥llgoomn ) IFILes . €

Lp(RH1) F, Ry TP

2. Some lemmas

In this section, we prove some auxiliary results which will be the key role in the proof of the main
results. For u > 2 and appropriate mappings 4 : R* — C, ¥ : S""! —» R, and ¢ : R* — R, we consider
the family of measures {Uy 4, : Uy, : t € R*} and their related maximal operators Ufy’h and My, on
R7*! by

1
f‘mm,=7f F(v, (VD) K (v)dlv,
R+l ! 1/2<v|<t

Oy Fw) = sup|[Up,| + F(W)]

teR*

and

Jj+1

_ H . dt
My F(OW) = sup ||Uh,l|*F(W)|7,

j€zZ Jul
where |U,,| is defined similar to U, with replacing A by |A'P|.

Utilizing similar arguments (with minor modifications) employed in the proof of Theorem 1.3 in [5]
gives the following.

AIMS Mathematics Volume 9, Issue 8, 22287-22300.
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Lemma 2.1. Letu > 2, h € V,(R*), and ¥ € L1 (S"‘l) for some k,q > 1. Let ¢ be an arbitrary function
on R*. Then, there are positive constants C and 6 < 1/(2q") such that
,uj+1
A 2 dt
f 04,2 Gy < < Clnp,

,ujH

A 2 dt ) .
[ 11 < sy 91 1, W min { '

o .
N 7

o
Inp

Lemma 2.2. Let ¥, h and ¢ be given as in Theorem 1.1. Then there exists a constant Cp, ) > 0 such
that for all p > «/,

1M ()l @ty < Cpp(InOIF | Lo ety (2.1)
and
104, F)llzp@nery < Cp,‘i‘,h(lnﬂ)l/K WF I o ety (2.2)

By employing similar arguments as employed in [16], we get the following.

Lemma 2.3. Let ¥, ¢, and y be given as in Theorem 1.2. Suppose that h € V (R*) with 2 < k < oo,
Then, for u > 2, a constant C,w, exists such that:
(a) If y > k', we have for k' < p < oo,

Wt 1/y
y dt 1 y
Z [Onex U = < Cpuain)™ | S |14 :
JEZ JEZ Lp(R+1)
U(Rrﬁ-l)
(b) If y < k', we have for 1 < p <v,
1 1
ui* v 1/y
ydt Y
Z |Uht * _]| < Cp,‘}’,h(ln,u) Z |7/{j| P
JEZ JEZ Lp(R7+1)
Lp(Rqul)

where {U,(-), j € Z} is any sequence of functions on R
Proof. One can easily check that

sup sup |Uh,,/1j * ‘L(.,-| < |0, (sup |(Llj|)

JEZ te[l,u] L[J(RI]+1) JEZ LP(R’?*I)

1 /
< CpwnIn()'’™ |lsup |Uj| ,
jez LP(R+1)
which means that
1Ohgi % Ul o1 g, < Counn@)' |l||2e] : 2.3
HH ! JNL= L | ooz Lr@ry p.x, () ” J”z @\ Lr w1y (2.3)
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If p > K’ <y, then the duality gives that a function J € L®/<)" (R"*") with || T || .y @y < 1 and

Z f|UhW *U;

]GZ

1
ra

u
K dt _f Zf
R+l jGZ /

LP(R1+)

< CIVIS o) 1A, s f
Rr]+| jEZ

« dt
z 7‘7 (W, wyeDdwdwy,

U, T W, Wy )dwdwyay

/) K %
cemmify, it [Sur| e,
JE L/ R+1)
I 4
< Cnge) [P o A, e [Z ,K] : (2.4)
JEZ
LP@ItT)

where J°*(w, wy11) = I (=w, —wy,1). This leads to

/&
wahf/ﬂ*(u

K dt
/GZ

1/«
< Cpyp In(u)'* [ jk} : (2.5)
JEZ

Ly (R'Hl ) LP (R 1 )
Define a linear operator 7~ on any function U = U j(w, wy.1) by T(U) = Uy 45 * U j(w, wy11), then
interpolate the estimate in (2.3) with the estimate in (2.5) to get

5 [ e &
]EZ

LP(R1) Lp(R+1)

1y
< Cpyn(In ) [Z I(u,,-ly] : (2.6)

JEZ

1)y

5 [l ur

1)y

]GZ

Ll’(RWH)
for all K < p < oo with y > «’ and « > 2. Hence, the proof of first estimate of this lemma is complete.
Now, if 1 < p <y < «/, then p’/y" > 1. Thanks to the duality, there are functions g;(w, ) on
RT]+1 X R+ Wlth HHngllLy’([ﬂj,‘qu]’%) < 1 and

LY (Rt
1y

wahz*(urdt fo th*ﬂ(w))gj(w t) dw

JEZ R+l JGZ
Y
§ U]

JEZ

Lp/y(Ru+l)
17y

< Cy(n ) | ||y s X))

Lp/y R+l

where
i J+1

rd
['(gHw) = Z fth,z * g (W, f)|y 7t
iz Y
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Notice that y < ¥ < 2 < k. So, Holder’s inequality leads to

(O = gm0 < IS NI f U o)
X |gj(w — v, Wy — @(1), t)|7 dan(v)%. (2.8)

Again, we employ the duality, so we obtain a function ¢ € L®'/7Y (R™"),

_Zf ftht*gJ(W f)| —cp(w)dw
e A Jre

Thus, by Holder’s inequality and the inequalities (2.2) and (2.8), we conclude

|(rce)”

o

o' *
< M (O )
L1’(R’7+1)

L "y (le) ”hllv «(Ry)
,“]H

d
Zf|g1 t)|7 t

]EZ
L&' Y)(Rn+1)

' [y)+1 ’
< Cpn) IO 18I, ) el e - (2.9)

Therefore, by the last inequality and (2.7), we complete the proof of Lemma 2.3 for the case 1 < p <y
withy <« < 2. O

Lemma 2.4. Let VY, ¢, and y be given as in Theorem 1.1. Suppose that u > 2 and h € V (R™") for some
k € (1,2]. Then, a positive number C,, exists such that, for any sequence of functions {U;} on R™",
we have

/J/+l 1/7
dt s
@ || f [Ons = U — < Cpaa(inp)' [Z |fu,-|y] ., (2.10)
JEZ JEZ LP(R7+1)
LP(R””)
forall p € [y, y’ﬁy_lk],
/J]+1 d % )
t KYy—Y+K
(b) f [Ons = U — < Cpyallnp) = [Z |fuj|7) ., (21D
jEZ JEZ Lo
LP(R7+1)
forall p € (Ky y+'<’7)’ and
/~1]+l 1 .
dt ky=y+1 y /7
© |l f [Ons = U = < Cpwanp || )" |2 . @12
JEZ JEZ LoR7+)
LP(R+1)

forall p € (Ky y+1,y).

AIMS Mathematics Volume 9, Issue 8, 22287-22300.
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Proof. Let us first prove inequality (2.10). Notice that

- / g
[Oh U < ClAll e, 19102, f f U0 = rvwg = s
Sn-

X [P ()| do(v) Ih(r)ly" . (2.13)
If p = v, then by using Holder’s inequality, (2.1), and (2.13), we get
l Y
'uj+l d
t
Z fluf”* /|y
JEZ
LP(R”“)
< ClIRlE), ||\P||<L¥/(g:_.)
y )’—7 rdt
X Z - [ U W = v, Wyt — 9| PO ()Y dory(v)——-dw

JEZ i 18’71

IA

4
Cln ) NG 103! f [Z I%(@V] div

JEZ
Dluf

JEZ

Rn+l
Y

(2.14)

IA

(Cpwn)(Inp)

LV(R"+1)
If p > v, then by duality, there exists a function Z lies in the space L/ (R"*!) with ||Z|| o @ty <
1 and

/JJ“ Ly|Y /J]H

Zf|uh,*w|7 dat fowh,*(u(w)P Zwydw.  (2.15)

JGZ JGZ
Loy BT

Thus, the estimates in (2.13) and (2.15) along with Lemma 2.2 lead to

luj+l 1/7 Y
dt
%, Jowur g
J€Z
LP(R'I‘H)
/) /1Y) —\|Y
< CURIYR I f [Z |ﬂ,~<w)|) -, R
R+l JEZ
< CUAIR el 1 jef My (Z0)
JEZ LR+ LAl L@ @)

A+y/¥") (I+y/y")

IA

Dluf

JEZ

”Z. | |L(p/7)’ RA+1Y) 5
R™)

LR+
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where Z'(w) = Z(—w). Therefore, by the last inequality and (2.14), we obtain that (2.10) holds for all

&y’

pely. 5=
Now let us prove (2.11). As p < v, we have v < p’, which by the duality gives that a set of

. —_ 1 . .
functions {¢;(w, 1)} defined on R""" x R™ exists and satisfies HH”Sﬁj”[j’([ﬂj,ﬂjﬂ]’%) o) | < 1and
d 1]y /Jj+l d
t _ _ r
Zjﬁ%wmy :f Z]ﬁ%wmmﬁmmTW. (2.16)
iz ¥ Rl ez v
Lp (R H
Define the operator Y : R7! x R* — R by
()W, 1) = f |0 # 0,09, t>|’
/EZ
Thus, thanks to the duality, a function Q € L®/YY (R"!) with norm 1 exists such that
/1j+]
1y ||Y o oydt
H(T(goj)) - Z f f (O, # @i, 0| =Q(w)dw
LV (R1+1) ez R+l J t
/1./
'uj+1
a J 4 dt
< CIAIY D ‘U* o (O° f o, 0| —
I I O @ EZ: om0 =
J w LW YR+
’ YK /
< oo Ung)) "G5 Q1 gy (2.17)

for all (;/TKK)/ < p < v, where Q*(w) = Q(—w). Therefore, by inequalities (2.16)—(2.17) and Holder’s
inequality, we conclude

Iy

LP(R™1)

< Cp\ph(ln,u) ||(T(‘P/))l/y ||Lf’ "R+

1y
s

< Cpyp(np) =
JEZ

[Z |(”j|y]l/7

JEZ

Lr®r+)

) (2.18)
Lp(Rq+l)

holds for all p € ( —,7%). This finishes the proof of (2.11).
To prove (2. 12) we use the linear operator 7 that was defined in the proof of Lemma 2.3. Hence,

we have o

JEZ

< C(Inp)
L! (le)

) (2.19)

Ll (le)

Hnlm(ﬂ)””u,m,‘i’|l

@

which, when interpolated with (2.3), directly gives (2.11). O

AIMS Mathematics Volume 9, Issue 8, 22287-22300.



22297

3. Proof of Theorems 1.1 and 1.2

Let us first prove Theorem 1.1. Similar technique found in [16] will be employed here. Assume
that € Hyand h € V,(R"), ¥ € L1 (S”‘l) for some 1 < k,q < 2. Itis easy to verify that Minkowski’s

inequality gives
o0 1/
> £
j=0 vE t
20 dr\'”
T (fR O, % Fw)|” 7) . 3.1)

Set u = 27 So, In(u) <
space C*(0, o) such that

1

= f Fw = v, wyer = ¢(IVD)Ky u(v)dv
2= le<v|<270t

G W (FY() o

IA

m For j € Z, let {@ }io be the set of a partition of unity in the

0<09,<1, Z®j(t) =1,
JEZ
d'0; (1 § C

supp®; C [ u M =1, and | <

Define the multiplier operator jJ\F(Z ) =0;(¢ |)F(Z ). So, we deduce that for any F € S(R™!),
Go P <C Y GO, (P, (3.2)
JjE€Z

where

1/y
f Vs 0] d’] ,

R+

G (FYOP) = [

Vi jul,0) = Y Oy Uy # YWY, ., (0.

SEZ

(15 v+l)

So, to prove Theorem 1.1, it suffices to show that a positive constant 7 exists such that the following
inequalities hold:

1y
() =7l S
652, g, < Coen 2 ( e 1)) Y27 5 (3.3)
for all p € [y, 7’(,—7_’/(],
- 1 Ky]—(zﬂ(
(7) =7l
ng,” Moscaray < Crien 2 ((61 - Dk - 1)) WPl g 34
for all p € (K7 y+K,y), and
Ky=y+l
65,7 Cparn 27 [ ————| 7 AL (3.5)
‘1’¢h/ LP(RW+1) = P (g—D-1) F 7 (Ra+1y?
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for all p € (Ky yﬂ,y)
On one side, we prove the estimate (3.3) when p = y = 2. In this case, we have ||F||F°‘2<Rn+') =
2
IFllz2@n+1). So, Plancherel’s theorem along with Lemma 2.1 produce
l62,..,F < |U, @ gyl |, 2yon| dcdty
W.p,h ] LZ(R’”]) - .t n+ n+ n+
veZ Do \ it
< Clynm ) f min ([ % | 2] ) Pt | ey
SEZ
Dis+ju
< 2\{1;,(111/1) 220l Zf ’A(g §n+l) dgd(nﬂ
seZ Y Ds+ju
< Coyu(np) 27MFI gy
where O, = {(4“, L) €ERTXR: |(§, {,,+1)| € IW}. Therefore, we have
16950, g, < Cos2 (g = D= DI 2 U2 - (3.6)
On the other side, by invoking Lemma 2.1 in [16] and Lemma 2.4, we have
() 1
’y —_—
1691/ s, < v ( h 1)) I g (3.7)
for all p € [y, y’f—y_lk],
62,01, <o [—— L) 7 AL (338)
‘I"¢hj LP(R””) = b1, (q _ 1)(K— 1) F (un) .
for all p € (- y+/<”)/)’ and
ky—y+1
1600, = Coen [ =] " 1A (3.9)
P g = TP (g = D= 1) Fy @) '
forall p € ( +1 ,7). Therefore, when we interpolate (3.6) with (3.7)—(3.9), we directly obtain (3.3)—

3.5), Wthh 1n turn with (3.2) finishes the proof of Theorem 1.1.
In the same manner employed in the proof of Theorem 1.1, except employing Lemma 2.3 instead
of Lemma 2.4 and taking p = 29 instead of u = 27, we immediately prove Theorem 1.2.

4. Conclusions

(7)
W.b.h

whenever the rough kernel W lies in the space L(S"7!). These bounds allow us to utilize Yano’s

extrapolation technique to confirm the boundedness of Qfg)qb , under weaker conditions on ¥; that is,

¥ belongs to either the space L(log L)*(S"™!) or to the space BE,O’S_I)(S”‘l). The results of this article
generalize and improve many previously know results, as the results in [1-5, 14-16,22].

In this work, we obtained specific L” bounds for the generalized Marcinkiewicz operator G
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