We study the almost everywhere pointwise convergence of the Boussinesq operator along sequences $ \{t_n\}_{n = 1}^\infty $ with $ \lim\limits_{n\rightarrow \infty} t_n = 0 $ in one dimension. We obtain a characterization of convergence almost everywhere when $ \{t_n\}\in l^{r, \infty}(\mathbb{N}) $ for all $ f\in H^s(\mathbb{R}) $ provided $ 0 < s < \frac12 $.
Citation: Dan Li, Fangyuan Chen. On pointwise convergence of sequential Boussinesq operator[J]. AIMS Mathematics, 2024, 9(8): 22301-22320. doi: 10.3934/math.20241086
We study the almost everywhere pointwise convergence of the Boussinesq operator along sequences $ \{t_n\}_{n = 1}^\infty $ with $ \lim\limits_{n\rightarrow \infty} t_n = 0 $ in one dimension. We obtain a characterization of convergence almost everywhere when $ \{t_n\}\in l^{r, \infty}(\mathbb{N}) $ for all $ f\in H^s(\mathbb{R}) $ provided $ 0 < s < \frac12 $.
[1] | J. Bourgain, Some new estimates on oscillatory integrals, Essays on Fourier analysis in Honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., Princeton University Press, New Jersey, 42 (1995), 83–112. |
[2] | J. Bourgain, On the Schrödinger maximal function in higher dimension, Proc. Steklov Inst. Math., 280 (2013), 46–60. https://doi.org/10.1134/S0081543813010045 |
[3] | J. Bourgain, A note on the Schrödinger maximal function, J. Anal. Math., 130 (2016), 393–396. https://doi.org/10.1007/s11854-016-0042-8 doi: 10.1007/s11854-016-0042-8 |
[4] | J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pure. Appl., 17 (1872), 55–108. |
[5] | A. Carbery, Radial Fourier multipliers and associated maximal functions, North-Holland Mathematics Studies, 111 (1985), 49–56. https://doi.org/10.1016/S0304-0208(08)70279-2 |
[6] | L. Carleson, Some analytic problems related to statistical mechanics, In: Euclidean harmonic analysis (Proc. Sem., Univ. Maryland., College Park, Md., 1979, 5–45), Lecture Notes in Math., Springer, Berlin, 779 (1980). |
[7] | C. H. Cho, H. Ko, A note on maximal estimates of generalized Schrödinger equation, arXiv preprint, 2018. |
[8] | C. H. Cho, H. Ko, Y. Koh, S. Lee, Pointwise convergence of sequential Schrödinger means, J. Inequal. Appl., 2023 (2023), 54. https://doi.org/10.1186/s13660-023-02964-8 doi: 10.1186/s13660-023-02964-8 |
[9] | M. Cowling, Pointwise behavior of solutions to Schrödinger equations, Lect. Notes Math., 992 (1983), 83–90. |
[10] | B. E. J. Dahlberg, C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, In: Harmonic analysis (Minneapolis, Minn., 1981,205–209), Lecture Notes in Math., Springer, Berlin-New York, 908 (1982). |
[11] | C. Demeter, S. Guo, Schrödinger maximal function estimates via the pseudoconformal transformation, arXiv preprint, 2016. |
[12] | E. Dimou, A. Seeger, On pointwise convergence of Schrödinger means, Mathematika, 66 (2020), 356–372. https://doi.org/10.1112/mtk.12025 doi: 10.1112/mtk.12025 |
[13] | Y. Ding, Y. Niu, Weighted maximal estimates along curve associated with dispersive equations, Anal. Appl., 15 (2017), 225–240. https://doi.org/10.1142/S021953051550027X doi: 10.1142/S021953051550027X |
[14] | X. Du, L. Guth, X. Li, A sharp Schrödinger maximal eatimate in $\mathbb{R}^2$, Ann. Math., 186 (2017), 607–640. https://doi.org/10.4007/annals.2017.186.2.5 doi: 10.4007/annals.2017.186.2.5 |
[15] | X. Du, L. Guth, X. Li, R. Zhang, Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates, Forum Math. Sigma, 6 (2018), 18. https://doi.org/10.1017/fms.2018.11 doi: 10.1017/fms.2018.11 |
[16] | X. Du, R. Zhang, Sharp $L^2$ estimate of Schrödinger maximal function in higher dimensions, Ann. Math., 189 (2019), 837–861. https://doi.org/10.4007/annals.2019.189.3.4 doi: 10.4007/annals.2019.189.3.4 |
[17] | J. García-Cuerva, J. L. Rubio De Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, Vol. 116 (Notas de Matemática 104), North-Holland, Amsterdam, 1985. |
[18] | L. Grafakos, Modern Fourier analysis, World Scientific Publishing, New York, 2014. |
[19] | C. Kenig, A. Ruiz, A strong type (2, 2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Am. Math. Soc., 280 (1983), 239–246. |
[20] | S. Lee, On pointwise convergence of the solutions to Schrödinger equations in $\mathbb{R}^2$, Int. Math. Res. Not., 2006. |
[21] | S. Lee, K. Rogers, The Schrödinger equation along curves and the quantum harmonic oscillator, Adv. Math., 229 (2012), 1359–1379. https://doi.org/10.1016/j.aim.2011.10.023 doi: 10.1016/j.aim.2011.10.023 |
[22] | D. Li, J. Li, A Carleson problem for the Boussinesq operator, Acta. Math. Sin.-English Ser., 39 (2023), 119–148. https://doi.org/10.1007/s10114-022-1221-4 doi: 10.1007/s10114-022-1221-4 |
[23] | D. Li, J. Li, J. Xiao, An upbound of Hausdorff's dimension of the divergence set of the fractional Schrödinger operator on $H^s(\mathbb{R}^n)$, Acta Math. Sci., 41 (2021), 1223–1249. https://doi.org/10.1007/s10473-021-0412-x doi: 10.1007/s10473-021-0412-x |
[24] | D. Li, H. Yu, Convergence of a class of Schrödinger equations, Rocky Mt. J. Math., 50 (2020), 639–649. https://doi.org/10.1216/rmj.2020.50.639 doi: 10.1216/rmj.2020.50.639 |
[25] | W. Li, H. Wang, A study on a class of generalized Schrödinger operators, J. Funct. Anal., 281 (2021), 109203. https://doi.org/10.1016/j.jfa.2021.109203 doi: 10.1016/j.jfa.2021.109203 |
[26] | W. Li, H. Wang, D. Yan, Sharp convergence for sequences of Schrödinger means and related generalizations, Cambridge University Press, 2023. |
[27] | N. Liu, H. Yu, Hilbert transforms along variable planar curves: Lipschitz regularity, J. Funct. Anal., 282 (2022), 109340. https://doi.org/10.1016/j.jfa.2021.109340 doi: 10.1016/j.jfa.2021.109340 |
[28] | R. Lucà, K. Rogers, An improved necessary condition for the Schrödinger maximal estimate, arXiv preprint, 2015. https://doi.org/10.48550/arXiv.1506.05325 |
[29] | C. Miao, J. Yang, J. Zheng, An improved maximal inequality for 2D fractional order Schrödinger operators, Stud. Math., 230 (2015), 121–165. https://doi.org/10.4064/sm8190-12-2015 doi: 10.4064/sm8190-12-2015 |
[30] | A. Moyua, A. Vargas, L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Notices, 1996,793–815. |
[31] | P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699–715. https://doi.org/10.1215/S0012-7094-87-05535-9 doi: 10.1215/S0012-7094-87-05535-9 |
[32] | P. Sjölin, Two theorems on convergence of Schrödinger means, J. Fourier Anal. Appl., 25 (2019), 1708–1716. https://doi.org/10.1007/s00041-018-9644-0 doi: 10.1007/s00041-018-9644-0 |
[33] | P. Sjölin, J. O. Strömberg, Convergence of sequences of Schrödinger means, J. Math. Anal. Appl., 483 (2020), 123580. https://doi.org/10.1016/j.jmaa.2019.123580 doi: 10.1016/j.jmaa.2019.123580 |
[34] | C. D. Sogge, Fourier integrals in classical analysis, 2 Eds., Cambridge University Press, Cambridge, 2017. |
[35] | E. M. Stein, On limits of sequences of operators, Ann. Math., 74 (1961), 140–170. https://doi.org/10.2307/1970308 doi: 10.2307/1970308 |
[36] | E. M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993. |
[37] | T. Tao, A. Vargas, A bilinear approach to cone multipliers I. Restriction estimate, Geom. Funct. Anal., 10 (2000), 185–215. https://doi.org/10.1007/s000390050006 doi: 10.1007/s000390050006 |
[38] | L. Vega, Schrödinger equations: Pointwise convergence to the initial data, Proc. Am. Math. Soc., 102 (1988), 874–878. |