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1. Introduction

1.1. The pointwise convergence of the Schrodinger operator

The formal solution to the free Schrodinger equation

idu+Au=0,(x1€eR"XR,;
u(x,0) = f(x),x e R”

is defined by
1

Qnyr

" f(x) = f D fe)de,
R}l

where

f& = fR e f(dx.

Carleson [6] considered the following problem: Determine the optimal s for which

ltinge’“ f(x) = f(x), a.e xeR" (1.1)
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whenever f € H*(R"), where H*(R") is the L?>-Sobolev space of order s, which is given by

H'(R") = {f €S Il = ( f (1+1eP) |f<§>|2d§)2 < oo}.
-

In 1979, Carleson [6] first showed that the almost everywhere convergence (1.1) holds for any
feH i(R). Dahlberg-Kenig [10] proved (1.1) fails for s < }1 when n > 1. For the situation in
higher dimensions, many researchers such as Carbery [5] and Cowling [9] considered this problem, and
Sjolin [31] and Vega [38] proved independently that (1.1) holds when s > % in any dimensions. The
sufficient condition of (1.1) has been obtained in [1,2,7,11,13,15,20,21,23,28-30,37]. Bourgain [3]
gave counterexamples demonstrating that (1.1) fails provided s < ﬁ The best sufficient condition
was improved by Du-Guth-Li [14] and Du-Zhang [16] in general dimension n > 2. Hence, the Carleson

problem was essentially solved except for the endpoint.

1.2. The pointwise convergence of Boussinesq operator

As a nonlinear variant of (1.1), the Boussinesq operator acting on f € S(R") is given by

B =@ [ eV e,
Rn
which occurs in many physical situations. The name of this operator comes from the Boussinesq
equation (cf. [4])
utt - uxx i uXXX)C = (uz)XX’ v(t7 'x) e Rz

modelling the propagation of long waves on the surface of water with small amplitude.

We are motivated by Section 1.1 and the similarity between the Schrodinger operator and the
Boussinesq operator to study the pointwise convergence of Bf(x,t): Evaluate the optimal s, such
that

ltirglﬂf(x, 1 =f(x), ae xeR" (1.2)

holds for any f € H*(R") with s > s..

Cho-Ko [7] improved the convergence result on the Schrodinger operator to some generalized
dispersive operators excluding the Boussinesq operator. Li-Li [22] proved that almost everywhere
convergence (1.2) holds for any f € H %(R) and Li-Li [22] also proved the condition s > }1 is sharp.
Li-Wang [25] obtained almost everywhere convergence (1.2) holds for the optimal s, = % when n = 2.

In this paper, we are interested in a related problem: To study the pointwise convergence of

Bf(x,t,), where {,})7 | is a decreasing sequence with lim 7, = 0. One may expect less regularity on f

n—oo

is enough to obtain convergence in the discrete case. Let’s review the convergence of the Schrodinger
operator. When z,, = % n=1,2,---, Carleson [6] proved that the convergence result holds provided that
s > }‘ but fails for s < % in one dimension. Indeed, it actually fails for s < % by the counterexample in
Dahlberg-Kenig [10]; see Lee-Rogers [21] for more details. Recently, this problem was further studied
by [8,12,24,26,32,33]. In particular, under the assumption that {z,}*” | belongs to Lorentz space [ (N),

O0<r<oo,ie.,

supb'#{neN:t, > b} < oo,
b>0
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Dimou-Seeger [12] considered the fractional Schrodinger operator, which is defined by

eiz(—A)% F) = 2n)" f CEHED Py,
Rn
and obtained a characterization of convergence for all functions in H*(R) when 0 < s < min {j—", %} and
a # 1. Li-Wang-Yan [26] and Cho-Ko-Koh-Lee [8] extended the result of Dimou-Seeger [12] to higher
dimensions by different methods.

In this paper, we study the almost everywhere pointwise convergence problem of the sequential
Boussinesq operator. The fractional Schrodinger operator and Boussinesq operator are different
operators, and the result from Dimou-Seeger [12] cannot cover our work. We obtain a characterization
of convergence almost everywhere for any f € H°(R) when 0 < s < % Our main results are as follows:

Theorem 1.1. Suppose 0 < s < % Let {t,} | be a decreasing sequence with lim t, = 0, and suppose

n—oo

that {t, — t,.1},", is also decreasing. Then the following four statements are equivalent.

(i) Let r(s) = =5, the sequence {t,} € [F(N).

(ii) There exists a constant Cy such that for any f € H°(R) and for all sets B with diam(B) < 1, we
obtain

sup |Bf(x, 1,,)|

neN

< Cillfllaswy.- (1.3)

L2(B)

(iii) There exists a constant C, such that for any f € H*(R), for all sets B with diam(B) < 1, and for
any a > 0, we obtain

{x € B:sup|Bf(x,t,)| > cy}

neN

< G\ f ey (1.4)

(iv) Forall f € H*(R), we have
lim Bf(x,t,) = f(x), a.e.xeR.

It is easy to see that (i1))=(iii). However, the opposite result (iii)=(ii) seems nontrivial, so we do
not have a direct proof for it. Next, we introduce the outline of proving Theorem 1.1 briefly, as follows:
We prove the following five statements: (1)=(i1), (1)=(1v), (i1)=(ii1), (ii1))=(1), and (iv)=(1ii).

Remark 1.1. We can drop the convexity assumption in Theorem 1.1. In fact, statements (ii), (iii), and
(iv) hold whenever t, is decreasing and {t,} € I7%*(N), see Proposition 2.1 for more details.

We also have a global version of the maximal function inequalities, as follows:

Theorem 1.2. Suppose 0 < s < % Let {1}, be a decreasing sequence with lim t, = 0, and suppose

n—oo

that {t, — t,1}", is also decreasing. Then the following three statements are equivalent.

(i) The sequence {t,} € IT%°(N).
(ii) There exists a constant Cy such that for any f € H*(R), we have

sup |Bf(x, 1,)|

neN

< Cill fll s my- (1.5)

L2(R)
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(iii) There exists a constant C, such that for any f € H*(R) and for any a > 0,

< Coa” I ey- (1.6)

{x e R :sup|Bf(x,t,)| > oz}

neN

The proof of Theorem 1.2 is similar to that of Theorem 1.1. It suffices to prove the following three
statements: (1)=(ii), (ii)=({ii), (iii))=(i).

Throughout this paper, we always use C to denote a positive constant, independent of the main
parameters involved, whose value may change at each occurrence. The positive constants with
subscripts, such as Cy and C,, do not change in different occurrences. For two real functions f and
g, we always use f < g or g > f to denote that f is smaller than a positive constant C times g, and
we always use f ~ g as shorthand for f < g < f. We shall use the notation f > g, which means
that there is a sufficiently large constant C, which does not depend on the relevant parameters arising
in the context in which the quantities f and g appear, such that f > Cg. If the function f has compact
support, we use suppf to denote the support of f. We write |A| for the Lebesgue measure of A C R.
We use S (R") to denote the Schwartz functions on R”. The notation diam(B) denotes the diameter of
set B.

2. The estimates of maximal functions

In this part, we have proved the boundedness of the maximal function provided {t,} € I7%*(N),
which implies that (i)=(i1) and (i)=(iv) in Theorem 1.1. At the same time, we also obtain (i)=(ii) in
Theorem 1.2.

2.1. The main lemma

Without loss of generality, we can suppose that #, € (0,1) for all n € N. Next, we study the
frequency truncated operator

B = % f e V“'f“)f(f)x(i)df,

R

where y € C* is a real-value, smooth function, supp y C {% <€l < 1}. We can obtain the following
result by [19], and the following conclusion will play a crucial role in our proof.

Lemma 2.1. Let J C [0, 1] be an interval, then

11
< C( + [J1F ) fll 2wy -
LX(R)

sup |8, f (x, 1)

teJ

In order to prove Lemma 2.1, we review the following three lemmas first: Oscillatory integrals have
played a key role in harmonic analysis. So we introduce the following well-known variant of Van der
Corput’s lemma:

Lemma 2.2. (Van der Corput’s lemma [36]) For a < b, let F € C*(|a, b)) be real valued and €
C*([a,D)).

AIMS Mathematics Volume 9, Issue 8, 22301-22320.
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) IfIFF(x)| 2A1>0, VY xela,b]and F'(x) is monotonic on |a, b, then

b ) C b
f e y(x) dx s3(|w<b)|+ f |¢/’<x>|dx),

where C does not depend on F, , or |a, b].

(i) If|IF"(x)|>A2>0, Vxe€la,b], then
C b
< /l—;(|¢(b)|+f Il//'(X)IdX),

b
f e (x)w(x) dx
where C does not depend on F, , or |a, b].

a

Schur’s lemma, which is described as follows, provides sufficient conditions for linear operators to
be bounded on L?(R").

Lemma 2.3. (Schur’s lemma [18]) Assume that K(x,y) is a locally integral function on a product of
two o-finite measure spaces (X, u) X (Y,v), and let T be a linear operator defined by

T = f K y) f()dv(y)
Y

when f is bounded and compactly supported. Suppose

sup f |K(x, y)|dv(y) = A < oo,
Y

xeX

Supf [K(x, Yl dp(x) = B < oo.
X

yey

Then the operator T extends to a bounded operator from LP(Y) to LP(X) with norm A5 By for 1 <
p < oo,

The following lemma is well known.

Lemma 2.4. (Lemma 2.4.2 [34] or [27]) Suppose that F is C'(R). Then, if ¢ > 1 and é + i =1,

2 72 i
sup |F(w)|! < |F(D)|! + g (f [F(u)|? du) (f |F’ (w)? du) .
uel1.2] 1 1

Proof of Lemma 2.1. Let us take the first A > 1. The proof follows from the idea of Kolmogorov-
Seliverstov-Plessner method. By linearizing the maximal operator, that is, let x — #(x) be a measurable
function and #(x) € J. It suffices to prove

1B (x, 1N 2y < CA+ 1A fll 2z

where the constant C does not depend on #(-) and f. Denote

1 . >\ A ~
Buf (5, 1(0) = 5 f gl Vi >f<f>x(§)d§ = AT\ ()]0,

R
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where |
T8 = 5- f A VIR o ) ().
R

Since || f (2w = P I f1lz2r), Our goal translates into proving the following inequality:
Tl 11 + 272,
which can further transform into demonstrating
ITAT) 2z S W12+ A7 2.1)

We use the idea of T7* to complete the proof. After some computation, the kernel of 7,(T,)* is
1 ; : Ny
Ki(x,y) = H(A(x=y)-E+(H(x)—1()|AE] Y 1+[4A&1%) | 2 de.
a(x,y) o fRe X (&)dé

Denote

D, (&) = Ax —y) - &+ (t(x) — t)|AE] V1 + |2
= Ax —y) - &+ (t(x) — ty)AE N1 + 2282,
where & > 0. Thus,

, 1+2228 1
(&) = Ax - y) + A — 1) Loy,
1+282 2
On the one hand, if [x — y| > 1004|#(x) — #(y)|, we have
, 1 +2228
DN = Al — y] = () — 1)l
[+ .28
> A=yl = () — )| =2
> Alx =yl = Ae(x) — 1(y
V1 + 22
> A — 3] - 42)(x) — 1)
S 24/1| |
> 5s Al -l
14222¢%

The first inequality follows from

A>1.
Therefore, we have

is increasing on [%, 1], and the second inequality follows from

V1+22£2

IK,(x,y)l s (Ax = y))™N.

By the definition of K,(x,y), we have
IKa(x, )l < 1.

Since |K;(x,y)| < (Ax — y)™ when |x — y| > 1004|t(x) — #(y)|, we have

K29 (14 Alx = yh™ (2.2)
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when |[x — y| > 1002|¢(x) — t(y)|.
On the other hand, if |x — y| < 1004|#(x) — ¢(y)|, we have

o 3% 42248
Q7 ()] = |A(x) ~ t(y))m
22+ 3t

> /l — #
|t(x) t(y)l(1 " i/lz)%

La4
> Alt(x) — 1(y)|——
@2)}
= L2 - 10y)
— ot
> Loy
— X — V.
=3200" 7
The first inequality follows from the fact that % is increasing on [%, 1]. And the second inequality
(1+42¢2)2
follows from A > 1.
Using Lemma 2.2, we obtain
K6, )l € A3 — I, (2.3)

The case € € [—1, —%] is similar to case & € [%, 1], and we neglect the details here. (2.2) and (2.3) imply
that

f |Ka(x, pldy < f A2 [x —y[2dy + f (1 + Ax—yhNdy
R [x=yl<Alt(x)—1(y)| [x=y|>A|t(x)—1(y)|

sf A3 x —y[2dy + f(l + Ax — y)Ndy
[x=yl<AlJ]| R

1
S+,

which implies that
SuprKa(x,y)ldy <P+

xeR JR

By symmetry, we have the same upbound for sup, fR |K(x,y)ldx. By Lemma 2.3, we obtain the
desired conclusion (2.1).
The case A < 1 follows from Lemma 2.4. By Lemma 2.4, we obtain

teJ

sup [B,f(x, D> < [Baf(x, to)” + Z(IIBaf(x, P dt)2 (flﬁtBaf(x, P dt)2 -
J J

By Holder’s inequality, we have

sup [B,f (-, D)

teJ

1 1
S I1Bf (s 10)ll ey + [1Baf e Dllzey 2, [10:BAf O Dllze |2 -
LZ(R) t t
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Plancherel’s theorem implies that

1 1 1 1
sup [Bf (-, 1)l S Wfllze) + |J|4||f||£z(R)|J|4||f||zz(R)

teJ

L2(R)
= fll2w) + |J|%||f||L2(R)
S Nl
< (14 WEAD)I 2z,

where we use J C [0, 1] in the second inequality.

2.2. The boundedness of a maximal function

Proposition 2.1. Let {t,} € I"*(N) be decreasing. Then

r

sup [Bf (-, 1)l R

neN

< Clfllswy, s = 2.4)

L2(R)

Moreover, Bf(x,t,) — f(x), a.e.x e R whenever f € H(R) for k > min {}L, 1+rzr}'

Proof of Proposition 2.1. We use the idea of [12] to complete the proof of Proposition 2.1. We use a

standard inhomogeneous frequency decomposition, that is, ), P;f = f, where
k=0

Pof(®) = 1,1 1©)f ).
ﬁl_c?(é‘u) = (1ak126)(8) + 11k _ok-11(8)) f@&, k>1.

ObViOllSly, PkPk = Pk.
For each integer [ > 0, we define

n o= {n e N: 2 "Dz < t, < 2_lﬁ}.
Since {t,} € I"*(N), there exists C > 0 such that
#y < 2/ = 2%, (2.5)

— r
where s = T

According to the frequency, we divide our proof into three parts, that is,

sup [Bf (x, 1,)] < Ai(x) + Ax(x) + A3(x),

where

A(x) := sup sup Z BP f(x, )|,

I neny
k<L

1+2r
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Ay (x) := sup sup Z BP,f(x,t,)|,

I newy

!
ﬁﬁk<l

A3(x) := sup sup ZBPkf(x, tl.

I neny k>l

By the definition of #n;, we have
ty € Jy = 0,277,

where n € n;.
Firstly, we consider the term ||A||;2x). By Minkowski’s inequality, we obtain

A (lze) < [supsup D IBPf(x, )]

nen; k< ]

=i 2(R)
< sup sup |BP.f (-, 1,)|
>0 I>k(1+2r) neny I2(R)

For n € Up 112915 1, lies in an interval of length O(27%%), that is, Jy4, with I(k) = k(1 + 2r)]. We
use Lemma 2.1 and take J = Jyy) and A = 2k, Thus

k 1
< (1 + 22 il D N1Pefll 2wy S WPkfll2g,) -
LX(R)

sup sup |BPf(:, 1)l

I>k(1+2r) neny

The last inequality follows from the fact that 2% |J,(k)|% < 1. Therefore, we obtain

A @liee $ D IPF g

k>0
< —_—
~ Z HPkf LZ(R)
k>0
= > 0120 + xi2t2)

k=0

— Z HX[Zkfl,zk](lﬂ)f(é:)”Lz(R)

k>0

-5

k=0

< Z 2—ks

k>0
< CONflaswy, s> 0.

Secondly, we study the term ||A,||;2g). For simplicity of notation, we take the change of variables
k = [ — j. By Minkowski’s inequality, we have

L2(R)

i 2l (1-+168) (1 +16R)" fe@

L)

(1+1P) f@©

L2(R)

As(x) = sup sup Z BP_f(x, 1)

I neny
. 2r
0<js1im!

AIMS Mathematics Volume 9, Issue 8, 22301-22320.
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IA

Z Z sup |BP._ i f(x,1,)]

120 \o<js 21 "M

IA

DD supIBPLfx, 1P

- nen,
720\ jleze M5

Since [ > j%, we have

32500 = 27tz 230D >
By Minkowski’s inequality and using Lemma 2.1 again with J = J; and A = 2"/, we then obtain

1
2
2

Mol < Y| D, sup|BPLf(Co1)

nen;

jZO ! 2j 142-7? 12 (R)

1

2

< > D IsupIBPLf ),

; - nen,
720 > j1er !

< Z Z [(1 +IJzI%2%(1_")||Pz—jf||L2<R>]2

J20 \ 1> jit2r

=N S [+ 22w P Al |

20 \ 3152

1 ; 1 . 2
SZ Z [25<1—j>(1—m>2—12<1+2,)||pl_jf||L2(R)]

j=0 1> 1+2r

1
2

1
2

8=

J 2
1
2
= N 9t 25U=D|p ?
= " [ Il l—jf||L2(R)]
Jjz0 >4z
S W llasrys

E) = T
Finally, we consider the estimate [|As||,2r). We also make the change of variable k = [ + m. By

Minkowski’s inequality, we have

_1 1
wheres—i(l—

1
2

YOEDY [Z SUp [BP 1 f(, tn>|2) .

m>0 \ >0 "€
1
2 )2
L2(R)
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< {Z Z BPLmf(:, fn)”iz(R)]
m=>0

>0 neny

1

2

< [Z#(n»npmfniz@)] .
m>0

>0

From (2.5), it follows that

2
Ml < [Z 22 ||P1+mf||iz(R))

m>0 \ [>0
%
=y {Z g2 ||P1+mf||iz(R)]
m>0 >0
S W las)-

We are ready to combine all our ingredients and finish the proof.

sup |Bf (-, 1)l

neN

< Al + 1Azl 2@ + 11Asll2@) S 1 s,
L2(R)

which means that the maximal inequality (2.4) is established. For any f € S (R), we have lir{)l Bf(x,t) =
11—
f(x) for all x € R. By [22], it holds

sup |Bf(x,1)| (2.6)

te[0,1]

< CliIfll

s H%(R)'
L2(B)

Since Schwartz functions are dense in H*(R), by (2.4) and (2.6), we obtain

limBf(x.1) = f(x), ae xeR,
—

r

whenever f € H“(R), x > min {%, m}

3. Necessary conditions

In this part, we use ideas from Nikishin-Stein theory to prove necessity in Theorems 1.1 and 1.2;
that is, we obtain the following statements: (ii1))=(i), (iv)=(ii1) in Theorem 1.1, and (ii1)=(1) in
Theorem 1.2.

3.1. The proofs of Theorems 1.1 and 1.2
Firstly, we introduce the following proposition:

Proposition 3.1. Suppose that for all f € H*(R), the limit 1im Bf(x,t,) exists for almost every x € R.

Then for all compact sets K C R, there exists a constant Cy, such that for any a > 0,

-2 2
< Cxa ”f”Hs(R)-

{x € K :sup|Bf(x,t,)| > a/}

neN

AIMS Mathematics Volume 9, Issue 8, 22301-22320.
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We postpone the proof of Proposition 3.1 here, and the details will be shown in Section 3.3.
Secondly, we also need the following key lemma, which is proved in [12].

Lemma 3.1. [12] Let {t,,} be a sequence of positive numbers in [0, 1], let 0 < r < oo, and suppose that

supb'#({n : b <t, <2b}) < A.
b>0

Then {t,} € I"™(N).

Thirdly, we are now ready to prove the necessity of the /*(IN) condition in Theorems 1.1 and 1.2.
In fact, we summarize the necessity of the /**(N) condition into the following Proposition 3.2 which
plays a key role in this paper.

Proposition 3.2. Suppose that {t,};" | is a decreasing sequence such that {t, —t,.,}", is decreasing and
lim¢,=0. ForO< s < %, let r(s) = =2

et 1-2s°

(i) If s < }‘and

1
{x €[0,1]: sup 1Bf(x,t,)| > 5} < Clif I (3.1)
holds for any f € H*(R), then {t,} € I"*(N).
(ii) If s < % and the global weak type inequality
1
{x € R : sup |BSf(x,1,)] > 5} < Cllf ey (3.2)
neN

holds for any f € H*(R), then {t,} € ["®>(N).

We will prove Proposition 3.2 in Section 3.2. We are now ready to combine all our ingredients and
finish the proofs of Theorems 1.1 and 1.2.
Proof of Theorem 1.1. By Proposition 2.1, we can prove the implications of (i)=(ii) and (i)=(iv). By
Tshebyshev’s inequality, we have the result (i1)=(ii1). By the first part of Proposition 3.2, we obtain
the implication (iii)=(1). Finally, using Proposition 3.1, we obtain the conclusion (iv)=(iii). Thus, the
four statements (i), (ii), (iii), and (iv) are equivalent.
Proof of Theorem 1.2. From Proposition 2.1, we have the implication (i)=(ii). It is easy to obtain the
implication (i1)=(iii) by Tshebyshev’s inequality. From the second part of Proposition 3.2, we see the
implication (iii)=(i). Thus, the three statements (i), (ii), and (iii) are equivalent.

3.2. The proof of Proposition 3.2

We can divide the proof of part (i1) of Proposition 3.2 into two cases: s < }1 and % < s < %
Furthermore, since (3.2) yields (3.1), we have (i) implies (ii) when s < }—r So we only need to consider
1 <5 < 1 when we prove part (ii).

We use a contradiction argument. Assume that {t,} ¢ ["®**(N), while (3.1) holds for s < i or (3.2)

holds in the case i <s< % By Lemma 3.1, we obtain

sup b"#({n : b < t, < 2b}) = co.

1
0<b<3

AIMS Mathematics Volume 9, Issue 8, 22301-22320.
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Thus, there exists an increasing sequence {K;}72; with lim K; = co and a sequence of positive numbers

j—oo

with lim b; = 0, such that

Jj—oo
#({n: by <1, <2b;)) 2 Kb (3.3)
We choose another sequence L; < K; with lim L; = co so that in the case where s < 41‘
Jj—ooo
=P
2 <3 (3.4)

Inthe case ; < s < 1, weletL; = K.
Using the idea originally proposed by Dahlberg-Kenig [10], we complete the construction of a
counterexample. We introduce a family of Schwartz functions that are used to test (3.1). Take a C*
11

function g with supp g C [—5, 5] so that fR g(&)dé = 1 and g(£) > 0 and study a family of functions f; ,,

where A is a large number p < 4, and 4, p will be given later. f), is defined via the Fourier transform
by

— 1 [(n+A4
frplm) = p 1g(T)-

Thus, supp ]/‘;, belongs to an interval of length p <« A contained in [—2/1, —%] By the definition of f; ,,
we obtain

1
ol < Ap72. (3.5)

We now study the property of 8 on f;,. We have

_|L f giensl VIR =1 n+4 dn| = li f e/ EE o (£)dE
o e P 2w R

2

|Bf/1,p(x’ tn)

where
D, (&5 x, 1) = X(0E — A) + 1,(A — pé) V1 + (A — pé)>.

For x in a suitable interval I; C I, and for suitable choices of 4}, p; and n(x, j), we obtain

|
whmmmﬂzjé@%—yjk”W“WWAM@@
R T Jr

Dy,
Ajpj

> 1 — max |e/ i) — (3.6)

1
I€1<5

In order to prove |B 1250, (% Tna, j))| > % we only need to demonstrate that

max |el'(l),{j,p/-(§;xatn(x,j)) _ 1 S 1
el<) 2
for our choices of x, n(x, j) and (4;, p;).
From the definition of @, ,(&; x, t,), it follows that
1+2(1 - pé)

(D’l’p(f; X, t) =plx—t,
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3 +2(1 - pé)y?
(1 + - péP)s

O, (&%, 1y) = 1,0°(A = pE)

_3tnp3
(1+ A -peP):

Q& x 1) =

By Taylor expansion, we obtain

O Oxt) | ,
D& x, 1) = D,yp0;x,1,) + (D’Ap(O X, )€ + —f f@”’ (t; x, t,)(E —1)~dt

2! 21
1 4222 1 34222
= - Ax+16,AVI+ L2 +p|x—t, }§+—tnp2/l — ¢
v+t 20 a+ay
1 -3t,0°
- P (¢-0di
0 (1+(-ptP)
== Ax+ AN+ A2+ T+ 1T+ 111 (3.7

Noting that terms —Ax + 1,4 V1 + A% do not depend on &, we have terms —Ax +£,4 V1 + A2 do not affect
our integral. We may neglect the terms —Ax + t,AV1 + A2 and only need to consider the last three

terms /-/11. We consider ¢, with ¢, < & and let € be such that € < W We choose

L _
/lj = ij/- 2_4'v, pPj= ij = eb
Firstly, we study the upper bound of |I|. We consider x in the interval

2

o 2

Jj— N .
2 1+

Observe that in the case s < }‘, by (3.4), we obtain

b: 1+ 2/12 145 1
S —=<2b4;=2Lb Y < o
2 e p 7
2 14223
which implies that /; C [0 ] in this case. Each x € I; implies x € ( In+1, for a unique n,
Vi
which we label n(x, j).
We now claim that
1-s
fn =ty < 2L7'b17, (3.8)

where 1, < b;.
We can see this as follows: Since {, — 1,41}, , is decreasing, for ¢, < b;, by (3.3), we obtain

ij 2]?] 21?] 1-s
T #({n:bj<t, <2b; }) K; b—’(s) L.bpT® i i

ty =t < min{tm = ln+1 Pl > b; }
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By (3.8), we have that
0 < ey = tatejrs < 2L5'B17. (3.9)

By (3.9) and the definitions of A; and p;, we obtain

1+ 2/13 1+ 21?
1] = |pj[x—1, —|§| < (tax,) = tae,p+1)P;
) 1+ 22 1+ 22
J J
1-s
<4LL;'b T p;) = 4e. (3.10)

Secondly, we consider the upper bound of |//|. From the definitions of A; and p;, it follows that

1 3+ 242 1 3+24% 1
| = | 51,03 ——=&| < 7bipil——=~
2" 1+ 23 4+ a4
1
< E4bjpj 46, (3.11)

Finally, we provide the estimate of the last term //1. We obtain

p- L R
—j = ElebJIiZS < E€.
A;

Using the change of variables ¢ = &5 and the choices of 4;, p;, we obtain

. =3t,0; ! 1 - s)>
) = | - f (& -1yt —§np§f3 f s
2000 (1 + (- p0)t 0 (1+ ;- piés)}
3 1
s_b.sf—ds‘z_b.s_
32700y Gy=pEs | T 32 P~ psd)
3 1 3 3
< ﬁbjp;/l 32bjpje = 563. (3.12)

Since € < from (3.7) and (3.10)—(3.12), we obtain

100’
i0,, -(f'xrn(x ')) 1

max|e ppie et — 1 < =

gl<d 2

which implies that

|
sup|Bflp(x t,,)>1—max|elq” ;& Ftnep) 125,
lel<d
forx e I, = |0, 2220 | < [0, 1]. By (3.1) or (3.2). we h
OXJ_,ZW ,1]. By (3.1) or (3.2), we have

2 2s -1
meas(l;) S |1/, pllms@) = 4 SP, )
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which implies that

e 1 2=l -l
Since 4; = Lb, ™, p; = eb; ', we have by < (L™ | (eb]) ", which implies that

€< L%‘H.

Since lim L; = oo, we have lim L?S‘l =0withO < s < %, which leads to a contradiction. This means

Jj—ooo j—oo
that if {¢,} ¢ ["®*>(N), then (3.1) (and therefore (3.2)) fails if s < }‘ and (3.2) fails if }‘ <s< % Thus
we complete the proof of the proposition.

Remark 3.1. We explain the choices of the parameters A; and p . We divide the estimate of ®,,(&; x, t,)
into three terms 1,11 and I11. From the estimate of |I|, we have

/le;lb}l:zvpj = €. (3.13)

From the estimate of |l1|, we have
bip; = €. (3.14)

From the estimate of |I11|, we have
bip; = €. (3.15)

We obtain (3.14), which is the same as (3.15). By (3.13) and (3.14), we obtain
/lj:ij;ﬁ, pj:Eb.%.

3.3. The proof of Proposition 3.1

We use Nikishin’s theorem here, whose proof can be found in [17,35]. Nikishin’s theorem asserts
that if M : L2(Y,u) — L°(R",| - |) is a continuous sublinear operator (with (¥, ) an arbitrary measure
space), then there exists a measurable function w(x) with w(x) > 0 such that

-2 2
f (,()(X)dx S a ||f||L2(y)
(M f)>a}

Let M f(x) = sup|Bf(x, 1,)] and TFg(x) = (2m)~" [ e+l VIHER) o (£)dé. We obtain

neN

T2 () = )" f CEENIER) Fyge = Bf(x,1,).

R

Then T? acts on functions in the weighted L* space L*(uy), where du, = (1 + |£[*)’dé. Define the

maximal operator M? g = sup|T2g|. Since lim Bf(x, t,) exists almost everywhere for every f € H*(R),
neN n—oo
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we have Iflgg < oo almost everywhere for every g € L?(u,). Then [17] implies that the sublinear
operator M® : L*(u;) — L°(| - |) is continuous. By Nikishin’s theorem, we obtain

w(dx < o gl 516
‘f{;ctlﬁﬁg(x)ba} L ()

for some weight w(x), with w(x) > 0 almost everywhere. Without loss of generality, we may further
assume that w is bounded.
Next, for f € H*(R), we obtain

M? f(x) = sup|T;? f(x)| = sup|Bf(x. 1,)| = M® f(x), (3.17)
neN neN
and
||f||L2(/JS) = | fllascw)- (3.18)

(3.16)—(3.18) imply that

211 £112
f w(xX)dx < || fllsm-
{xIMB f (0>}

Using the change of variables x — x —y, we have

f w(x = y)dx < || fllzp - (3.19)
{xIMB f(x)>a}

We multiply both sides of (3.19) by A(y), where h is a strictly positive continuous function with
fR h(y)dy = 1, we obtain

f w(x = Wh(y)dx < || fllfse ()
{IMB f(x)l>a)
Then we integrate in y to obtain that

f f w(x = Yh)dxdy < & || il

R J{x:IMB f(x)[>a}
which yields that
f hx wx)dx < || fllfsg)- (3.20)
{(xIM2 f(x)|>a}

Since h * w is continuous, it attains a minimum over any compact set. For every compact set K,
by (3.20), we obtain

= ‘{x €ekK: |MBf(x)| > a}‘

= f dx
{(xeK: M3 f(x)|>a}

< Cg f h* w(x)dx
(xeK: |\ MB f(x)|>a)

-2 2
< Cga ”f”Hs(R)-

{x € K :sup|Bf(x,t,)| > a}

neN

Therefore, Proposition 3.1 is established.
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4. Conclusions

In this paper, we study the almost everywhere pointwise convergence problem of the sequential
Boussinesq operator. The fractional Schrodinger operator and Boussinesq operator are different
operators, and the result from Dimou-Seeger [12] cannot cover our work. The Boussinesq operator
along sequences {z,},”, with 31_{?0 t, = 0 in one dimension is studied. We obtain a characterization of

convergence almost everywhere when {z,} € ["*(N) for all f € H*(R) provided 0 < s < %
Author contributions

Dan Li: Conceptualization, Methodology, Investigation, Writing — Original Draft; Fangyuan Chen:
Writing — Review and Editing. All authors have read and approved the final version of the manuscript
for publication.

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgments

The authors thank Professor Junfeng Li for helpful suggestions and discussions. Dan Li is
supported by Mathematics Research Branch Institute of Beijing Association of Higher Education
and Beijing Interdisciplinary Science Society (No. SXJC-2022-032) and the Disciplinary funding of
Beijing Technology and Business University (No. STKY?202308). Fangyuan Chen* (the Corresponding
author) is supported by Young Elite Scientists Sponsorship Program by BAST (No. BYESS2023036)
and Young Teachers Program of Beijing Institute of Fashion Technology (No. NHFZ20230100).

Conflict of interest

The authors declare they have no conflict of interest.

References

1. J. Bourgain, Some new estimates on oscillatory integrals, Essays on Fourier analysis in Honor of
Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., Princeton University Press, New Jersey,
42 (1995), 83-112.

2. J. Bourgain, On the Schrodinger maximal function in higher dimension, Proc. Steklov Inst. Math.,
280 (2013), 46—-60. https://doi.org/10.1134/S0081543813010045

3. J. Bourgain, A note on the Schrédinger maximal function, J. Anal. Math., 130 (2016), 393-396.
https://doi.org/10.1007/s11854-016-0042-8

4. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire
horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles
de la surface au fond, J. Math. Pure. Appl., 17 (1872), 55-108.

AIMS Mathematics Volume 9, Issue 8, 22301-22320.


https://dx.doi.org/https://doi.org/10.1134/S0081543813010045
https://dx.doi.org/https://doi.org/10.1007/s11854-016-0042-8

22319

10.

11.

12.

13.

14.

15

16.

17.

18.

19.

20.

21.

22.

A. Carbery, Radial Fourier multipliers and associated maximal functions, North-Holland
Mathematics Studies, 111 (1985), 49-56. https://doi.org/10.1016/S0304-0208(08)70279-2

L. Carleson, Some analytic problems related to statistical mechanics, In: Euclidean harmonic
analysis (Proc. Sem., Univ. Maryland., College Park, Md., 1979, 5-45), Lecture Notes in Math.,
Springer, Berlin, 779 (1980).

C. H. Cho, H. Ko, A note on maximal estimates of generalized Schrodinger equation, arxiv

preprint, 2018.

C. H. Cho, H. Ko, Y. Koh, S. Lee, Pointwise convergence of sequential Schrodinger means, J.
Inequal. Appl., 2023 (2023), 54. https://doi.org/10.1186/s13660-023-02964-8

M. Cowling, Pointwise behavior of solutions to Schrodinger equations, Lect. Notes Math., 992
(1983), 83-90.

B. E. J. Dahlberg, C. E. Kenig, A note on the almost everywhere behavior of solutions to the
Schrodinger equation, In: Harmonic analysis (Minneapolis, Minn., 1981, 205-209), Lecture Notes
in Math., Springer, Berlin-New York, 908 (1982).

C. Demeter, S. Guo, Schrodinger maximal function estimates via the pseudoconformal
transformation, arxiv preprint, 2016.

E. Dimou, A. Seeger, On pointwise convergence of Schrodinger means, Mathematika, 66 (2020),
356-372. https://doi.org/10.1112/mtk.12025

Y. Ding, Y. Niu, Weighted maximal estimates along curve associated with dispersive equations,
Anal. Appl., 15 (2017), 225-240. https://doi.org/10.1142/S021953051550027X

X. Du, L. Guth, X. Li, A sharp Schrodinger maximal eatimate in R?, Ann. Math., 186 (2017),
607-640. https://doi.org/10.4007/annals.2017.186.2.5

. X. Du, L. Guth, X. Li, R. Zhang, Pointwise convergence of Schrodinger solutions and multilinear

refined Strichartz estimates, Forum Math. Sigma, 6 (2018), 18. https://doi.org/10.1017/fms.2018.11

X. Du, R. Zhang, Sharp L? estimate of Schrédinger maximal function in higher dimensions, Ann.
Math., 189 (2019), 837-861. https://doi.org/10.4007/annals.2019.189.3.4

J. Garcia-Cuerva, J. L. Rubio De Francia, Weighted norm inequalities and related topics, North-
Holland Mathematics Studies, Vol. 116 (Notas de Matematica 104), North-Holland, Amsterdam,
1985.

L. Grafakos, Modern Fourier analysis, World Scientific Publishing, New York, 2014.

C. Kenig, A. Ruiz, A strong type (2,2) estimate for a maximal operator associated to the
Schrodinger equation, Trans. Am. Math. Soc., 280 (1983), 239-246.

S. Lee, On pointwise convergence of the solutions to Schrédinger equations in R?, Int. Math. Res.
Not., 2006.

S. Lee, K. Rogers, The Schrédinger equation along curves and the quantum harmonic oscillator,
Adv. Math., 229 (2012), 1359-1379. https://doi.org/10.1016/j.aim.2011.10.023

D. Li, J. Li, A Carleson problem for the Boussinesq operator, Acta. Math. Sin.-English Ser., 39
(2023), 119-148. https://doi.org/10.1007/s10114-022-1221-4

AIMS Mathematics Volume 9, Issue 8, 22301-22320.


https://dx.doi.org/https://doi.org/10.1016/S0304-0208(08)70279-2
https://dx.doi.org/https://doi.org/10.1186/s13660-023-02964-8
https://dx.doi.org/https://doi.org/10.1112/mtk.12025
https://dx.doi.org/https://doi.org/10.1142/S021953051550027X
https://dx.doi.org/https://doi.org/10.4007/annals.2017.186.2.5
https://dx.doi.org/https://doi.org/10.1017/fms.2018.11
https://dx.doi.org/https://doi.org/10.4007/annals.2019.189.3.4
https://dx.doi.org/https://doi.org/10.1016/j.aim.2011.10.023
https://dx.doi.org/https://doi.org/10.1007/s10114-022-1221-4

22320

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

@ AIMS Press

.D. Li, J. Li, J. Xiao, An upbound of Hausdorff’s dimension of the divergence set of
the fractional Schrodinger operator on H*(R"), Acta Math. Sci., 41 (2021), 1223-1249.
https://doi.org/10.1007/s10473-021-0412-x

D. Li, H. Yu, Convergence of a class of Schrodinger equations, Rocky Mt. J. Math., 50 (2020),
639-649. https://doi.org/10.1216/rmj.2020.50.639

W. Li, H. Wang, A study on a class of generalized Schrédinger operators, J. Funct. Anal., 281
(2021), 109203. https://doi.org/10.1016/j.jfa.2021.109203

W. Li, H. Wang, D. Yan, Sharp convergence for sequences of Schrodinger means and related
generalizations, Cambridge University Press, 2023.

N. Liu, H. Yu, Hilbert transforms along variable planar curves: Lipschitz regularity, J. Funct. Anal.,
282 (2022), 109340. https://doi.org/10.1016/j.jfa.2021.109340

R. Luca, K. Rogers, An improved necessary condition for the Schrodinger maximal estimate, arxiv
preprint, 2015. https://doi.org/10.48550/arXiv.1506.05325

C. Miao, J. Yang, J. Zheng, An improved maximal inequality for 2D fractional order Schrodinger
operators, Stud. Math., 230 (2015), 121-165. https://doi.org/10.4064/sm8190-12-2015

A. Moyua, A. Vargas, L. Vega, Schrodinger maximal function and restriction properties of the
Fourier transform, Int. Math. Res. Notices, 1996, 793-815.

P. Sjolin, Regularity of solutions to the Schrodinger equation, Duke Math. J., 55 (1987), 699-715.
https://doi.org/10.1215/S0012-7094-87-05535-9

P. Sj6lin, Two theorems on convergence of Schrodinger means, J. Fourier Anal. Appl., 25 (2019),
1708-1716. https://doi.org/10.1007/s00041-018-9644-0

P. Sjolin, J. O. Stromberg, Convergence of sequences of Schrodinger means, J. Math. Anal. Appl.,
483 (2020), 123580. https://doi.org/10.1016/j.jmaa.2019.123580

C. D. Sogge, Fourier integrals in classical analysis, 2 Eds., Cambridge University Press,
Cambridge, 2017.

E. M. Stein, On limits of sequences of operators, Ann. Math., 74 (1961), 140-170.
https://doi.org/10.2307/1970308

E. M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals,
Princeton University Press, Princeton, NJ, 1993.

T. Tao, A. Vargas, A bilinear approach to cone multipliers I. Restriction estimate, Geom. Funct.
Anal., 10 (2000), 185-215. https://doi.org/10.1007/s000390050006

L. Vega, Schrodinger equations: Pointwise convergence to the initial data, Proc. Am. Math. Soc.,
102 (1988), 874-878.

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 8, 22301-22320.


https://dx.doi.org/https://doi.org/10.1007/s10473-021-0412-x
https://dx.doi.org/https://doi.org/10.1216/rmj.2020.50.639
https://dx.doi.org/https://doi.org/10.1016/j.jfa.2021.109203
https://dx.doi.org/https://doi.org/10.1016/j.jfa.2021.109340
https://dx.doi.org/https://doi.org/10.48550/arXiv.1506.05325
https://dx.doi.org/https://doi.org/10.4064/sm8190-12-2015
https://dx.doi.org/https://doi.org/10.1215/S0012-7094-87-05535-9
https://dx.doi.org/https://doi.org/10.1007/s00041-018-9644-0
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2019.123580
https://dx.doi.org/https://doi.org/10.2307/1970308
https://dx.doi.org/https://doi.org/10.1007/s000390050006
https://creativecommons.org/licenses/by/4.0

	Introduction
	The pointwise convergence of the Schrödinger operator
	The pointwise convergence of Boussinesq operator

	The estimates of maximal functions
	The main lemma
	The boundedness of a maximal function

	Necessary conditions
	The proofs of Theorems 1.1 and 1.2
	The proof of Proposition 3.2
	The proof of Proposition 3.1

	Conclusions

