In this paper, a novel treatment for fuzzy continuous static games (FCSGs) is introduced. This treatment is based on the fact that, as well as having a fuzzy number, the fuzziness is applied to the control vectors to deal with high vagueness and imprecision in a continuous static game. The concept of the $ \alpha $-level set used for converting the FCSGs to a deterministic problem $ \alpha $-FCSGs. An active-set strategy is used with Newton's interior point method and a trust-region strategy to insure global convergence for deterministic $ \alpha $-FCSGs problems from any starting point. A reduced Hessian technique is used to overcome the difficulty of having an infeasible trust-region subproblem. The active-set interior-point trust-region algorithm has new features; it is easy to implement and has rapid convergence. Preliminary numerical results are reported.
Citation: B. El-Sobky, M. F. Zidan. A trust-region based an active-set interior-point algorithm for fuzzy continuous Static Games[J]. AIMS Mathematics, 2023, 8(6): 13706-13724. doi: 10.3934/math.2023696
In this paper, a novel treatment for fuzzy continuous static games (FCSGs) is introduced. This treatment is based on the fact that, as well as having a fuzzy number, the fuzziness is applied to the control vectors to deal with high vagueness and imprecision in a continuous static game. The concept of the $ \alpha $-level set used for converting the FCSGs to a deterministic problem $ \alpha $-FCSGs. An active-set strategy is used with Newton's interior point method and a trust-region strategy to insure global convergence for deterministic $ \alpha $-FCSGs problems from any starting point. A reduced Hessian technique is used to overcome the difficulty of having an infeasible trust-region subproblem. The active-set interior-point trust-region algorithm has new features; it is easy to implement and has rapid convergence. Preliminary numerical results are reported.
[1] | E. E. Ammar, Stability of multiobjective NlP problems with fuzzy parameters in the objectives and constraints functions, Fuzzy Set. Syst., 90 (1997), 225–234. https://doi.org/10.1016/s0165-0114(96)00134-0 doi: 10.1016/s0165-0114(96)00134-0 |
[2] | R. J. Aumann, Game theory, The new Palgrave, 1989, 1–53. https://doi.org/10.1007/978-1-349-20181-5_1 |
[3] | R. Byrd, Robust trust-region methods for nonlinearly constrained optimization, In: Third SIAM conference on optimization, Houston, 1987. |
[4] | A. Dhingra, S. Rao, A cooperative fuzzy game theoretic approach to multiple objective design optimization, Eur. J. Oper. Res., 83 (1995), 547–567. https://doi.org/10.1016/0377-2217(93)E0324-Q doi: 10.1016/0377-2217(93)E0324-Q |
[5] | I. Das, An interior point algorithm for the general nonlinear programming problem with trust region globalization, Institute for Computer Applications in Science and Engineering Hampton, VA, 1996. |
[6] | J. Dennis, M. El-Alem, K. Williamson, A trust-region approach to nonlinear systems of equalities and inequalities, SIAM J. Optimiz., 9 (1999), 291-315. https://doi.org/10.1137/S1052623494276208 doi: 10.1137/S1052623494276208 |
[7] | J. Dennis, M. Heinkenschloss, L. Vicente, Trust-region interior-point SQP algorithms for a class of nonlinear programming problems, SIAM J. Control Optim., 36 (1998), 1750–1794. https://doi.org/10.1137/S036012995279031 doi: 10.1137/S036012995279031 |
[8] | Y. A. Abonaga, M Shokry, M. F. Zidan, Nash-equilibrium solutions for fuzzy rough continuous static games, IJETST, 7 (2020), 6950–6965. https://doi.org/10.18535//ijetst/v7i10.01 doi: 10.18535//ijetst/v7i10.01 |
[9] | B. El-Sobky, A global convergence theory for an active trust region algorithm for solving the general nonlinear programming problem, Appl. Math. comput., 144 (2003), 127–157. https://doi.org/10.1016/S0096-3003(02)00397-1 doi: 10.1016/S0096-3003(02)00397-1 |
[10] | B. El-Sobky, A Multiplier active-set trust-region algorithm for solving constrained optimization problem, Appl. Math. Comput., 219 (2012), 928–946. https://doi.org/10.1016/j.amc.2012.06.072 doi: 10.1016/j.amc.2012.06.072 |
[11] | B. El-Sobky, An interior-point penalty active-set trust-region algorithm, J. Egypt. Math. Soc., 24 (2016), 672–680. https://doi.org/10.1016/j.joems.2016.04.003 doi: 10.1016/j.joems.2016.04.003 |
[12] | B. El-Sobky, An active-set interior-point trust-region algorithm, Pac. J. Optim., 14 (2018), 125–159. |
[13] | B. El-Sobky, A. Abotahoun, An active-set algorithm and a trust-region approach in constrained minimax problem, Comp. Appl. Math., 37 (2018), 2605–2631. https://doi.org/10.1007/s40314-017-0468-3 doi: 10.1007/s40314-017-0468-3 |
[14] | B. El-Sobky, A. Abotahoun, A trust-region algorithm for solving mini-max problem, J. Comput. Math., 36 (2018), 776–791. https://doi.org/10.4208/jcm.1705-m2016-0735 doi: 10.4208/jcm.1705-m2016-0735 |
[15] | B. El-Sobky, Y. Abo-Elnaga, A. Mousa, A. El-Shorbagy, Trust-region based penalty barrier algorithm for constrained nonlinear programming problems: An application of design of minimum cost canal sections, Mathematics, 9 (2021), 1551. https://doi.org/10.3390/math9131551 doi: 10.3390/math9131551 |
[16] | B. El-Sobky, G. Ashry, An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem, AIMS Math., 7 (2022), 5534–5562. https://doi.org/10.3934/math.2022307 doi: 10.3934/math.2022307 |
[17] | B. El-Sobky, G. Ashry, An active-set Fischer-Burmeister trust-region algorithm to solve a nonlinear bilevel optimization problem, Fractal Fract., 6 (2022), 412. https://doi.org/10.3390/fractalfract6080412 doi: 10.3390/fractalfract6080412 |
[18] | B. El-Sobky, G. Ashry, Y. Abo-Elnaga, An active-set with barrier method and trust-region mechanism to solve a nonlinear Bilevel programming problem, AIMS Math., 7 (2022), 16112–16146. https://doi.org/10.3934/math.2022882 doi: 10.3934/math.2022882 |
[19] | J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–174. https://doi.org/10.1016/0022-247X(67)90189-8 |
[20] | M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), 303–320. https://doi.org/10.1007/BF00927673 doi: 10.1007/BF00927673 |
[21] | M. G. Iskander, Using different dominance criteria in stochastic fuzzy linear multiobjective programming: A case of fuzzy weighted objective function, Math. Comput. Model., 37 (2003), 167–176. https://doi.org/10.1016/S0895-7177(03)80012-2 doi: 10.1016/S0895-7177(03)80012-2 |
[22] | H. A. Khalifa, R. A. Zeineldin, An interactive approach for solving fuzzy cooperative continuous static games, Int. J. Comput. Appl., 113 (2015), 16–20. |
[23] | H. Khalifa, Study on cooperative continuous static games under fuzzy environment, Int. J. Comput. Appl. Found. Comput. Sci., 13 (2019), 20–29. |
[24] | M. Kassem, E. Ammar, Stability of multiobjective nonlinear programming problems with fuzzy parameters in the constraints, Fuzzy Set. Syst., 74 (1995), 343–351. https://doi.org/10.1016/0165-0114(94)00344-7 doi: 10.1016/0165-0114(94)00344-7 |
[25] | N. Li, D. Xue, W. Sun, J. Wang, A stochastic trust-region method for unconstrained optimization problems, Math. Probl. Eng., 2019 (2019), 8095054. https://doi.org/10.1155/2019/8095054 doi: 10.1155/2019/8095054 |
[26] | L.Niu, Y. Yuan, A new trust region algorithm for nonlinear constrained optimization, J. Comput. Math., 28 (2010), 72–86. https://doi.org/10.4208/jcm.2009.09-m2924 doi: 10.4208/jcm.2009.09-m2924 |
[27] | E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality constraints, Department of Computer Science, University of Colorado, 1989. |
[28] | M. Osman, A. H. El-Banna, Stability of multiobjective nonlinear programming problems with fuzzy parameters, Math. Comput. Simulat., 35 (1993), 321–326. https://doi.org/10.1016/0378-4754(93)90062-Y doi: 10.1016/0378-4754(93)90062-Y |
[29] | E. Rasmusen, Games and information, Basil Blackwell, 2000. |
[30] | M. Sakawa, H. Yano, Interactive decision-making for multiobjective programming problems with fuzzy parameters, In: Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Dordrecht: Springer, 1990. https://doi.org/10.1007/978-94-009-2111-5_10 |
[31] | M. Sakawa, H. Yano, An interactive fuzzy satisfying method for multiobjective non-linear programming problems with fuzzy parameters, IFAC Proceedings Volumes, 20 (1987), 437–442. https://doi.org/10.1016/s1474-6670(17)55745-6 doi: 10.1016/s1474-6670(17)55745-6 |
[32] | H. Tanaka, H. Ichihashi, K. Asai, Formulation of fuzzy linear programming problem by fuzzy objective function, J. Oper. Res. Soc. JPN, 27 (1984), 178–190. https://doi.org/10.15807/jorsj.27.178 doi: 10.15807/jorsj.27.178 |
[33] | J. Von Neumann, On the theory of parlor games, Math. Ann., 100 (1928), 295–320. |
[34] | T. Vincent, W. Grantham, Optimality in parametric systems, J. Appl. Mech., 50 (1983), 476. https://doi.org/10.1115/1.3167074 doi: 10.1115/1.3167074 |
[35] | X. Wang, Y. Yuan, A trust region method based on a new affine scaling technique for simple bounded optimization, Optim. Method. Softw., 28 (2013), 871–888. https://doi.org/10.1080/10556788.2011.622378 doi: 10.1080/10556788.2011.622378 |
[36] | X. Wang, Y. Yuan, An augmented Lagrangian trust region method for equality constrained optimization, Optim. Method. Softw., 30 (2015), 559–582. https://doi.org/10.1080/10556788.2014.940947 doi: 10.1080/10556788.2014.940947 |
[37] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |