Research article

A trust-region based an active-set interior-point algorithm for fuzzy continuous Static Games

  • Received: 27 October 2022 Revised: 17 March 2023 Accepted: 20 March 2023 Published: 10 April 2023
  • MSC : 49N10, 49N35, 65K05, 93D22, 93D52

  • In this paper, a novel treatment for fuzzy continuous static games (FCSGs) is introduced. This treatment is based on the fact that, as well as having a fuzzy number, the fuzziness is applied to the control vectors to deal with high vagueness and imprecision in a continuous static game. The concept of the $ \alpha $-level set used for converting the FCSGs to a deterministic problem $ \alpha $-FCSGs. An active-set strategy is used with Newton's interior point method and a trust-region strategy to insure global convergence for deterministic $ \alpha $-FCSGs problems from any starting point. A reduced Hessian technique is used to overcome the difficulty of having an infeasible trust-region subproblem. The active-set interior-point trust-region algorithm has new features; it is easy to implement and has rapid convergence. Preliminary numerical results are reported.

    Citation: B. El-Sobky, M. F. Zidan. A trust-region based an active-set interior-point algorithm for fuzzy continuous Static Games[J]. AIMS Mathematics, 2023, 8(6): 13706-13724. doi: 10.3934/math.2023696

    Related Papers:

  • In this paper, a novel treatment for fuzzy continuous static games (FCSGs) is introduced. This treatment is based on the fact that, as well as having a fuzzy number, the fuzziness is applied to the control vectors to deal with high vagueness and imprecision in a continuous static game. The concept of the $ \alpha $-level set used for converting the FCSGs to a deterministic problem $ \alpha $-FCSGs. An active-set strategy is used with Newton's interior point method and a trust-region strategy to insure global convergence for deterministic $ \alpha $-FCSGs problems from any starting point. A reduced Hessian technique is used to overcome the difficulty of having an infeasible trust-region subproblem. The active-set interior-point trust-region algorithm has new features; it is easy to implement and has rapid convergence. Preliminary numerical results are reported.



    加载中


    [1] E. E. Ammar, Stability of multiobjective NlP problems with fuzzy parameters in the objectives and constraints functions, Fuzzy Set. Syst., 90 (1997), 225–234. https://doi.org/10.1016/s0165-0114(96)00134-0 doi: 10.1016/s0165-0114(96)00134-0
    [2] R. J. Aumann, Game theory, The new Palgrave, 1989, 1–53. https://doi.org/10.1007/978-1-349-20181-5_1
    [3] R. Byrd, Robust trust-region methods for nonlinearly constrained optimization, In: Third SIAM conference on optimization, Houston, 1987.
    [4] A. Dhingra, S. Rao, A cooperative fuzzy game theoretic approach to multiple objective design optimization, Eur. J. Oper. Res., 83 (1995), 547–567. https://doi.org/10.1016/0377-2217(93)E0324-Q doi: 10.1016/0377-2217(93)E0324-Q
    [5] I. Das, An interior point algorithm for the general nonlinear programming problem with trust region globalization, Institute for Computer Applications in Science and Engineering Hampton, VA, 1996.
    [6] J. Dennis, M. El-Alem, K. Williamson, A trust-region approach to nonlinear systems of equalities and inequalities, SIAM J. Optimiz., 9 (1999), 291-315. https://doi.org/10.1137/S1052623494276208 doi: 10.1137/S1052623494276208
    [7] J. Dennis, M. Heinkenschloss, L. Vicente, Trust-region interior-point SQP algorithms for a class of nonlinear programming problems, SIAM J. Control Optim., 36 (1998), 1750–1794. https://doi.org/10.1137/S036012995279031 doi: 10.1137/S036012995279031
    [8] Y. A. Abonaga, M Shokry, M. F. Zidan, Nash-equilibrium solutions for fuzzy rough continuous static games, IJETST, 7 (2020), 6950–6965. https://doi.org/10.18535//ijetst/v7i10.01 doi: 10.18535//ijetst/v7i10.01
    [9] B. El-Sobky, A global convergence theory for an active trust region algorithm for solving the general nonlinear programming problem, Appl. Math. comput., 144 (2003), 127–157. https://doi.org/10.1016/S0096-3003(02)00397-1 doi: 10.1016/S0096-3003(02)00397-1
    [10] B. El-Sobky, A Multiplier active-set trust-region algorithm for solving constrained optimization problem, Appl. Math. Comput., 219 (2012), 928–946. https://doi.org/10.1016/j.amc.2012.06.072 doi: 10.1016/j.amc.2012.06.072
    [11] B. El-Sobky, An interior-point penalty active-set trust-region algorithm, J. Egypt. Math. Soc., 24 (2016), 672–680. https://doi.org/10.1016/j.joems.2016.04.003 doi: 10.1016/j.joems.2016.04.003
    [12] B. El-Sobky, An active-set interior-point trust-region algorithm, Pac. J. Optim., 14 (2018), 125–159.
    [13] B. El-Sobky, A. Abotahoun, An active-set algorithm and a trust-region approach in constrained minimax problem, Comp. Appl. Math., 37 (2018), 2605–2631. https://doi.org/10.1007/s40314-017-0468-3 doi: 10.1007/s40314-017-0468-3
    [14] B. El-Sobky, A. Abotahoun, A trust-region algorithm for solving mini-max problem, J. Comput. Math., 36 (2018), 776–791. https://doi.org/10.4208/jcm.1705-m2016-0735 doi: 10.4208/jcm.1705-m2016-0735
    [15] B. El-Sobky, Y. Abo-Elnaga, A. Mousa, A. El-Shorbagy, Trust-region based penalty barrier algorithm for constrained nonlinear programming problems: An application of design of minimum cost canal sections, Mathematics, 9 (2021), 1551. https://doi.org/10.3390/math9131551 doi: 10.3390/math9131551
    [16] B. El-Sobky, G. Ashry, An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem, AIMS Math., 7 (2022), 5534–5562. https://doi.org/10.3934/math.2022307 doi: 10.3934/math.2022307
    [17] B. El-Sobky, G. Ashry, An active-set Fischer-Burmeister trust-region algorithm to solve a nonlinear bilevel optimization problem, Fractal Fract., 6 (2022), 412. https://doi.org/10.3390/fractalfract6080412 doi: 10.3390/fractalfract6080412
    [18] B. El-Sobky, G. Ashry, Y. Abo-Elnaga, An active-set with barrier method and trust-region mechanism to solve a nonlinear Bilevel programming problem, AIMS Math., 7 (2022), 16112–16146. https://doi.org/10.3934/math.2022882 doi: 10.3934/math.2022882
    [19] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–174. https://doi.org/10.1016/0022-247X(67)90189-8
    [20] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), 303–320. https://doi.org/10.1007/BF00927673 doi: 10.1007/BF00927673
    [21] M. G. Iskander, Using different dominance criteria in stochastic fuzzy linear multiobjective programming: A case of fuzzy weighted objective function, Math. Comput. Model., 37 (2003), 167–176. https://doi.org/10.1016/S0895-7177(03)80012-2 doi: 10.1016/S0895-7177(03)80012-2
    [22] H. A. Khalifa, R. A. Zeineldin, An interactive approach for solving fuzzy cooperative continuous static games, Int. J. Comput. Appl., 113 (2015), 16–20.
    [23] H. Khalifa, Study on cooperative continuous static games under fuzzy environment, Int. J. Comput. Appl. Found. Comput. Sci., 13 (2019), 20–29.
    [24] M. Kassem, E. Ammar, Stability of multiobjective nonlinear programming problems with fuzzy parameters in the constraints, Fuzzy Set. Syst., 74 (1995), 343–351. https://doi.org/10.1016/0165-0114(94)00344-7 doi: 10.1016/0165-0114(94)00344-7
    [25] N. Li, D. Xue, W. Sun, J. Wang, A stochastic trust-region method for unconstrained optimization problems, Math. Probl. Eng., 2019 (2019), 8095054. https://doi.org/10.1155/2019/8095054 doi: 10.1155/2019/8095054
    [26] L.Niu, Y. Yuan, A new trust region algorithm for nonlinear constrained optimization, J. Comput. Math., 28 (2010), 72–86. https://doi.org/10.4208/jcm.2009.09-m2924 doi: 10.4208/jcm.2009.09-m2924
    [27] E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality constraints, Department of Computer Science, University of Colorado, 1989.
    [28] M. Osman, A. H. El-Banna, Stability of multiobjective nonlinear programming problems with fuzzy parameters, Math. Comput. Simulat., 35 (1993), 321–326. https://doi.org/10.1016/0378-4754(93)90062-Y doi: 10.1016/0378-4754(93)90062-Y
    [29] E. Rasmusen, Games and information, Basil Blackwell, 2000.
    [30] M. Sakawa, H. Yano, Interactive decision-making for multiobjective programming problems with fuzzy parameters, In: Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Dordrecht: Springer, 1990. https://doi.org/10.1007/978-94-009-2111-5_10
    [31] M. Sakawa, H. Yano, An interactive fuzzy satisfying method for multiobjective non-linear programming problems with fuzzy parameters, IFAC Proceedings Volumes, 20 (1987), 437–442. https://doi.org/10.1016/s1474-6670(17)55745-6 doi: 10.1016/s1474-6670(17)55745-6
    [32] H. Tanaka, H. Ichihashi, K. Asai, Formulation of fuzzy linear programming problem by fuzzy objective function, J. Oper. Res. Soc. JPN, 27 (1984), 178–190. https://doi.org/10.15807/jorsj.27.178 doi: 10.15807/jorsj.27.178
    [33] J. Von Neumann, On the theory of parlor games, Math. Ann., 100 (1928), 295–320.
    [34] T. Vincent, W. Grantham, Optimality in parametric systems, J. Appl. Mech., 50 (1983), 476. https://doi.org/10.1115/1.3167074 doi: 10.1115/1.3167074
    [35] X. Wang, Y. Yuan, A trust region method based on a new affine scaling technique for simple bounded optimization, Optim. Method. Softw., 28 (2013), 871–888. https://doi.org/10.1080/10556788.2011.622378 doi: 10.1080/10556788.2011.622378
    [36] X. Wang, Y. Yuan, An augmented Lagrangian trust region method for equality constrained optimization, Optim. Method. Softw., 30 (2015), 559–582. https://doi.org/10.1080/10556788.2014.940947 doi: 10.1080/10556788.2014.940947
    [37] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1036) PDF downloads(31) Cited by(2)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog