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1. Introduction

In mathematics, the quantum calculus is equivalent to usual infinitesimal calculus without the
concept of limits or the investigation of calculus without limits (quantum is from the Latin word
“quantus” and literally it means how much, in Swedish “Kvant”). The renowned mathematician
Euler was the genius who introduced the analysis q-calculus in the eighteenth century by integrating
the parameter q into Newton’s work of infinite series. At the beginning of the twentieth century,
Jackson [1] has started a study of q-calculus and described quantum-definite integrals. The topic of
quantum calculus has very long origins in the past. But to keep up with times, it has undergone rapid
growth over the past few decades. I believe this strongly because it is a bridge between mathematics
and physics, which is useful when dealing with physics. To get more information, please check the
application and results of Ernst [2], Gauchman [3], and Kac and Cheung [4] in the theory of quantum
calculus and theory of inequalities in quantum calculus. In previous papers, the authors Ntouyas
and Tariboon [5, 6] investigated how quantum-derivatives and quantum-integrals are solved over the
intervals of the form [κ1, κ2] ⊂ R and set several quantum analogs. Our investigation here is motivated
essentially by the fact that basic (or q-)Hölder inequality, Hermite-Hadamard inequality and Ostrowski
inequality, Cauchy-Bunyakovsky-Schwarz, Gruss, Gruss-Cebysev and other integral inequalities that
use classical convexity. Also, Noor et al. [7], Sudsutad et al. [8], and Zhuang et al. [9], played an active
role in the study, and some integral inequalities have been established which give quantum analog
for the right part of Hermite-Hadamard inequality by using q-differentiable convex and quasi-convex
functions. Many mathematicians have done studies in q-calculus analysis, the interested reader can
check [10–18].

Srivastava [19] presented (or q-)calculus and fractional q-calculus and their applications in
geometric function theory of complex analysis. There is also a clear connection between the classical
q-analysis, which we used here, and the so-called (p, q)-analysis. We emphasize that the results for the
q-analogues, which we discussed in this article for 0 < q < 1, can be easily (and probably trivially)
converted into the corresponding results for the (p, q)-analogues (with 0 < q < p ≤ 1) by making
a few obvious parametric and argument changes, with the additional parameter p being superfluous.
Inspired and motivated by some of the above applications in the field of q-calculus. However, new
q-Hermite-Hadamard-type inequalities for quantum integrals on finite intervals has not been studied
yet. This gap is the motivation and inspiration for this research.

The discussion and application of convex functions have become a prosperous source of
motivational material in pure and applied science. This vision promoted new and profound results in
many branches of mathematical and engineering sciences and provided a comprehensive framework for
the study of many problems. This discovery produced new and profound results in many mathematical
and engineering sciences branches and provided a systematic structure for analyzing many issues in
many fields. Many scholars have studied the various classes of convex sets and convex functions. A
mapping K : I ⊆ R→ R is considered convex if the mapping K satisfies the following inequality:

K
(
(1 − τ)κ1 + τκ2

)
≤ (1 − τ)K(κ1) + τK(κ2)

for all κ1, κ2 ∈ I and τ ∈ [0, 1].
One of the most famous inequalities in the theory of Convex Functional Analysis, Hermite-

Hadamard established by Hermite and Hadamard in [20]. It has a very fascinating geometric
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representation with many significant applications. The extraordinary inequality states that, if K :
I ⊆ R→ R is a convex mapping on the interval I of real numbers and κ1, κ2 ∈ I with κ1 < κ2. Then,

K
(κ1 + κ2

2

)
≤

1
κ2 − κ1

κ2∫
κ1

K(τ)dτ ≤
K(κ1) +K(κ2)

2
. (1.1)

For K to be concave, both inequalities hold in the inverted direction. Many mathematicians have
paid considerable attention to the Hermite-Hadamard inequality due to its quality and integrity in
mathematical inequality. For significant developments, modifications, and consequences regarding the
Hermite-Hadamard uniqueness property and general convex function definitions, the interested reader
would like to refer to [21–28] and references therein.

It is noted that quasi-convex functions are a generalization of the convex function class since there
are quasi-convex functions that are not convex. Weir et al. [29] introduced the concept of preinvex
functions, which were then used in non-linear programming to describe appropriate optimal conditions
and duality. Polyak [30] considered and studied the idea of strongly convex functions, which makes
an essential contribution to the adaptation of most machine learning models that require the resolution
of some form of optimization problem and areas concerned. Zu et al. [31] researched convergence
by using iterative techniques based on the strong convex functional theory to resolve variational
inequalities and equilibrium issues. Nikodem et al. discovered the new and innovative implementation
of the inner product area’s characterization with strongly convex functions in [32].

Throughout this paper, we are using continuous bifunctions µ(., .) : Rn × Rn → Rn and Iµ =
[κ1, κ1 + µ(κ2, κ1)].Weir and Mond [29], has been introduced the definition of invex sets and preinvex
mapping.

Definition 1.1. If Iµ ⊂ Rn, then Iµ ⊂ Rn is said to be invex set

κ1 + τµ(κ2, κ1) ∈ Iµ,

for all κ1, κ2 ∈ Iµ, τ ∈ [0, 1].

Note that, the invex set Iµ is also called µ-connected set. If µ(κ2, κ1) = κ2 − κ1, then the invex set Iµ
is a convex set, but the reverse is not true.

Definition 1.2. Let a mapping K : Iµ ⊂ Rn → R is called preinvex, if

K (κ1 + τµ(κ2, κ1)) ≤ (1 − τ)K(κ1) + τK(κ2),

for all κ1, κ2 ∈ Iµ, τ ∈ [0, 1].

Here, we would like to point out that Humaira et al. [11] has introduced and studied generalized
higher-order strong preinvex functions, which play a crucial role in studying the theory of optimization
and related fields.

Definition 1.3. A function K : Iµ ⊂ Rn → R is considered generalized higher-order strong preinvex
function of order θ > 0 with modulus χ ≥ 0, if

K (κ1 + τµ (κ2, κ1)) ≤ (1 − τ)K (κ1) + τK (κ2) − χτ (1 − τ) ||µ (κ2, κ1) ||θ,

for all κ1, κ2 ∈ Iµ and all τ ∈ [0, 1].
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Properties that belong to generalized higher-order strongly preinvex functions are more robust
versions of well-known properties of preinvex functions. Let us note the definition of the following
generalized higher-order strongly quasi-preinvex functions.

Definition 1.4. [11] A function K : Iµ ⊂ Rn → R is considered generalized higher-order strong
preinvex function of order θ > 0 with modulus χ ≥ 0, if

K (κ1 + τµ (κ2, κ1)) ≤ max {K (κ1) ,K (κ2)} − χτ (1 − τ) ||µ (κ2, κ1) ||θ,

for all κ1, κ2 ∈ I and all τ ∈ [0, 1].

Remark 1. The notion of generalized higher-order strongly quasi-preinvexity strengthens the concept
of quasi-preinvexity.

Several fundamental inequalities that are well known in classical analysis, like Hölder inequality,
Ostrowski inequality, Cauchy-Schwarz inequality, Grüess-Chebyshev inequality, Grüess inequality.
Using classical convexity, other fundamental inequalities have been proven and applied to q-calculus.
Our objective is to develop new Hermite-Hadamard type inequalities by using quantum calculus and
to support this claim graphically.

2. Preliminaries of q-calculus and some inequalities

In this section, we discuss some required definitions of quantum calculus and important left and
right sides bonds of quantum Hermite-Hadamard integral type inequalities.

[n]q =
1 − qn

1 − q
= 1 + q + q2 + ... + qn−1, q ∈ (0, 1) .

Jackson derived the q-Jackson integral in [1] from 0 to κ2 for q ∈ (0, 1) as follows:

κ2∫
0

K (κ) dqκ = (1 − q) κ2
∞∑

n=0

qnK (κ2qn) (2.1)

provided the sum converge absolutely.
The q-Jackson integral in a generic interval [κ1, κ2] was given by in [1] and defined as follows:

κ2∫
κ1

K (κ) dqκ =

κ2∫
0

K (κ) dqκ −

κ1∫
0

K (κ) dqκ .

Definition 2.1. [5] We suppose that K : [κ1, κ2] → R is an arbitrary function. Then qκ1-derivative of
K at κ ∈ [κ1, κ2] is defined as follows:

κ1DqK (κ) =
K (κ) − K (qκ + (1 − q) κ1)

(1 − q) (κ − κ1)
, κ , κ1. (2.2)

Since K is a arbitrary function from [κ1, κ2] to R, then κ1DqK (κ1) = lim
κ→κ1

κ1DqK (κ) . The function

K is called qκ1- differentiable on [κ1, κ2] , if κ1DqK (τ) exists for all κ ∈ [κ1, κ2]. If κ1 = 0 in (2.2),
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then 0DqK (κ) = DqK (κ) , where DqK (κ) is familiar qκ1-derivative of K at κ ∈ [κ1, κ2] defined by
the expression (see [4])

DqK (κ) =
K (κ) − K (qκ)

(1 − q) κ
, κ , 0.

The lemma below is play key part to calculate qκ1-derivatives.

Lemma 2.2. [5] Taking ξ ∈ R and q ∈ (0, 1), we have

κ1Dq (x − κ1)ξ =
(
1 − qξ

1 − q

)
(x − κ1)ξ−1 .

Definition 2.3. [5] We suppose that K : [κ1, κ2] → R is an arbitrary function, then the qκ1-definite
integral on [κ1, κ2] is described as below:

κ2∫
κ1

K (κ) κ1dqκ = (1 − q) (κ2 − κ1)
∞∑

n=0

qnK (qnκ2 + (1 − qn) κ1)= (κ2 − κ1)

1∫
0

K ((1 − τ) κ1 + τκ2) dqτ .

(2.3)
for x ∈ I. If χ ∈ (κ1, x), then the definite qκ1-integral on I is described as:∫ x

κ1

K (x) κ1dqx =
∫ x

κ1

K (x) κ1dqx −
∫ χ

κ1

K (x) κ1dqx

= (x − κ1) (1 − q)
∞∑

n=0

qnK (qnx + (1 − qn) κ1)

+ (χ − κ1) (1 − q)
∞∑

n=0

qnK (qnχ + (1 − qn) κ1) .

If κ1 = 0 in (refA3), then we obtain the classical definite qκ1-integral which is proved in (see [6])∫ x

0
K (x) dqx = (1 − q) x

∞∑
n=0

qnK (qnx) , x ∈ [0,∞) .

The following properties are very important in quantum calculus.

Theorem 2.4. [5] We suppose that K : I → R be a arbitrary function. Then

1. κ1Dq

∫ x

κ1
K (τ) κ1dqτ = K (x) − K (κ1) ;

2.
∫ x

χ κ1
DqK (τ) κ1dqτ = K (x) − K (χ), χ ∈ (κ1, x) .

The following is useful results for evaluating such qκ1-integrals.

Lemma 2.5. [5] The following formula holds for ζ ∈ R\ {−1} with q ∈ (0, 1), then∫ σ

κ1

(τ − κ1)ζ κ1dqτ =

(
1 − q

1 − qζ+1

)
(σ − κ1)ζ+1 .

In [10], Alp et al. established the qκ1-Hermite-Hadamard inequalities for convexity, which is defined
as follows:
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Theorem 2.6. We suppose that K : [κ1, κ2] → R is a convex differentiable function on [κ1, κ2] and
q ∈ (0, 1). Then qκ1-Hermite-Hadamard inequalities are as follows:

K

(
qκ1 + κ2

[2]q

)
≤

1
κ2 − κ1

κ2∫
κ1

K (κ) κ1dqκ ≤
qK (κ1) +K (κ2)

[2]q
. (2.4)

In [18], Bermudo et al. established the qκ2-derivative, qκ2-integration and qκ2-Hermite-Hadamard
inequalities for convexity, which is defined as follows:

Definition 2.7. [18] We suppose that K : [κ1, κ2] → R is an arbitrary function, then qκ2-derivative of
K at κ ∈ [κ1, κ2] is defined as follows:

κ2DqK (κ) =
K (qκ + (1 − q) κ2) − K (κ)

(1 − q) (κ2 − κ)
, κ , κ2. (2.5)

Since K is a arbitrary function from [κ1, κ2] to R, then κ2DqK (κ2) = lim
κ→κ2

κ2DqK (κ) . The function

K is called qκ2- differentiable on [κ1, κ2] , if κ2DqK (τ) exists for all κ ∈ [κ1, κ2]. If κ2 = 0 in (2.5),
then 0DqK (κ) = DqK (κ) , where DqK (κ) is familiar qκ2-derivative of K at κ ∈ [κ1, κ2] defined by
the expression (see [1])

DqK (κ) =
K (qκ) − K (κ)

(1 − q) κ
, κ , 0.

Definition 2.8. We suppose that K : [κ1, κ2] → R is an arbitrary function. Then, the qκ2-definite
integral on [κ1, κ2] is defined as:

κ2∫
κ1

K (κ) κ2dqκ = (1 − q) (κ2 − κ1)
∞∑

n=0

qnK (qnκ1 + (1 − qn) κ2) = (κ2 − κ1)

1∫
0

K (tκ1 + (1 − τ) κ2) dqτ .

Theorem 2.9. [18] We suppose that K : I → R is a continuous function. Then

1. κ2Dq

∫ κ2
x
K (τ) κ2dqτ = K (κ2) − K (x) ;

2.
∫ χ

x
κ2DqK (τ) κ2dqτ = K (χ) − K (x), χ ∈ (x, κ2) .

Theorem 2.10. [18] We suppose that K : [κ1, κ2]→ R be a convex function on [κ1, κ2] and q ∈ (0, 1).
Then, qκ2-Hermite-Hadamard inequalities are as follows:

K

(
κ1 + qκ2

[2]q

)
≤

1
κ2 − κ1

κ2∫
κ1

K (κ) κ2dqκ ≤
K (κ1) + qK (κ2)

[2]q
. (2.6)

From Theorem 2.6 and Theorem 2.10, one can the following inequalities:

Corollary 1. [18] For any convex function K : [κ1, κ2]→ R and q ∈ (0, 1), we have

K

(
qκ1 + κ2

[2]q

)
+K

(
κ1 + qκ2

[2]q

)
≤

1
κ2 − κ1


κ2∫
κ1

K (κ) κ1dqκ +

κ2∫
κ1

K (κ) κ2dqκ

 ≤ K (κ1)+K (κ2) (2.7)
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and

K

(
κ1 + κ2

2

)
≤

1
2 (κ2 − κ1)


κ2∫
κ1

K (κ) κ1dqκ +

κ2∫
κ1

K (κ) κ2dqκ

 ≤ K (κ1) +K (κ2)
2

. (2.8)

Theorem 2.11. [7] Suppose that K :
[
κ1, κ1 + µ (κ2, κ1)

]
⊂ R → R is a qκ1-differentiable function

on (κ1, κ1 + µ (κ2, κ1)) such that κ1DqK being continuous and qκ1-integrable on
[
κ1, κ1 + µ (κ2, κ1)

]
and

q ∈ (0, 1). If
∣∣∣κ1DqK

∣∣∣σ is preinvex function for σ ≥ 1, then

∣∣∣∣∣∣ 1
µ(κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ (κ2, κ1))

[2]q

∣∣∣∣∣∣ ≤ qµ (κ2, κ1)
[2]q

q
(
2 + q + q3

)
[2]3

q


1− 1
σ

×

q
(
1 + 4q + q2

)
[3]q[2]3

q

∣∣∣κ1DqK (κ1)
∣∣∣σ + q

(
1 + 3q2 + 2q3

)
[3]q[2]3

q

∣∣∣κ1DqK (κ2)
∣∣∣σ

1
σ

. (2.9)

Theorem 2.12. [7] Suppose that K :
[
κ1, κ1 + µ (κ2, κ1)

]
⊂ R → R is a qκ1-differentiable function

on (κ1, κ1 + µ (κ2, κ1)) such that κ1DqK being continuous and qκ1-integrable on
[
κ1, κ1 + µ (κ2, κ1)

]
and

q ∈ (0, 1). If
∣∣∣κ1DqK

∣∣∣σ is quasi-preinvex function for σ ≥ 1, then∣∣∣∣∣∣ 1
µ(κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ (κ2, κ1))

[2]q

∣∣∣∣∣∣
≤

q2µ (κ2, κ1)
(
2 + q + q3

)
[2]4

q

(
max

{∣∣∣κ1DqK (κ1)
∣∣∣σ , ∣∣∣κ1DqK (κ2)

∣∣∣σ}) 1
σ
. (2.10)

3. Hermite-Hadamard-type inequalities for quantum integrals

We are now providing some new Hermite-Hadamard-type inequalities for functions whose absolute
value of first qκ1-, qκ2-derivatives are generalized higher-order strongly preinvex functions. To prove
our main results, we will initially suggest the following useful lemmas.

Lemma 3.1. Suppose that K :
[
κ1, κ1 + µ (κ2, κ1)

]
⊂ R → R is a qκ1-differentiable function on

(κ1, κ1 + µ (κ2, κ1)) such that κ1DqK being continuous and qκ1-integrable on
[
κ1, κ1 + µ (κ2, κ1)

]
and

q ∈ (0, 1), then the following identity holds

1
µ(κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ (κ2, κ1))

[2]q
=

qµ (κ2, κ1)
2

×

∫ 1

0

∫ 1

0
(ϵ − τ)

[
κ1DqK (κ1 + τµ (κ2, κ1)) − κ1DqK (κ1 + ϵµ (κ2, κ1))

]
dqτ 0dqϵ. (3.1)

Proof. By using Definition 2.1 and Definition 2.3, we have
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∫ 1

0

∫ 1

0
(ϵ − τ))

[
κ1DqK (κ1 + τµ (κ2, κ1)) −κ1 DqK (κ1 + ϵµ (κ2, κ1))

]
dqτ dqϵ

=

∫ 1

0

∫ 1

0
(ϵ − τ)

[
K (κ1 + τµ (κ2, κ1)) − K (κ1 + qτµ (κ2, κ1))

(1 − q) µ (κ2, κ1) τ

−
K (κ1 + ϵµ (κ2, κ1)) − K (κ1 + qϵµ (κ2, κ1))

(1 − q) µ (κ2, κ1) ϵ

]
dqτ dqϵ

=

∫ 1

0

∫ 1

0

ϵ
[
K (κ1 + τµ (κ2, κ1)) − K (κ1 + qτµ (κ2, κ1))

]
(1 − q) µ (κ2, κ1) τ

dqτ dqϵ

−

∫ 1

0

∫ 1

0

K (κ1 + ϵµ (κ2, κ1)) − K (κ1 + qϵµ (κ2, κ1))
(1 − q) µ(κ2, κ1)

dqτ dqϵ

−

∫ 1

0

∫ 1

0

K (κ1 + τµ (κ2, κ1)) − K (κ1 + qτµ (κ2, κ1))
(1 − q) µ(κ2, κ1)

dqτ dqϵ

+

∫ 1

0

∫ 1

0

τ
[
K (κ1 + ϵµ (κ2, κ1)) − K (κ1 + qϵµ (κ2, κ1))

]
(1 − q) µ (κ2, κ1) ϵ

dqτ dqϵ. (3.2)

We observe that∫ 1

0

∫ 1

0

ϵ
[
K (κ1 + τµ (κ2, κ1)) − K (κ1 + qτµ (κ2, κ1))

]
(1 − q) µ (κ2, κ1) τ

dqτ 0dqϵ

=

∫ 1

0
ϵ dqϵ

∫ 1

0

K (κ1 + τµ (κ2, κ1))
(1 − q) µ (κ2, κ1) τ 0dqτ −

∫ 1

0
ϵ dqϵ

∫ 1

0

K (κ1 + qτµ (κ2, κ1))
(1 − q) µ (κ2, κ1) τ

dqτ

=
(1 − q)
µ(κ2, κ1)

∞∑
n=0

q2n

 ∞∑
n=0

K (κ1 + qnµ (κ2, κ1)) −
∞∑

n=0

K
(
κ1 + qn+1µ (κ2, κ1)

)
=

1
[2]qµ (κ2, κ1)

 ∞∑
n=0

K (κ1 + qnµ (κ2, κ1)) −
∞∑

n=1

K (κ1 + qnµ (κ2, κ1))


=
K (κ1 + µ (κ2, κ1)) − K (κ1)

[2]qµ (κ2, κ1)
, (3.3)

and∫ 1

0

∫ 1

0

K (κ1 + ϵµ (κ2, κ1)) − K (κ1 + qϵµ (κ2, κ1))
(1 − q) µ (κ2, κ1)

dqτ dqϵ

=

∫ 1

0
dqτ

∫ 1

0

K (κ1 + ϵµ (κ2, κ1))
(1 − q) µ (κ2, κ1) 0dqϵ −

∫ 1

0
dqτ

∫ 1

0

K (κ1 + qϵµ (κ2, κ1))
(1 − q) µ (κ2, κ1)

dqϵ

=
(1 − q)
µ (κ2, κ1)

∞∑
n=0

qn

 ∞∑
n=0

qnK (κ1 + qnµ (κ2, κ1)) −
∞∑

n=0

qnK
(
κ1 + qn+1µ (κ2, κ1)

)
=

1
µ (κ2, κ1)

∞∑
n=0

qnK (κ1 + qnµ (κ2, κ1)) −
1

µ (κ2, κ1)

∞∑
n=0

qnK
(
κ1 + qn+1µ (κ2, κ1)

)
=

1
µ (κ2, κ1)

 ∞∑
n=0

qnK (κ1 + qnµ (κ2, κ1)) −
1
q

∞∑
n=0

qn+1K
(
κ1 + qn+1µ (κ2, κ1)

)
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= −
1

qµ (κ2, κ1)2

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx +
K (κ1 + µ (κ2, κ1))

qµ (κ2, κ1)
. (3.4)

Similarly∫ 1

0

∫ 1

0

K (κ1 + τµ (κ2, κ1)) − K (κ1 + qτµ (κ2, κ1))
(1 − q) µ (κ2, κ1)

dqτ dqϵ

=

∫ 1

0
dqϵ

∫ 1

0

K (κ1 + τµ (κ2, κ1)) − K (κ1 + qτµ (κ2, κ1))
(1 − q) µ (κ2, κ1)

dqτ

= −
1

qµ (κ2, κ1)2

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx +
K (κ1 + µ (κ2, κ1))

qµ (κ2, κ1)
, (3.5)

and∫ 1

0

∫ 1

0

τ
[
K (κ1 + ϵµ (κ2, κ1)) − K (κ1 + qϵµ (κ2, κ1))

]
(1 − q) µ (κ2, κ1) ϵ

dqτ 0dqϵ

=

∫ 1

0
τ dqτ

∫ 1

0

K (κ1 + ϵµ (κ2, κ1)) − K (κ1 + qϵµ (κ2, κ1))
(1 − q) µ (κ2, κ1) ϵ

dqϵ

=
K (κ1 + µ (κ2, κ1)) − K (κ1)

[2]qµ(κ2, κ1)
. (3.6)

The equalities (3.3)–(3.6), give∫ 1

0

∫ 1

0
(ϵ − τ)

[
κ1DqK (κ1 + τµ (κ2, κ1)) −κ1 DqK (κ1 + ϵµ (κ2, κ1))

]
dqτ dqϵ

=
2

qµ (κ2, κ1)2

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx − 2
K (κ1 + µ (κ2, κ1))

qµ (κ2, κ1)
+ 2

[
K (κ1 + µ (κ2, κ1)) − K (κ1)

]
[2]qµ(κ2, κ1)

. (3.7)

Multiplying both sides of (3.7) by qµ(κ2,κ1)
2 , we get (3.1). □

Lemma 3.2. Suppose that K :
[
κ2 + µ (κ1, κ2) , κ2

]
⊂ R → R is a qκ2-differentiable function on

(κ2 + µ (κ1, κ2) , κ2) such that κ2DqK being continuous and qκ2-integrable on
[
κ2 + µ (κ1, κ2) , κ2

]
with

q ∈ (0, 1) and µ (κ2, κ1) = −µ (κ1, κ2) > 0, then the following identity holds

1
µ(κ1, κ2)

∫ κ2

κ2+µ(κ1,κ2)
K (x) κ2dqx −

K (κ2 + µ (κ1, κ2)) + qK (κ2)
[2]q

=
qµ (κ1, κ2)

2

×

∫ 1

0

∫ 1

0
(ϵ − τ)

[
κ2DqK (κ2 + τµ (κ1, κ2)) − κ2DqK (κ2 + ϵµ (κ1, κ2))

]
dqτ 0dqϵ. (3.8)

Proof. The proof is directly followed by Definition 2.7 and Definition 2.8. We omit the details.
□

Theorem 3.3. If we assume all the conditions of Lemma 3.1, then the following inequality, shows that∣∣∣κ1DqK
∣∣∣σ is generalized higher-order strongly preinvex functions of order θ > 0 with modulus χ ≥ 0

on
[
κ1, κ1 + µ (κ2, κ1)

]
for σ ≥ 1, then

AIMS Mathematics Volume 6, Issue 12, 13291–13310.



13300∣∣∣∣∣∣ 1
µ(κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ (κ2, κ1))

[2]q

∣∣∣∣∣∣ ≤ qµ (κ2, κ1)
[
ρ3 (q)

]1− 1
σ

×
[
ρ1 (q)

∣∣∣κ1DqK (κ1)
∣∣∣σ + ρ2 (q)

∣∣∣κ1DqK (κ2)
∣∣∣σ − χµ (κ2, κ1)θ ρ4 (q)

] 1
σ
, (3.9)

where

ρ1 (q) =
q
(
2q2 − q + 1

)
q5 + 2q4 + 3q3 + 3q2 + 2q + 1

,

ρ2 (q) =
q

q4 + q3 + 2q2 + q + 1
,

ρ3 (q) =
2q

q3 + 2q2 + 2q + 1
,

and

ρ4 (q) =
q2

(
q4 + q3 + q2 − q + 1

)
q9 + 3q8 + 6q7 + 9q6 + 11q5 + 11q4 + 9q3 + 6q2 + 3q + 1

.

Proof. Taking modulus on Eq (3.1) and using the power-mean inequality, we have∣∣∣∣∣∣ 1
µ(κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ (κ2, κ1))

[2]q

∣∣∣∣∣∣
≤

qµ (κ2, κ1)
2

(∫ 1

0

∫ 1

0
|ϵ − τ| dqτ dqϵ

)1− 1
σ

×


(∫ 1

0

∫ 1

0
|ϵ − τ|

∣∣∣κ1DqK (κ1 + τµ (κ2, κ1))
∣∣∣σ dqτ dqϵ

) 1
σ

+

(∫ 1

0

∫ 1

0
|ϵ − τ|

∣∣∣κ1DqK (κ1 + ϵµ (κ2, κ1))
∣∣∣σ dqτ dqϵ

) 1
σ

 . (3.10)

Since
∣∣∣κ1DqK

∣∣∣σ is generalized higher-order strongly preinvex function for σ ≥ 1, we have∫ 1

0

∫ 1

0
|ϵ − τ|

∣∣∣κ1DqK (κ1 + τµ (κ2, κ1))
∣∣∣σ dqτ 0dqϵ

≤
∣∣∣κ1DqK (κ1)

∣∣∣σ ∫ 1

0

∫ 1

0
|ϵ − τ| (1 − τ) 0dqτ dqϵ +

∣∣∣κ1DqK (κ2)
∣∣∣σ

×

∫ 1

0

∫ 1

0
|ϵ − τ| τ dqτ dqϵ − χµ (κ2, κ1)θ

∫ 1

0

∫ 1

0
|ϵ − τ| τ (1 − τ) dqτ dqϵ, (3.11)

by using Definition 2.1 and Definition 2.3

ρ1 (q) =
∫ 1

0
|ϵ − τ| (1 − τ) 0dqτ dqϵ =

∫ 1

0

∫ 1

0

[
−

2q2ϵ3

[2]q[3]q
+

2qϵ2

[2]q
−

qϵ
[2]q

q2

[2]q[3]q

]
dqϵ

=
q
(
2q2 − q + 1

)
q5 + 2q4 + 3q3 + 3q2 + 2q + 1

, (3.12)
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ρ2 (q) =
∫ 1

0

∫ 1

0
|ϵ − τ| τ 0dqτ dqϵ =

∫ 1

0

[
2q2ϵ3

[2]q[3]q
−
ϵ

[2]q
+

1
[3]q

]
dqϵ

=
q

q4 + q3 + 2q2 + q + 1
, (3.13)

and

ρ4 (q)
∫ 1

0

∫ 1

0
|ϵ − τ| τ(1 − τ) dqτ 0dqϵ

=

∫ 1

0

(
−2

∫ ϵ

0
(τ − ϵ) τ(1 − τ) dqτ +

∫ 1

0
(τ − ϵ) τ(1 − τ) dqτ

)
0dqϵ

=
q2

(
q4 + q3 + q2 − q + 1

)
q9 + 3q8 + 6q7 + 9q6 + 11q5 + 11q4 + 9q3 + 6q2 + 3q + 1

. (3.14)

Using (3.12)–(3.14) in (3.11) and we get the resulting inequality∫ 1

0

∫ 1

0
|ϵ − τ|

∣∣∣κ1DqK (κ1 + τµ (κ2, κ1))
∣∣∣σ dqτ 0dqϵ

≤
∣∣∣κ1DqK (κ1)

∣∣∣σ ρ1 (q) +
∣∣∣κ1DqK (κ2)

∣∣∣σ ρ2 (q) − χµ (κ2, κ1)θ ρ4 (q) . (3.15)

Similarly, we also observe that∫ 1

0

∫ 1

0
|ϵ − τ|

∣∣∣κ1DqK (κ1 + ϵµ (κ2, κ1))
∣∣∣σ dqτ 0dqϵ

≤
∣∣∣κ1DqK (κ1)

∣∣∣σ ∫ 1

0

∫ 1

0
|ϵ − τ| (1 − ϵ) 0dqτ dqϵ +

∣∣∣κ1DqK (κ2)
∣∣∣σ ∫ 1

0

∫ 1

0
|ϵ − τ| ϵ dqτ dqϵ

− χµ (κ2, κ1)θ
∫ 1

0

∫ 1

0
|ϵ − τ| τ(1 − τ) dqτ 0dqϵ

= ρ1 (q)
∣∣∣κ1DqK (κ1)

∣∣∣σ + ρ2 (q)
∣∣∣κ1DqK (κ2)

∣∣∣σ − χµ (κ2, κ1)θ ρ4 (q) . (3.16)

We also have

ρ3 (q) =
∫ 1

0

∫ 1

0
|ϵ − τ| dqτ 0dqϵ =

∫ 1

0

(
−2

∫ ϵ

0
(τ − ϵ) dqτ +

∫ 1

0
(τ − ϵ) dqτ

)
0dqϵ

=

∫ 1

0

(
2qϵ2

[2]q
− ϵ +

1
[2]q

)
dqϵ =

2q
[2]q[3]q

, (3.17)

Applying (3.15)–(3.17) in (3.10), we obtain the desired inequality. □

Corollary 2. If σ = 1 together with the assumptions of Theorem 3.3, we obtain∣∣∣∣∣∣ 1
µ(κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ (κ2, κ1))

[2]q

∣∣∣∣∣∣
≤ qµ (κ2, κ1)

[
ρ1 (q)

∣∣∣κ1DqK (κ1)
∣∣∣ + ρ2 (q)

∣∣∣κ1DqK (κ2)
∣∣∣ − χµ (κ2, κ1)θ ρ4 (q)

]
, (3.18)

where ρ1 (q) , ρ2 (q) and ρ4 (q) are defined in Theorem 3.3.
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Corollary 3. As q→ 1− in Theorem 3.3, we get the inequality∣∣∣∣∣∣ 1
µ (κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) dx −
K (κ1) +K (κ1 + µ (κ2, κ1))

2

∣∣∣∣∣∣
≤ µ (κ2, κ1)

(
1
3

)1− 1
σ
[
|K ′ (κ1)|σ + |K ′ (κ2)|σ

6
−
χµ (κ2, κ1)θ

20

] 1
σ

. (3.19)

Corollary 4. Suppose that the assumptions of Theorem 3.3 with σ = 1 and letting q → 1−, we obtain
the inequality∣∣∣∣∣∣ 1
µ (κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) dx −
K (κ1) +K (κ1 + µ (κ2, κ1))

2

∣∣∣∣∣∣
≤ µ (κ2, κ1)

[
|K ′ (κ1)| + |K ′ (κ2)|

6
−
χµ (κ2, κ1)θ

20

]
. (3.20)

Theorem 3.4. If we assume all the conditions of Lemma 3.1, then the following inequality, shows that∣∣∣κ1DqK
∣∣∣σ is generalized higher-order strongly preinvex function of order θ > 0 with modulus χ ≥ 0 on[

κ1, κ1 + µ (κ2, κ1)
]

for 1
p +

1
σ
= 1, then∣∣∣∣∣∣ 1

µ (κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ (κ2, κ1))

[2]q

∣∣∣∣∣∣ ≤ qµ (κ2, κ1)
[
ρ3 (p, q)

]1− 1
p

×

q
∣∣∣κ1DqK (κ1)

∣∣∣σ + ∣∣∣κ1DqK (κ2)
∣∣∣σ

[2]q
−
χµ (κ2, κ1)θ q2

[2]q[3]q


1
σ

, (3.21)

where

ρ3 (p, q) =
(q − 1)2(
qp+1 − 1

) ∞∑
m=0

(−1)m−1

(
3 + qp−m+1 − qm+1 − 2qp+1 − qp+2

)
p (p − 1) · · · (p − m + 1)

m!
(
qp−m+1 + 1

) (
qm+1 − 1

) .

Proof. Taking modulus on Eq (3.1) and using Hölder’s inequality, we have∣∣∣∣∣∣ 1
µ (κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ (κ2, κ1))

[2]q

∣∣∣∣∣∣
≤

qµ (κ2, κ1)
2

(∫ 1

0

∫ 1

0
|ϵ − τ|p dqτ dqϵ

)1− 1
p

q

×


(∫ 1

0

∫ 1

0

∣∣∣κ1DqK (κ1 + τµ (κ2, κ1))
∣∣∣σ dqτ 0dqϵ

) 1
σ

+

(∫ 1

0

∫ 1

0

∣∣∣κ1DqK (κ1 + ϵµ (κ2, κ1))
∣∣∣σ dqτ dqϵ

) 1
σ

 . (3.22)

We now evaluate the integrals involved in (3.22). We observe that
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0

∫ 1

0
|ϵ − τ|p dqτ dqϵ =

∫ 1

0

(∫ ϵ

0
(ϵ − τ)p dqτ

)
dqϵ

+

∫ 1

0

(∫ 1

ϵ

(τ − ϵ)p
0dqτ

)
dqϵ =

∫ 1

0

(∫ ϵ

0
(ϵ − τ)p dqτ

)
dqϵ

+

∫ 1

0

(∫ ϵ

0
(τ − ϵ)p

0dqτ

)
dqϵ +

∫ 1

0

(∫ 1

0
(τ − ϵ)p dqτ

)
dqϵ, (3.23)

∫ 1

0

(∫ ϵ

0
(ϵ − τ)p

0dqτ

)
dqϵ

=
1 − q

1 − qp+1

[
1 − p

1
[2]q
+

p (p − 1)
2!

1
[3]q
− · · ·

]
=

(1 − q)2

1 − qp+1

∞∑
m=0

(−1)m−1 p (p − 1) · · · (p − m + 1)
m!

(
1 − qm+1) , (3.24)

∫ 1

0

(∫ ϵ

0
(τ − ϵ)p

0dqτ

)
dqϵ =

∫ 1

0

∫ 1

qτ
(τ − ϵ)p dqϵ dqτ

=

∫ 1

0

∫ 1

0
(τ − ϵ)p dqϵ 0dqτ −

∫ 1

0

∫ qτ

0
(τ − ϵ)p dqϵ dqτ

= (1 − q)2
∞∑

m=0

(−1)m−1 p (p − 1) · · · (p − m + 1)

m!
(
[2]p−m+1

q

) (
1 − qm+1)

−
q (1 − q)2

1 − qp+1

∞∑
m=0

(−1)m−1 qm p (p − 1) · · · (p − m + 1)
m!

(
1 − qm+1) , (3.25)

and∫ 1

0

(∫ 1

0
(τ − ϵ)p dqτ

)
dqϵ =

∫ 1

0

(∫ 1

0
(τ − ϵ)p dqϵ

)
dqτ

= (1 − q)2
∞∑

m=0

(−1)m−1 p (p − 1) · · · (p − m + 1)

m!
(
[2]p−m+1

q

) (
1 − qm+1) . (3.26)

Using the generalized higher-order strongly preinvexity of
∣∣∣κ1DqK

∣∣∣σ on
[
kappa1, κ1 + µ(κ2, κ1)

]
, we

obtain∫ 1

0

∫ 1

0

∣∣∣κ1DqK (κ1 + τµ (κ2, κ1))
∣∣∣σ dqτ dqϵ

≤
∣∣∣κ1DqK (κ1)

∣∣∣σ ∫ 1

0
(1 − τ) dqτ +

∣∣∣κ1DqK (κ2)
∣∣∣σ ∫ 1

0
τ dqτ

− χµ (κ2, κ1)θ
∫ 1

0

∫ 1

0
(1 − τ) τdqτ dqϵ
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=
q
∣∣∣κ1DqK (κ1)

∣∣∣σ + ∣∣∣κ1DqK (κ2)
∣∣∣σ

[2]q
−
χµ (κ2, κ1)θ q2

[2]q[3]q
. (3.27)

and similarly, we get∫ 1

0

∫ 1

0

∣∣∣κ1DqK (κ1 + ϵµ (κ2, κ1))
∣∣∣σ dqτ dqϵ

=
q
∣∣∣κ1DqK (κ1)

∣∣∣σ + ∣∣∣κ1DqK (κ2)
∣∣∣σ

[2]q
−
χµ (κ2, κ1)θ q2

[2]q[3]q
. (3.28)

Making use of (3.23) and (3.28) in (3.22), we get the required result. □

Theorem 3.5. If we assume all the conditions of lemma 3.1, then the following inequality, shows that∣∣∣κ1DqK
∣∣∣σ is generalized higher-order strongly quasi-preinvex function of order θ > 0 with modulus

χ ≥ 0 on
[
κ1, κ1 + µ(κ2, κ1)

]
for σ ≥ 1, then∣∣∣∣∣∣ 1

µ (κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ(κ2, κ1))

[2]q

∣∣∣∣∣∣
≤ qµ (κ2, κ1) (ρ3 (q))1− 1

σ

(
ρ3 (q) ρ5 (q) − χµ (κ2, κ1)θ ρ4 (q)

) 1
σ
, (3.29)

where
ρ5 (q) = max

{∣∣∣κ1DqK (κ1)
∣∣∣σ , ∣∣∣κ1DqK (κ2)

∣∣∣σ} ,
ρ3 (q) and ρ4 (q) are defined in Theorem 3.3.

Proof. Taking modulus on equation (3.1) and using the power-mean inequality, we have∣∣∣∣∣∣ 1
µ (κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ(κ2, κ1))

[2]q

∣∣∣∣∣∣
≤

qµ (κ2, κ1)
2

(∫ 1

0

∫ 1

0
|ϵ − τ| dqτ dqϵ

)1− 1
σ

×


(∫ 1

0

∫ 1

0
|ϵ − τ|

∣∣∣κ1DqK (κ1 + τµ (κ2, κ1))
∣∣∣σ dqτ dqϵ

) 1
σ

+

(∫ 1

0

∫ 1

0
|ϵ − τ|

∣∣∣κ1DqK (κ1 + ϵµ (κ2, κ1))
∣∣∣σ dqτ dqϵ

) 1
σ

 . (3.30)

By using the generalized higher-order strongly quasi-preinvexity of
∣∣∣κ1DqK

∣∣∣σ on σ ≥ 1, we obtain∣∣∣κ1DqK (κ1 + τµ (κ2, κ1))
∣∣∣σ ≤ max

{∣∣∣κ1DqK (κ1)
∣∣∣σ , ∣∣∣κ1DqK (κ2)

∣∣∣σ} − χµ (κ2, κ1)θ τ (1 − τ) (3.31)

and ∣∣∣κ1DqK (κ1 + ϵµ (κ2, κ1))
∣∣∣σ ≤ max

{∣∣∣κ1DqK (κ1)
∣∣∣σ , ∣∣∣κ1DqK (κ2)

∣∣∣σ} − χµ (κ2, κ1)θ ϵ (1 − ϵ) , (3.32)

for all 0 ≤ τ, ϵ ≤ 1.
Applying (3.14), (3.17), (3.31) and (3.32) in (3.30), we get the desired result. □
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Corollary 5. Letting σ = 1 in Theorem 3.5, we obtain∣∣∣∣∣∣ 1
µ (κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dqx −
qK (κ1) +K (κ1 + µ(κ2, κ1))

[2]q

∣∣∣∣∣∣
≤ qµ (κ2, κ1)

(
ρ3 (q) ρ6 (q) − χµ (κ2, κ1)θ ρ4 (q)

)
, (3.33)

where ρ6 (q) = max
{∣∣∣κ1DqK (κ1)

∣∣∣ , ∣∣∣κ1DqK (κ2)
∣∣∣}.

Corollary 6. Letting q→ 1− in Theorem 3.5, we obtain∣∣∣∣∣∣ 1
µ (κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dx −
K (κ1) +K (κ1 + µ(κ2, κ1))

2

∣∣∣∣∣∣
≤ µ (κ2, κ1)

(
1
3

)1− 1
σ
(
ρ7 (1)

3
−
χµ (κ2, κ1)θ

20

) 1
σ

, (3.34)

where ρ7 (1) = max
{∣∣∣κ1DK (κ1)

∣∣∣σ , ∣∣∣κ1DK (κ2)
∣∣∣σ}.

Corollary 7. Letting q→ 1− in Theorem 3.5 together with σ = 1, we obtain∣∣∣∣∣∣ 1
µ (κ2, κ1)

∫ κ1+µ(κ2,κ1)

κ1

K (x) κ1dx −
K (κ1) +K (κ1 + µ(κ2, κ1))

2

∣∣∣∣∣∣
≤ µ (κ2, κ1)

(
ρ8 (1)

3
−
χµ (κ2, κ1)θ

20

)
, (3.35)

where ρ8 (1) = max
{∣∣∣κ1DK (κ1)

∣∣∣ , ∣∣∣κ1DK (κ2)
∣∣∣}.

Theorem 3.6. If we assume all the conditions of Lemma 3.2, then the following inequality, shows that∣∣∣κ2DqK
∣∣∣σ is generalized higher-order strongly preinvex function of order θ > 0 with modulus χ ≥ 0 on[

κ2 + µ (κ1, κ2) , κ2
]

for σ ≥ 1, then∣∣∣∣∣∣ 1
µ (κ1, κ2)

∫ κ2

κ2+µ(κ1,κ2)
K (x) κ2dqx −

K (κ2 + µ (κ1, κ2)) + qK (κ2)
[2]q

∣∣∣∣∣∣ ≤ qµ (κ1, κ2)
[
ρ3 (q)

]1− 1
σ

×
[
ρ2 (q)

∣∣∣κ2DqK (κ1)
∣∣∣σ + ρ1 (q)

∣∣∣κ2DqK (κ2)
∣∣∣σ − χµ (κ1, κ2)θ ρ4 (q)

] 1
σ
, (3.36)

where ρ1(q),ρ2(q),ρ3(q) and ρ4(q) are defined in Theorem 3.3.

Proof. The desired inequality (3.36) can be obtained by applying the strategy used in the proof of
Theorem 3.3 and taking into account the Lemma 3.8. □

Corollary 8. If σ = 1 together with the assumptions of Theorem 3.6, we obtain∣∣∣∣∣∣ 1
µ (κ1, κ2)

∫ κ2

κ2+µ(κ1,κ2)
K (x) κ2dqx −

K (κ2 + µ (κ1, κ2)) + qK (κ2)
[2]q

∣∣∣∣∣∣
≤ qµ (κ1, κ2)

[
ρ2 (q)

∣∣∣κ2DqK (κ1)
∣∣∣ + ρ1 (q)

∣∣∣κ2DqK (κ2)
∣∣∣ − χµ (κ1, κ2)θ ρ4 (q)

]
, (3.37)

where ρ1 (q), ρ2 (q) and ρ4 (q) are defined in Theorem 3.3.
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Theorem 3.7. If we assume all the conditions of Lemma 3.2, then the following inequality, shows that∣∣∣κ2DqK
∣∣∣σ is generalized higher-order strongly preinvex function of order θ > 0 with modulus χ ≥ 0 on[

κ2 + µ (κ1, κ2) , κ2
]

for 1
p +

1
σ
= 1, then∣∣∣∣∣∣ 1

µ (κ1, κ2)

∫ κ2

κ2+µ(κ1,κ2)
K (x) κ2dqx −

K (κ2 + µ (κ1, κ2)) + qK (κ2)
[2]q

∣∣∣∣∣∣ ≤ qµ (κ1, κ2)
[
ρ3 (p, q)

] 1
p

×


∣∣∣κ2DqK (κ1)

∣∣∣σ + q
∣∣∣κ2DqK (κ2)

∣∣∣σ
[2]q

−
χµ (κ1, κ2)θ q2

[2]q[3]q


1
σ

, (3.38)

where ρ3(p, q) is defined in Theorem 3.4.

Proof. The desired inequality (3.38) can be obtained by applying the strategy used in the proof of
Theorem 3.4 and taking into account the Lemma 3.8. □

Theorem 3.8. If we assume all the conditions of Lemma 3.2, then the following inequality, shows that∣∣∣κ2DqK
∣∣∣σ is generalized higher-order strongly quasi-preinvex function of order θ > 0 with modulus

χ ≥ 0 on
[
κ2 + µ (κ1, κ2) , κ2

]
for σ ≥ 1, then∣∣∣∣∣∣ 1

µ (κ1, κ2)

∫ κ2

κ2+µ(κ1,κ2)
K (x) κ2dqx −

K (κ2 + µ (κ1, κ2)) + qK (κ2)
[2]q

∣∣∣∣∣∣
≤ qµ (κ2, κ1) (ρ3 (q))1− 1

σ

(
ρ3 (q) ρ9 (q) − χµ (κ1, κ2)θ ρ4 (q)

) 1
σ
, (3.39)

where ρ9 (q) = max
{∣∣∣κ2DqK (κ1)

∣∣∣σ , ∣∣∣κ2DqK (κ2)
∣∣∣σ}.

Proof. The desired inequality (3.39) can be obtained by applying the strategy used in the proof of
Theorem 3.5 and taking into account the Lemma 3.8. □

4. Comparison of results

In this section we compare our results with the existing results graphically.
Consider the function K : [0, 3] → R defined by K (ω) = ω2. Then K is a continuous function on

[0, 3] ⊂ R and is qκ1-differentiable on [0, 3]. Its qκ1-derivative at ω is given by

0DqK (ω) = [2]qω, ω , 0

which is continuous and qκ1-integrable on [0, 3] for q ∈ (0, 1).
Let σ = 4, χ = 2 = θ, and µ(3, 0) = 3, hence∣∣∣0DqK (ω)

∣∣∣4 = [2]4
qω

4, ω , 0.

We observe that ∣∣∣0DqK (0)
∣∣∣4 = lim

x→0+
[2]4

qω
4 = 0

and ∣∣∣0DqK (3)
∣∣∣4 = 81[2]4

q.
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The RHS of the inequality (2.9) becomes

α (q) =
9q

[2]q

q
(
2 + q + q3

)
[2]3

q


3
4 q[2]q

(
1 + 3q2 + 2q3

)
[3]q


1
4

(4.1)

and the RHS of the inequality (3.9) takes the form

β (q) = 3q
(

2q
[2]q

(
q2 + q + 1

)) 3
4
 q81[2]4

q

q4 + q3 + 2q2 + q + 1

−
18q2

(
q4 + q3 + q2 − q + 1

)
q9 + 3q8 + 6q7 + 9q6 + 11q5 + 11q4 + 9q3 + 6q2 + 3q + 1


1
4

. (4.2)

From Figure 1, it can be seen that β (q) > α (q), i.e. the inequality (2.9) provides better estimate
than that of the inequality (3.9).

0.2 0.4 0.6 0.8 1.0
q

1

2

3

4

5

Error

Figure 1. comparison of α (q) and β (q).

Now consider the RHS of the inequality (2.10)

γ (q) =
9q2

(
2 + q + q3

)
[2]3

q
(4.3)

and the RHS of the inequality (3.29)

δ (q) = 3q
(

2q
q3 + 2q2 + 2q + 1

) 3
4
 162q[2]4

q

q3 + 2q2 + 2q + 1

−
18q2

(
q4 + q3 + q2 − q + 1

)
q9 + 3q8 + 6q7 + 9q6 + 11q5 + 11q4 + 9q3 + 6q2 + 3q + 1


1
4

. (4.4)

From Figure 2, it can be seen that δ (q) > γ (q), i.e. the inequality (2.10) provides better estimate than
that of the inequality (3.29).

AIMS Mathematics Volume 6, Issue 12, 13291–13310.



13308

0.2 0.4 0.6 0.8 1.0
q

1

2

3

4

5

6

Error

Figure 2. comparison of γ (q) and δ (q).

5. Conclusions

In this research, the generalized class of preinvex functions has been considered. We also obtained
attractive quantum analogs of new Hermite-Hadamard type inequalities for generalized higher-order
strongly preinvex and quasi-preinvex functions. New integral identities for qκ1- and qκ2-differentiable
functions were proven, which played an important part in obtaining quantum estimates of Hermite-
Hadamard type inequalities for qκ1- and qκ2-differentiable generalized higher-order strongly preinvex
and quasi-preinvex functions. Our study’s claim has been graphically supported. Finally, the
innovative definition of generalized higher-order strongly preinvex functions has potential applications
in parallelogram law of Lp-spaces in functional analysis and opening new avenues for future study.
Moreover, Srivastava [19] we presented (or q-) calculus and fractional q-calculus and their applications
in geometric function theory of complex analysis. There is also a clear connection between the classical
q-analysis, which we used here, and the so-called (p, q)-analysis. We emphasize that the results for the
q-analogues, which we discussed in this article for 0 < q < 1, can be easily (and probably trivially)
converted into the corresponding results for the (p, q)-analogues (with 0 < q < p ≤ 1) by making a
few obvious parametric and argument changes, with the additional parameter p being superfluous.
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