This paper considers a class of higher-order nonlocal parabolic equations with special coefficient. We apply the Faedo-Galerkin approximation method and cut-off technique to obtain the local solvability. Furthermore, based on the framework of the modified potential well, we get the global existence, asymptotic behavior, and blow-up of the weak solutions by the Hardy-Sobolev inequality when the initial energy is subcritical $ J(u_0) < d $. In the critical case of $ J(u_0) = d $, the above results have also been obtained. Finally, we utilize some new processing methods to gain the blow-up criterion in finite time with supercritical initial energy $ J(u_0) > 0 $.
Citation: Yaxin Zhao, Xiulan Wu. Asymptotic behavior and blow-up of solutions for a nonlocal parabolic equation with a special diffusion process[J]. AIMS Mathematics, 2024, 9(8): 22883-22909. doi: 10.3934/math.20241113
This paper considers a class of higher-order nonlocal parabolic equations with special coefficient. We apply the Faedo-Galerkin approximation method and cut-off technique to obtain the local solvability. Furthermore, based on the framework of the modified potential well, we get the global existence, asymptotic behavior, and blow-up of the weak solutions by the Hardy-Sobolev inequality when the initial energy is subcritical $ J(u_0) < d $. In the critical case of $ J(u_0) = d $, the above results have also been obtained. Finally, we utilize some new processing methods to gain the blow-up criterion in finite time with supercritical initial energy $ J(u_0) > 0 $.
[1] | J. Furter, M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65–80. https://doi.org/10.1007/bf00276081 doi: 10.1007/bf00276081 |
[2] | C. Budd, B. Dold, A. Stuart, Blowup in a partial differential equation with conserved first integral, SIAM J. Appl. Math., 53 (1993), 718–742. https://doi.org/10.1137/0153036 doi: 10.1137/0153036 |
[3] | B. Hu, H. M. Yin, Semilinear parabolic equations with prescribed energy, Rend. Circ. Mat. Palermo., 44 (1995), 479–505. https://doi.org/10.1007/bf02844682 doi: 10.1007/bf02844682 |
[4] | A. El Soufi, M. Jazar, R. Monneau, A gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincare Anal. Non Lineair, 24 (2007), 17–39. https://doi.org/10.1016/j.anihpc.2005.09.005 doi: 10.1016/j.anihpc.2005.09.005 |
[5] | C. J. Budd, J. W. Dold, V. A. Galaktionov, Global blow-up for a semilinear heat equation on a subspace, P. Roy. Soc. Edimb. A., 145 (2015), 893–923. https://doi.org/10.1017/s0308210515000256 doi: 10.1017/s0308210515000256 |
[6] | M. X. Wang, Y. M. Wang, Properties of positive solutions for non-local reaction-diffusion problems, Math. Meth. Appl. Sci., 19 (1996), 1141–1156. https://doi.org/10.1002/(sici)1099-1476(19960925)19:14<1141::aid-mma811>3.0.co;2-9 doi: 10.1002/(sici)1099-1476(19960925)19:14<1141::aid-mma811>3.0.co;2-9 |
[7] | M. Jazar, R. Kiwan, Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincare Anal. Non Lineair, 25 (2008), 215–218. https://doi.org/10.1016/j.anihpc.2006.12.002 doi: 10.1016/j.anihpc.2006.12.002 |
[8] | X. L. Wang, F. Z. Tian, G. Li, Nonlocal parabolic equation with conserved spatial integral, Arch. Math., 105 (2015), 93–100. https://doi.org/10.1007/s00013-015-0782-1 doi: 10.1007/s00013-015-0782-1 |
[9] | H. L. Wang, W. R. Tao, X. L. Wang, Finite-time blow-up and global convergence of solutions to a nonlocal parabolic equation with conserved spatial integral, Nonlinear Anal. Real World Appl., 40 (2018), 55–63. https://doi.org/10.1016/j.nonrwa.2017.08.015 doi: 10.1016/j.nonrwa.2017.08.015 |
[10] | L. J. Yan, Z. D. Yang, Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity, Bound. Value Probl., 2018 (2018), 1–11. https://doi.org/10.1186/s13661-018-1042-7 doi: 10.1186/s13661-018-1042-7 |
[11] | Y. Cao, C. H. Liu, Global existence and non-extinction of solutions to a fourth-order parabolic equation, Appl. Math. Lett., 61 (2016), 20–25. https://doi.org/10.1016/j.aml.2016.05.002 doi: 10.1016/j.aml.2016.05.002 |
[12] | B. Guo, J. J. Zhang, W. J. Gao, M. L. Liao, Classification of blow-up and global existence of solutions to an initial Neumann problem, J. Diff. Equ., 340 (2022), 45–82. https://doi.org/10.1016/j.jde.2022.08.036 doi: 10.1016/j.jde.2022.08.036 |
[13] | M. L. Liao, W. J. Gao, Blow-up phenomena for a nonlocal p-Laplace equation with Neumann boundary conditions, Arch. Math., 108 (2017), 313–324. https://doi.org/10.1007/s00013-016-0986-z doi: 10.1007/s00013-016-0986-z |
[14] | C. Y. Qu, W. S. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796–809. http://dx.doi.org/10.1016/j.jmaa.2015.11.075 doi: 10.1016/j.jmaa.2015.11.075 |
[15] | J. Zhou, Blow-up for a thin-film equation with positive initial energy, J. Math. Anal. Appl., 446 (2017), 1133–1138. https://doi.org/10.1016/j.jmaa.2016.09.026 doi: 10.1016/j.jmaa.2016.09.026 |
[16] | G. Y. Xu, J. Zhou, Global existence and finite time blow-up of the solution for a thin-film equation with high initial energy, J. Math. Anal. Appl., 458 (2018), 521–535. https://doi.org/10.1016/j.jmaa.2017.09.031 doi: 10.1016/j.jmaa.2017.09.031 |
[17] | S. Toualbia, A. Zaraï, S. Boulaaras, Decay estimate and non-extinction of solutions of p-Laplacian nonlocal heat equations, AIMS Math., 5 (2020), 1663–1680. https://doi.org/10.3934/math.2020112 doi: 10.3934/math.2020112 |
[18] | Z. Tan, X. G. Liu, Non-Newton filtration equation with nonconstant medium void and critical Sobolev exponent, Acta Math. Sin., 20 (2004), 367–378. https://doi.org/10.1007/s10114-004-0361-z doi: 10.1007/s10114-004-0361-z |
[19] | W. Lian, J. Wang, R. Z. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Diff. Equ., 269 (2020), 4914–4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047 |
[20] | Y. Z. Han, Blow-up phenomena for a reaction diffusion equation with special diffusion process, Appl. Anal., 101 (2022), 1971–1983. https://doi.org/10.1080/00036811.2020.1792447 doi: 10.1080/00036811.2020.1792447 |
[21] | T. D. Do, N. N. Trong, B. L. T. Thanh, On a higher-order reaction-diffusion equation with a special medium void via potential well method, Taiwan. J. Math., 27 (2023), 53–79. https://doi.org/10.11650/tjm/220703 doi: 10.11650/tjm/220703 |
[22] | X. Z. Sun, Z. Q. Han, B. C. Liu, Classification of initial energy in a Pseudo-parabolic equation with variable exponents and singular potential, B. Iran. Math. Soc., 50 (2024), 1–39. https://doi.org/10.1007/s41980-023-00844-x doi: 10.1007/s41980-023-00844-x |
[23] | W. J. Gao, Y. Z. Han, Blow-up of a nonlocal semilinear parabolic equation with positive initial energy, Appl. Math. Lett., 24 (2011), 784–788. https://doi.org/10.1016/j.aml.2010.12.040 doi: 10.1016/j.aml.2010.12.040 |
[24] | A. Khelghati, K. Baghaei, Blow-up phenomena for a nonlocal semilinear parabolic equation with positive initial energy, Comput. Math. Appl., 70 (2015), 896–902. https://doi.org/10.1016/j.camwa.2015.06.003 doi: 10.1016/j.camwa.2015.06.003 |
[25] | M. Feng, J. Zhou, Global existence and blow-up of solutions to a nonlocal parabolic equation with singular potential, J. Math. Anal. Appl., 464 (2018), 1213–1242. https://doi.org/10.1016/j.jmaa.2018.04.056 doi: 10.1016/j.jmaa.2018.04.056 |
[26] | X. L. Wu, X. X. Yang, Properties of solutions for a class of parabolic equations with singular terms and logarithmic nonlocal sources, J. Jilin Normal Uni. (Natural Science Edition), 44 (2023), 70–78. http://doi.org/10.16862/j.cnki.issn1674-3873.2023.04.010 doi: 10.16862/j.cnki.issn1674-3873.2023.04.010 |
[27] | C. N. Le, X. T. Le, Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076–2091. https://doi.org/10.1016/j.camwa.2017.02.030 doi: 10.1016/j.camwa.2017.02.030 |
[28] | M. Badiale, G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163 (2002), 259–293. https://doi.org/10.1007/s002050200201 doi: 10.1007/s002050200201 |
[29] | H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = - Au+ F(u)$, Arch. Ration. Mech. Anal., 51 (1973), 371–386. http://doi.org/10.1007/bf00263041 doi: 10.1007/bf00263041 |
[30] | J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/bf01762360 doi: 10.1007/bf01762360 |