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1. Introduction

In this paper, we consider the initial boundary value problem
ut

|x|s
+ ∆2u − ∆ut = |u|r−2u ln |u| −

|x|−s∫
Ω
|x|−sdx

∫
Ω

|u|r−2u ln |u| dx, x ∈ Ω, t > 0;

u(x, t) = ∆u(x, t) = 0, x ∈ ∂Ω, t > 0;
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ RN(N > 2) is a bounded domain and the boundary ∂Ω is smooth. The initial data 0 ,

u0(x) ∈ W∗ =
{

u ∈ H2
0 (Ω) :

∫
Ω

|x|−su (x, t) dx = 0
}

. Moreover, 0 ≤ s ≤ 2, and the parameter r satisfies

2 < r <
8
N
+ 2. (1.2)
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Due to lim
u→0
|u|r−2u ln |u| = 0, then when u = 0, we let |u|r−2u ln |u| = 0.

It is widely known that the nonlocal parabolic equations are used to simulate some phenomena in
biological populations, and the mass of system is often known or conserved, see [1–5] etc. Many
authors have discussed the following general parabolic equations with nonlocal source terms

ut − ∆u = f (u) −
1
Ω

∫
Ω

f (u) dx, (1.3)

which satisfies the integral condition
∫
Ω

u0 (x) dx = 0 and u0 (x) , 0. For the study of the properties
of solutions when f (u) = u, readers can refer to references [6–9], where the local existence, the
asymptotic behavior of the global weak solutions, and the bounds of blow-up time were established.
In [10], the authors considered problem (1.3) with logarithmic nonlinearity source f (u) = u ln |u|.
They obtained the results of blow-up of weak solutions under some conditions by solving differential
inequalities.

When ∆u is extended to ∆ru or a more higher-order operator, such problems have also been widely
studied [11–13]. For example, Qu and Zhou [14] had researched the thin film equations with nonlocal
sources in the following form

ut + ∆
2u = |u|r−1u −

1
Ω

∫
Ω

|u|r−1udx. (1.4)

They obtained the global existence of the sign-changing solutions by the potential well method.
Moreover, they studied the decay estimate of the non-extinction weak solutions and established the
extinction result. Subsequently, Zhou and Xu improved the research results of problem (1.4)
in [15, 16], where the authors established the upper bound of blow-up time when J(u0) > 0.
Logarithmic nonlinearity has been studied for a long time because it naturally applies in different
fields of physics. Toualbia et al. [17] studied a class of nonlocal parabolic equations

ut − div
(
|∇u|r−2

∇u
)
= |u|r−2u ln |u| −

1
Ω

∫
Ω

|u|r−2u ln |u| dx, (1.5)

and the nonextinction, asymptotic behavior, and blow-up properties under appropriate conditions were
researched.

According to the law of conservation, many reaction diffusion processes can be expressed by the
equation ut − ∇ · (D∇u) = f (x, t, u,∇u), where the function D is the diffusion coefficient. Tan [18]
studied this kind of equation earlier when the source f (u) = uq and diffusion coefficient D = |x|2. More
research on the equations of the special diffusion process can be found in references [19–22].

In recent research works, the following nonlocal parabolic equation was studied:

ut

|x|s
− ∆u = |u|r−1u −

|x|−s∫
Ω
|x|−sdx

∫
Ω

|u|r−1udx. (1.6)

For the case of s = 0, Gao and Han [23] established a result of blow-up with positive initial energy
provided that 1 < r ≤ N+2

N−2 . Khelghati and Baghaei [24] improved the blow-up conclusion for all r > 1.
If s ≥ 0, it is necessary to use the Hardy-Sobolev inequality to prove the main results, which is effective
for N > 2. Feng and Zhou [25] considered Problem (1.6) when 0 ≤ s < N(r−1)

r+1 with 1 < r < N+2
N−2 , and
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they gave the result of blow-up when J(u0) < d. Moreover, they also researched the vacuum isolating
phenomenon. Subsequently, Wu and Yang considered the above singular equation for which the source
term is the logarithmic source u ln |u| in reference [26]. They combined the method of Faedo-Galerkin
with the technique of cut-off to prove the local existence. Additionally, they obtained the decay estimate
by using the Hardy-Sobolev inequality. As a result, it was also established that weak solutions blow-up
in infinite time.

Considering the above works, this work is the first paper to consider the global solvability and blow-
up properties of problem (1.1). We should not only overcome the difficulty of a singular potential, but
also deal with a logarithmic nonlocal source. This work is extremely meaningful.

In Section 2 of this paper, the basic lemmas and definitions are introduced. Further, the potential
well and its properties are also described. In Section 3, we prove the existence and uniqueness of the
local solutions. In Section 4, we establish the global existence and discuss the asymptotic properties
and finite blow-up of weak solutions when J(u0) < d. In Section 5, we extend the above conclusions
to the case of J(u0) = d in parallel. Lastly, we give the result of finite time blow-up when J(u0) > 0.

2. Preliminaries

First, we introduce some symbols, lemmas, and basic definitions. For convenience, we use ∥·∥r for
the Lr(Ω) norm, 1 ≤ r ≤ ∞, and ∥∆u∥2 and ∥u∥H2

0 (Ω) are equivalent.
For u ∈ W∗, define the potential energy functional as

J(u) =
1
r2 ∥u∥

r
r −

1
r

∫
Ω

|u|r ln |u| dx +
1
2
∥∆u∥22 , (2.1)

I(u) = −
∫
Ω

|u|r ln |u| dx + ∥∆u∥22 . (2.2)

By a direct computation,

J(u) = (
1
2
−

1
r

) ∥∆u∥22 +
1
r2 ∥u∥

r
r +

1
r

I(u). (2.3)

We also define the Nehari manifold N = {u ∈ W∗\ {0} , I(u) = 0}, and the depth of well d = inf
u∈N

J(u).

According to I(u), we define the potential well sets

W = {u ∈ W∗, I(u) > 0} ∪ {0} ,

V = {u ∈ W∗, I(u) < 0} .

Next, we expand the aforementioned single potential well to the family of potential wells. For
∀δ > 0, we define the modified functional and the corresponding sets respectively as

Iδ(u) = −
∫
Ω

|u|r ln |u|dx + δ ∥∆u∥22 , (2.4)

d(δ) = inf
u∈Nδ

J(u), (2.5)

where Nδ = {u ∈ W∗\ {0} , Iδ(u) = 0}, and

Wδ = {u ∈ W∗ : Iδ(u) > 0} ∪ {0} ,
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Vδ = {u ∈ W∗ : Iδ(u) < 0} .

Before giving some important lemmas of this paper, we will show that the term
∫
Ω
|x|−sdx is

meaningful.

Remark 2.1. Letting R = sup
x∈Ω
|x|, N > 2, then we can get

0 <
∫
Ω

|x|−sdx ≤
∫

B(0,R)
|x|−sdx

=

∫ R

0

[∫
∂B(0,r)

|x|−sdS (x)
]

dr

= ωN

∫ R

0
r−srN−1dr

=
ωN

N − s
RN−s < ∞,

where ωN =
Nπ

N
2

Γ( N
2 +1) , which shows that

∫
Ω
|x|−sdx is meaningful.

Now we introduce some important basic inequalities.

Lemma 2.1. [27] Suppose that µ is a positive number. Then, the following inequalities hold:

xr ln x ≤ (eµ)−1xr+µ, x ≥ 1,

and
|xr ln s| ≤ (er)−1, 0 < x < 1.

Lemma 2.2. [27] For any u ∈ H2
0(Ω), we have

∥u∥r+µr+µ ≤ CG ∥u∥
(1−θ)(r+µ)
2 ∥∆u∥(r+µ)θ

2 ,

where CG > 0 depends on Ω, N, and p, θ = N(r+µ−2)
4(r+µ) ∈ (0, 1), 0 < µ < 8

N + 2 − r.

Lemma 2.3. [28] Let RN = Rl ×RN−l, 2 ≤ l ≤ N, and x = (x′, y) ∈ Rl ×RN−l. If 1 < r < N, 0 ≤ s ≤ r,
and s < l, z (s,N, r) = r(N−s)

N−r , then we can find a constant H > 0 related to s,N, r, and l that satisfies

∫
RN
|u|m|x′|−sdx ≤ H

(∫
RN
|∇u|rdx

) N−s
N−r

, ∀u ∈ W1,r
0 (Ω) .

Remark 2.2. (i) When z = r = s, this inequality is the classical Hardy inequality.

(ii) Setting z = 2 in Lemma 2.3, we have r = 2N
N−s+2 , and H1

0 (Ω) ↪→ W1, 2N
N−s+2

0 (Ω), and then there
exists constants CH > 0 and C̃ > 0 satisfying ∥∇u∥22 ≤ C̃ ∥∆u∥22 such that Lemma 2.3 becomes∫

Ω

|u (x)|2|x|−sdx ≤ H ∥∇u∥2 2N
N−s+2
≤ CH ∥∇u∥22 ≤ CHC̃ ∥∆u∥22 .
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Remark 2.3. The domain Ω being bounded with Ω ⊂ RN , leads to

min
{
L−s, n

}
∥u∥22 ≤

∫
Ω

ρn|u|2dx ≤ CHC̃ ∥∆u∥22 , ∀n ∈ N+,

where L is a normal number and large enough to satisfy |x| ≤ L.

Lemma 2.4. Letting u ∈ H2
0 (Ω) \ {0} and λ > 0, we have

(i) lim
λ→+∞

J (λu) = −∞, lim
λ→0+

J (λu) = 0.
(ii) J(λu) is increasing on (0, λ∗), decreasing on (λ∗,+∞).
(iii) I(λu) > 0 for λ ∈ (0, λ∗), I(λu) < 0 for λ ∈ (λ∗,+∞), and I(λ∗u) = 0.

Proof. By (2.1), we can get

J(λu) =
λ2

2
∥∆u∥22 +

λr

r2 ∥u∥
r
r −

λr

r
ln λ ∥u∥rr −

λr

r

∫
Ω

|u|r ln |u| dx,

and then clearly (i) holds. For the derivation of the above formula, we can obtain

d
dλ

J(λu) = λ
(
∥∆u∥22 − λ

r−2 ln λ ∥u∥rr − λ
r−2

∫
Ω

|u|r ln |u| dx
)
.

Letting f (λu) = λ−1 d
dλ J(λu), we have

d
dλ

f (λu) = −λr−3
[
(r − 2)

∫
Ω

|u|r ln |u| dx + (r − 2) ln λ ∥u∥rr + ∥u∥
r
r

]
.

Hence, by taking

λ1 = exp

 (2 − r)
∫
Ω
|u|r ln |u| dx − ∥u∥rr

(r − 2) ∥u∥rr

 > 0,

such that d
dλ f (λu) > 0 on (0, λ1), and d

dλ f (λu) < 0 on (λ1,+∞). As lim
λ→0+

f (λu) ≥ 0 and lim
λ→+∞

f (λu) =
−∞, we can find a unique λ∗ > 0 that satisfies f (λ∗u) = 0, f (λu) < 0 on (λ∗,+∞), and f (λu) > 0
on (0, λ∗). Thus, d

dλ J(λu) is negative on (λ∗,+∞) and d
dλ J(λu) is positive on (0, λ∗). Hence, (ii) holds.

From I(λu) = λ d
dλ J(λu), we can then obtain the conclusions of (iii). □

Lemma 2.5. Let u ∈ H2
0 (Ω) and r satisfy (1.2). Then, for any α with 0 < α <

8
N
+ 2 − r, the following

statements hold:
(i) Iδ(u) > 0 when 0 < ∥∆u∥2 < ϕα(δ);

(ii) ∥∆u∥2 > ϕα(δ) when Iδ(u) ≤ 0, where ϕα (δ) =
(
δα

Bα+r
α

) 1
r+α−2 , and Bα is the optimal embedding

constant of H2
0(Ω) ↪→ Lr+α(Ω).

Proof. By the definition of Iδ(u), the Sobolev inequality, and

ln |u (x)| <
|u (x)|α

α
, ∀ α > 0,
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we can get

Iδ(u) = −
∫
Ω

|u|r ln |u| dx + δ ∥∆u∥22

> −
1
α

∫
Ω

|u|r+αdx + δ ∥∆u∥22

>

(
δ −

Bα+r
α

α
∥∆u∥r+α−2

2

)
∥∆u∥22 .

We can derive (i) and (ii) by a direct calculation. □

Lemma 2.6. Assume that u ∈ H2
0 (Ω), and r satisfies (1.2). Let

g (δ) = sup
α∈(0, 8

N +2−r]
ϕα (δ) and h (δ) = sup

α∈(0, 8
N +2−r]

ψα (δ) ,

where ψα (δ) =
(
δα

Bα+r
r

) 1
r+α−2
|Ω|

α
r(r+α−2) , and Br is the optimal embedding constant of H2

0(Ω) ↪→ Lr(Ω). Then
g (δ) exists and satisfies 0 < g (δ) ≤ h (δ) < +∞.

Proof. From Lemma 2.5 and g (δ) , we can deduce that g (δ) > 0 if g (δ) exists. By Hölder’s inequality,
we have ∫

Ω

|u|rdx ≤ |Ω|
α

r+α

(∫
Ω

|u|r+αdx
) r

r+α

.

Combining the embeddings H2
0(Ω) ↪→ Lr+α(Ω) and H2

0(Ω) ↪→ Lr(Ω), we obtain

1
Bα

= inf
u∈H2

0 (Ω)\{0}

∥∆u∥2
∥u∥r+α

≤ |Ω|
α

r(r+α) inf
u∈H2

0 (Ω)\{0}

∥∆u∥2
∥u∥r

=
1
Br
|Ω|

α
r(r+α) .

Hence,

ϕα (δ) =
(
δα

Bα+r
α

) 1
r+α−2

≤ ψα (δ) .

So, we have g (δ) ≤ h (δ). Further, due to the continuity of ψα (δ) on
[
0, 8

N + 2 − r
]
, we can get g (δ) is

meaningful and
g (δ) = sup

α∈(0, 8
N +2−r]

ψα (δ) ≤ max
α∈[0, 8

N +2−r]
ψα (δ) < +∞.

After the above discussion, we have 0 < g (δ) ≤ h (δ) < +∞. The proof is completed. □

Corollary 2.1. Let u ∈ H2
0 (Ω) and r satisfy (1.2). Then, we have Iδ(u) > 0 when 0 < ∥∆u∥2 < g(δ) and

∥∆u∥2 ≥ g(δ) when Iδ(u) ≤ 0.

Lemma 2.7. Assume that u ∈ Nδ. Then:
(i) d (δ) ≥ r−2δ

2r g2 (δ), 0 < δ < r
2 ;

(ii) lim
δ→+∞

d (δ) = −∞, lim
δ→0+

d (δ) > 0;

(iii) d (δ) is monotonically decreasing on 1 < δ < p
2 , and monotonically increasing on 0 < δ ≤ 1.
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Proof. (i) With regard to ∀u ∈ Nδ, we get ∥∆u∥2 ≥ g(δ) by Corollary 2.1. Therefore, from (2.5) and

J (u) =
(
1
2
−
δ

r

)
∥∆u∥22 +

1
r2 ∥u∥

r
r , (2.6)

we have d (δ) ≥ r−2δ
2r g2 (δ) directly.

(ii) It follows from (2.6) that lim
δ→+∞

J(u) = −∞. Then, we can infer that lim
δ→+∞

d (δ) = −∞ by (2.5).
Furthermore, from the conclusion of (i), we can get lim

δ→0+
d (δ) > 0 directly.

(iii) If we shall prove the monotonicity of d(δ), we just need to prove the following conclusions: For
arbitrary 0 < δ′ < δ′′ < 1 or 1 < δ′′ < δ′ < r

2 , as well as u ∈ Nδ′′ , we can find v ∈ Nδ′ and ε(δ′, δ′′) > 0
which satisfy J(u) − J(v) > ε(δ′, δ′′). Next, we define λ(δ) > 0 satisfying

δ ∥∆u∥22 = λ
r−2

(
∥u∥rr ln λ +

∫
Ω

|u|r ln |u| dx
)
,

such that Iδ (λ (δ) u) = 0. Specifically, it follows from λ(δ′′) = 1 that I′′δ (λ (δ) u) = 0 for any u ∈ Nδ′′ .
In addition, we take ϕ(λ) = J(λu). Then, combining with (2.4) we have

d
dλ
ϕ (λ) = λ (1 − δ) ∥∆u∥22 .

Let v = λ (δ′) u. Then v ∈ Nδ′ . If ∀0 < δ′ < δ′′ < 1, from Corollary 2.1 we have

J (u) − J (v) = ϕ (1) − ϕ
(
λ
(
δ′
))

=

∫ 1

λ(δ′)
λ (1 − δ) ∥∆u∥22 dλ

> λ
(
δ′
) (

1 − λ
(
δ′
)) (

1 − δ′′
)

g2 (
δ′
)

= ε
(
δ′, δ′′

)
> 0.

Similarly, if ∀1 < δ′′ < δ′ < p
2 , the above results can also be obtained. Therefore, we have (iii). □

Lemma 2.8. Let δ1, δ2 be two solutions of the equation d(δ) = J(u), where 0 < J(u) < d. So, the sign
of Iδ(u) remains unchanged for δ1 < δ < δ2.

Proof. J(u) > 0 means that ∥∆u∥2 , 0. On the contrary, if the sign of Iδ(u) is changed for δ1 < δ < δ2,
we can find a δ̄ ∈ (δ1, δ2) which satisfies Iδ̄(u) = 0. Therefore, we can get J(u) ≥ d(δ̄) by (2.5). From
Lemma 2.7 (iii), we know that J(u) = d(δ1) = d(δ2) < d(δ̄), which contradicts the fact J(u) ≥ d(δ̄). □

Lemma 2.9. Let u ∈ H2
0 (Ω) and r satisfy (1.2). If I(u) < 0, we can find a λ∗ ∈ (0, 1) that makes

I(λ∗u) = 0.

Proof. Let

φ (λ) = λr−2
(
− ∥u∥rr ln λ +

∫
Ω

|u|r ln |u| dx
)
,

so we can know that
I (λu) = λ2

[
∥∆u∥22 − φ (λ)

]
.
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Combining I(u) < 0, Corollary 2.1, and the fact of r > 2, we can conclude thatφ (λ) − ∥∆u∥22 < 0, as λ→ 0+,
φ (λ) − ∥∆u∥22 > 0, as λ = 1.

So, there exists λ∗ ∈ (0, 1) that satisfies φ(λ∗) = ∥∆u∥22, namely I(λ∗u) = 0. □

Lemma 2.10. [29] Suppose Ξ(t) is a second-order differentiable normal function satisfying

Ξ′′(t)Ξ(t) − (1 + α)(Ξ′(t))2 ≥ 0,

where α > 0. If Ξ(0) > 0 and Ξ′(0) > 0, then when

t → t∗ ≤ t∗ =
Ξ(0)
αΞ′(0)

,

we have Ξ(t)→ ∞.

Definition 2.1. u (x, t) is called a weak solution of problem (1.1) on Ω × [0,T ), if the initial data
u (x, 0) = u0 (x) ∈ W∗, u ∈ L∞ (0,T ; W∗), ut ∈ L2

(
0,T ; H1

0(Ω)
)

with
∫ t

0

∫
Ω

u2
τ

|x|s dxdτ < ∞, and u(x, t)
satisfies(

ut

|x|s
, ω

)
+ (∆u,∆ω) + (∇ut,∇ω) =

〈
|u|r−2u ln |u| , ω

〉
−

〈
|x|−s∫

Ω
|x|−sdx

∫
Ω

|u|r−2u ln |u| dx, ω
〉
,

for any t ∈ [0,T ) and ω ∈ H2
0 (Ω), where (·, ·) represents the inner product in L2 (Ω) and ⟨·, ·⟩ stands

for the dual product between H−2(Ω) and H2(Ω).

Definition 2.2. Assume that u (x, t) is a weak solution of problem (1.1), and suppose the maximal
existence time Tmax is finite, satisfying

lim
t→Tmax

−

∫ t

0

(
∥∇u (τ)∥22 +

∥∥∥|x|− s
2 u (τ)

∥∥∥2

2

)
dτ = +∞.

Then u (x, t) blows up in finite time.

3. Local existence

Theorem 3.1. Let u0 ∈ W∗ and r satisfy (1.2). We can find a T > 0 such that problem (1.1) possesses a
unique weak solution u(x, t) ∈ L∞ (0,T ; W∗), ut ∈ L2

(
0,T ; H1

0(Ω)
)

with
∫ t

0

∫
Ω

u2
τ

|x|s dxdτ < ∞ and satisfies
u (x, 0) = u0 (x). Moreover, for 0 ≤ t ≤ T, the following energy equality holds:

J(u(t)) +
∫ t

0

(
∥∇ + uτ(τ)∥22 +

∥∥∥|x|−s uτ(τ)
∥∥∥2

2

)
dτ = J(u0). (3.1)

Proof. We provide the following cut-off function to solve the singularity:

ρn (x) = min
{
|x|−s, n

}
, n ∈ N+.
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Step 1. Local existence
For n ∈ N+, we denote the solutions relevant to ρn of problem (1.1) as un, and let

0 , un0(x) ∈ W̃∗ =
{

un ∈ H2
0 (Ω) :

∫
Ω

ρn(x)un (x, t) dx = 0
}
.

Let Wm = S pan {e1, · · · , em}, where
{
e j

}∞
j=1

is a system of basis of H2
0 (Ω) and normalized orthogonal

in L2 (Ω). On the basis of their multiplicity of −∆e j = λ je j, we define the related eigenvalues repeated
by λ j. We will establish the approximate solutions

um
n (x, t) =

m∑
j=1

hm
n j (t) e j (x),

satisfying the problem(
ρn(x)um

nt, e j

)
+

(
∆um

n ,∆e j

)
+

(
∇um

nt,∇e j

)
=

〈∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣ , e j

〉
−

〈
ρn(x)∫
Ω

ρn(x)dx

∫
Ω

∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣ dx, e j

〉
,

(3.2)

and

um
n (x, 0) =

k∑
j=1

hm
n je j (x) = um

n0 → u0 (x) in W∗ (3.3)

as m→ ∞, n→ ∞. Let

F j = −λ j
2hm

n j (t) +
∫
Ω

∣∣∣∣∣∣∣
m∑

j=1

hm
n j(t)e j(x)

∣∣∣∣∣∣∣
r−2 m∑

j=1

hm
n j(t)e j(x) ln

∣∣∣∣∣∣∣
m∑

j=1

hm
n j(t)e j(x)

∣∣∣∣∣∣∣ e jdx

−

∫
Ω
ρn (x) e jdx∫
Ω
ρn (x) dx

∫
Ω

∣∣∣∣∣∣∣
m∑

j=1

hm
n j (t) e j (x)

∣∣∣∣∣∣∣
r−2 m∑

j=1

hm
n j (t) e j (x) ln

∣∣∣∣∣∣∣
m∑

j=1

hm
n j (t) e j (x)

∣∣∣∣∣∣∣ dx.

Hence,
{
hm

n j

}m

j=1
satisfies the following Cauchy problem

m∑
j=1

[∫
Ω

ρn(x)e j(x)e j(x)dx
]

ḣm
n j (t) − λ jḣm

n j (t) = F j

(
t, hm

n1 (t) , hm
n2 (t) , · · · , hm

nm (t)
)
,

hm
n j (0) =

∫
Ω

un0w jdx,

for j = 1, · · · ,m; this is an ordinary differential equation with hm
n j. According to Peano’s Theorem, the

above problem has a local solution hm
n j ∈ C1 [0,Tm].

Multiplying both sides of (3.2) by hm
n j (t), and summing over j from 1 to m, we have

(
ρn(x)um

nt, u
m
n
)
+

(
∆um

n ,∆um
n
)
+

(
∇um

nt,∇um
n
)
=

〈∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣ , um
n

〉
.
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Integrating the above equation from (0, t), we have

1
2

∥∥∥∥|ρn (x)|
1
2 um

n (t)
∥∥∥∥2

2
+

∫ t

0

∥∥∥∆um
n (τ)

∥∥∥2

2
dτ +

1
2

∥∥∥∇um
n (t)

∥∥∥2

2

=
1
2

∥∥∥∥|ρn (x)|
1
2 um

n (0)
∥∥∥∥2

2
+

1
2

∥∥∥∇um
n (0)

∥∥∥2

2
+

∫ t

0

∫
Ω

∣∣∣um
n (τ)

∣∣∣r ln
∣∣∣um

n (τ)
∣∣∣dxdτ.

So, we have

S m
n (t) = S m

n (0) +
∫ t

0

∫
Ω

∣∣∣um
n

∣∣∣r ln
∣∣∣um

n

∣∣∣ dxdτ, 0 ≤ t ≤ T, (3.4)

where

S m
n (t) =

1
2

∥∥∥∥|ρn(x)|
1
2 um

n (t)
∥∥∥∥2

2
+

1
2

∥∥∥∇um
n (t)

∥∥∥2

2
+

∫ t

0

∥∥∥∆um
n (τ)

∥∥∥2

2
dτ. (3.5)

For the term
∫ t

0

∫
Ω

∣∣∣um
n

∣∣∣r ln
∣∣∣um

n

∣∣∣ dxdτ in (3.4), letΩ1 = {x ∈ Ω| |un (x)| < 1}, Ω2 = {x ∈ Ω| |un (x)| ≥ 1}. By
virtue of Lemma 2.1, we get∫

Ω

∣∣∣um
n

∣∣∣r ln
∣∣∣um

n

∣∣∣ dx =
∫
Ω1

∣∣∣um
n

∣∣∣r ln
∣∣∣um

n

∣∣∣ dx +
∫
Ω2

∣∣∣um
n

∣∣∣r ln
∣∣∣um

n

∣∣∣ dx

≤ (eµ)−1
∫
Ω2

∣∣∣um
n

∣∣∣r+µdx

≤ (eµ)−1
∥∥∥um

n

∥∥∥r+µ

r+µ
.

(3.6)

We choose 0 < µ < 8
N + 2 − r, and then combining (3.6) and Lemma 2.2, we apply Young’s inequality

with ε and the embedding theorem, giving∫
Ω

∣∣∣um
n

∣∣∣r ln
∣∣∣um

n

∣∣∣ dx ≤ (eµ)−1
∥∥∥um

n

∥∥∥r+µ

r+µ

≤ (eµ)−1CG

∥∥∥∆um
n

∥∥∥θ(r+µ)

2

∥∥∥um
n

∥∥∥(1−θ)(r+µ)

2

≤ (eµ)−1CGε
∥∥∥∆um

n

∥∥∥2

2
+ (eµ)−1CGC (ε) B1

∥∥∥∇um
n

∥∥∥ 2(1−θ)(r+µ)
2−θ(r+µ)

2
,

(3.7)

where ε ∈ (0, 1). Substituting (3.7) into (3.4), we get

S m
n (t) ≤ C1 +C2

∫ t

0

[
S m

n (τ)
]adτ, (3.8)

where a = 4r+4µ−Nr−Nµ+2N
8−N(r+µ−2) > 1, and the positive constants C1 =

S m
n (0)

1−(eµ)−1CGε
and C2 =

(eµ)−1CGC(ε)2a

1−(eµ)−1CGε
, which

are independent of n and m. Then, the following inequality can be obtained by direct calculation:

S m
n (t) ≤ C3, (3.9)

where C3 is a normal constant and only depends on T .
Next, multiplying both sides of Eq (3.2) by ḣm

n j (t), summing over j from 1 to m, and then integrating
on (0, t), due to the continuity of J (u) in H2

0 (Ω) as well as (3.3), we obtain∫ t

0

(∥∥∥∥|ρn(x)|
1
2 um

nτ

∥∥∥∥2

2
+ ∥∇unτ∥

2
2

)
dτ + J

(
um

n (t)
)
= J

(
um

n0
)
≤ C, (3.10)
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where C is a normal constant that depends of n and m.
Combining (3.5), (3.7), (3.9), (3.10), and Remark 2.3, we obtain∫ t

0

(∥∥∥∥|ρn(x)|
1
2 um

nτ

∥∥∥∥2

2
+ ∥∇unτ∥

2
2

)
dτ +

1
2

∥∥∥∆um
n

∥∥∥2

2
+

1
r2

∥∥∥um
n

∥∥∥r

r

= J
(
um

n0
)
+

1
r

∫
Ω

∣∣∣um
n

∣∣∣r ln
∣∣∣um

n

∣∣∣ dx

≤ C + (reµ)−1CGε
∥∥∥∆um

n

∥∥∥2

2
+ (reµ)−1CGC (ε) B1

∥∥∥∇um
n

∥∥∥2a

2

≤ C + (reµ)−1CGε
∥∥∥∆um

n

∥∥∥2

2
+ (reµ)−1CGC (ε) 2αB1(C3)a,

meaning that ∫ t

0

(∥∥∥∥|ρn(x)|
1
2 um

nτ

∥∥∥∥2

2
+

∥∥∥∇um
nτ

∥∥∥2

2

)
dτ +

(
1
2
−

CGε

reµ

) ∥∥∥∆um
n

∥∥∥2

2
+

1
r2

∥∥∥um
n

∥∥∥r

r

≤ C + (reµ)−1CGC (ε) 2aB1(C3)a.

(3.11)

From (3.11), it can be inferred that ∥∥∥um
n (t)

∥∥∥
L∞(0,T ;H2

0 (Ω)) ≤ CT , (3.12)

∥∥∥um
n (t)

∥∥∥
L∞(0,T ;Lp(Ω))

≤ CT , (3.13)

∥∥∥um
nt(t)

∥∥∥
L2(0,T ;H1

0 (Ω)) ≤ CT , (3.14)

∥∥∥∥|ρn (x)|
1
2 um

nt

∥∥∥∥
L2(0,T ;L2(Ω))

≤ CT , (3.15)

where CT > 0 only depends on T . By (3.12), (3.14), and the Aubin-Lions-Simon lemma [30], we have

um
n → u in C(0,T ; L2(Ω)), (3.16)

as m and n → +∞. Thus, we have um
n (x, 0) → u(x, 0) in L2(Ω). From (3.16), we can get um

n → u, and∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣→ |u|r−2 u ln |u| a.e. in Ω × (0,T ).
Next, we can choose µ = 2N−Nr+4r

2N > 0 in Lemma 2.3. Then, from Lemma 2.3 and (3.11), we obtain

∫
Ω

∣∣∣∣∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣∣∣∣∣ 2N
N+4

dx =
∫
Ω1

∣∣∣∣∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣∣∣∣∣ 2N
N+4

dx +
∫
Ω2

∣∣∣∣∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣∣∣∣∣ 2N
N+4

dx

≤ (eµ)−
2N

N+4

∫
Ω1

∣∣∣um
n

∣∣∣ 2N(r−1+µ)
N+4 dx + [e (r − 1)]−

2N
N+4 |Ω|

≤ (eµ)−
2N

N+4
∥∥∥um

n

∥∥∥r

r
+ [e (r − 1)]−

2N
N+4 |Ω| < CT .
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Combining Hölder’s inequality and the above inequality, we have

∥∥∥∥∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣∥∥∥∥
H−2(Ω)

= sup
φ∈H2

0 (Ω)

∫
Ω

∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣φdx

∥φ∥H2
0 (Ω)

≤

(∫
Ω

∣∣∣∣∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣∣∣∣∣ 2N
N+4

dx
) N+4

2N (∫
Ω
|φ|

2N
N−4 dx

) N−4
2N

∥φ∥H2
0 (Ω)

≤ B2

(∫
Ω

∣∣∣∣∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣∣∣∣∣ 2N
N+4

dx
) N+4

2N

< CT ,

where B2 > 0 satisfies the Sobolev embedding H2
0(Ω) ↪→ L

2N
N−4 (Ω). Hence, it follows that∥∥∥∥∣∣∣um

n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣∥∥∥∥
L∞(0,T ;H−2(Ω))

≤ CT . (3.17)

So, we can know that ∫
Ω

 ρn (x)∫
Ω
ρn (x) dx

∫
Ω

∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣ dx


2N

N+4

dx

≤
(min {L−s, n})

2N
N+4 |Ω|

(min {L−s, n} |Ω|)
2N

N+4

|Ω|
N−4
2N

∥∥∥∥∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣∥∥∥∥ 2N
N+4

= |Ω|−
(N−4)2

2N(N+4)

∥∥∥∥∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣∥∥∥∥ 2N
N+4

< CT .

The above estimations allow us to get a subsequence of
{
um

n
}∞
m,n=1 satisfying

um
n → u in L∞(0,T ; H2

0(Ω)) weakly star, (3.18)

um
nt → ut in L2(0,T ; H1

0(Ω)) weakly, (3.19)

|ρn(x)|
1
2 um

nt → |x|
− s

2 ut in L2(0,T ; L2(Ω)) weakly, (3.20)∣∣∣um
n

∣∣∣r−2
um

n ln
∣∣∣um

n

∣∣∣→ |u|r−2u ln |u| in L∞(0,T ; H−2(Ω)) weakly star. (3.21)

Now, from (3.18)–(3.21), taking the limit in (3.2), as m and n→ +∞, we have(
ut

|x|s
, ω

)
+ (∆u,∆ω) + (∇ut,∇ω) =

〈
|u|r−2u ln |u| , ω

〉
−

〈
|x|−s∫

Ω
|x|−sdx

∫
Ω

|u|r−2u ln |u| dx, ω
〉
,

for t ∈ [0,T ], ω ∈ H2
0(Ω), and initial data satisfying u(0) = u0. Moreover, problem (1.1) is multiplied

by ut and integrated on Ω × (0, t) to get the following energy equality:

J (u (t)) +
∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ (τ)

∥∥∥2

2

)
dτ = J (u0) .

Step 2. Uniqueness
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Assume that u1 and u2 are the two solutions to problem (1.1) satisfying u1 (x, 0) = u2 (x, 0) =
u0 (x) ∈ W∗. Thus, we have the following two equations:(

u1t

|x|s
,w

)
+ (∆u1,∆w) + (∇u1,∇w) =

〈
|u1|

r−2u1 ln |u1| ,w
〉
−

〈
|x|−s∫
Ω

|x|−sdx

∫
Ω

|u1|
r−2u1 ln |u1| dx,w

〉
,

and(
u2t

|x|s
,w

)
+ (∆u2,∆w) + (∇u2,∇w) =

〈
|u2|

r−2u2 ln |u2| ,w
〉
−

〈
|x|−s∫
Ω

|x|−sdx

∫
Ω

|u2|
r−2u2 ln |u2| dx,w

〉
.

Let v = u1 − u2 and v(0) = 0. Then, by subtracting the above two equations, we can derive∫
Ω

|x|−svtwdx +
∫
Ω

∆v∆wdx +
∫
Ω

∇vt∇wdx =
∫
Ω

|u1|
r−2u1w ln |u1|dx −

∫
Ω

|u2|
r−2u2w ln |u2|dx.

Let w = v and integrate above equation on [0, t]. Then, by Remark 2.3 and a direct calculation, we
have

∥v∥22 ≤ 2M
∫ t

0

∫
Ω

f (u1) − f (u2)
v

v2dxdt,

where M is a normal number and F(x) = |x|r−2 x ln |x|. Due to F : R+ → R+ being Lipschitz continuous,
we can get

∥v∥22 ≤ CU

∫ t

0
∥v∥22 dt.

It follows from the above inequality and Gronwall’s inequality that ∥v∥22 = 0. Therefore, we can get
v = 0 a.e. in Ω × (0,T ). □

4. Subcritical initial energy J(u0) < d

First, we will show that Wδ is invariant.

Lemma 4.1. Assume that u0 ∈ W∗, r satisfies (1.2), 0 < e < d, and (δ1, δ2) is the maximum section
including δ′ = 1 satisfies d(δ) > e for any δ ∈ (δ1, δ2). We can get all weak solutions of problem (1.1)
where J(u0) = e and I(u0) > 0 belong to Wδ, 0 ≤ t < Tmax.

Proof. For δ ∈ (δ1, δ2), combining I(u0) > 0 and Lemma 2.8, we have Iδ(u0) > 0, which means that
u0 ∈ Wδ. Combining (3.1) and J(u0) < d(δ), we obtain

0 < J(u(t)) +
∫ t

0

(
∥∇uτ(τ)∥22 +

∥∥∥|x|−s uτ(τ)
∥∥∥2

2

)
dτ = J(u0) < d(δ). (4.1)

Then, we will prove that u(t) ∈ Wδ for any δ ∈ (δ1, δ2). Otherwise, there exists a minimum time
t0 ∈ (0,Tmax) that satisfies u(t0) ∈ ∂Wδ, i.e. Iδ(u(t0)) = 0 with u (t0) , 0. Thus, by (2.5), we have
J (u (t0)) ≥ inf

u∈Nδ
J(u) = d(δ). Obviously, this contradicts (4.1). Therefore, the conclusion is proved. □
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Remark 4.1. Providing the condition J(u0) = e is changed to 0 < J(u0) ≤ e in Lemma 4.1, then the
conclusion also holds.

Theorem 4.1. Let u0 ∈ W∗, J(u0) < d, I(u0) > 0, and r satisfy (1.2). Then problem (1.1) allows a
global weak solution u ∈ L∞(0,∞; W∗), ut ∈ L2(0,∞; H1

0(Ω)) with
∫ t

0

∫
Ω

u2
τ

|x|s dxdτ < ∞. Moreover, for
any 0 ≤ t ≤ ∞, u(t) satisfies

J(u(t)) +
∫ t

0

(
∥∇uτ(τ)∥22 +

∥∥∥|x|−s uτ(τ)
∥∥∥2

2

)
dτ = J(u0). (4.2)

Proof. Since we know that the case of I(u0) > 0 and J(u0) < 0 is contradictive with (2.3), we just need
to consider the case of 0 < J(u0) < d and I(u0) > 0. Then, we can get u ∈ W by Lemma 4.1 if δ = 1,
which means that I (u (t)) > 0. Combining J(u0) < d and (3.1), we get

J (u (t)) +
∫ t

0

(
∥∇uτ (τ)∥22 +

∥∥∥|x|− s
2 uτ (τ)

∥∥∥2

2

)
dτ < d, (4.3)

where 0 ≤ t ≤ Tmax. Combining (2.3) and (4.3), we can get(
1
2
−

1
r

)
∥∆u∥22 +

1
r2 ∥u∥

r
r +

∫ t

0

(
∥∇uτ (τ)∥22 +

∥∥∥|x|− s
2 uτ (τ)

∥∥∥2

2

)
dτ < d. (4.4)

This estimate enables us to take Tmax = +∞. Hence, we have proved the uniqueness, and the energy
equation can also be obtained. □

Theorem 4.2. Let u0 ∈ W∗, r satisfy (1.2), and u(t) be the weak solution of problem (1.1). If 0 <

J(u0) < d, and I(u0) > 0, we can get the inequality

∥∇u (t)∥22 +
∥∥∥|x|− s

2 u(t)
∥∥∥2

2
≤ c1 exp {−c2t} ,

where c1 = ∥∇u0∥
2
2 +

∥∥∥|x|− s
2 u0

∥∥∥2

2
, c2 =

2(1−δ1)
CHC̃+C̃ .

Proof. Multiplying (1.1) by u(t) and integrating at Ω, for any 0 ≤ t ≤ +∞ we have

1
2

d
dt
∥∇u (t)∥22 +

1
2

d
dt

∥∥∥|x|− s
2 u(t)

∥∥∥2

2
+ ∥∆u (t)∥22 =

∫
Ω

|u (t)|r ln |u (t)| dx.

Combining (2.4), by a direct computation we arrive at

1
2

d
dt
∥∇u (t)∥22 +

1
2

d
dt

∥∥∥|x|− s
2 u(t)

∥∥∥2

2
+ (1 − δ1) ∥∆u (t)∥22 + Iδ1 (u (t)) = 0. (4.5)

From Lemma 4.1, we obtain u(t) ∈ Wδ, which means that Iδ(u(t)) > 0, δ ∈ (δ1, δ2). Through the
continuity of Iδ relative to δ, we have Iδ1(u(t)) ≥ 0, and (4.5) becomes

1
2

d
dt
∥∇u (t)∥22 +

1
2

d
dt

∥∥∥|x|− s
2 u(t)

∥∥∥2

2
≤ − (1 − δ1) ∥∆u (t)∥22 . (4.6)

Combining Remark 2.2 and (4.6), we have

1
2

d
dt
∥∇u (t)∥22 +

1
2

d
dt

∥∥∥|x|− s
2 u(t)

∥∥∥2

2
≤ −

(1 − δ1)
CHC̃ + C̃

(∥∥∥|x|− s
2 u(t)

∥∥∥2

2
+ ∥∇u (t)∥22

)
.
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Integrating the above inequality, we get

∥∇u (t)∥22 +
∥∥∥|x|− s

2 u(t)
∥∥∥2

2
≤ c1 exp {−c2t} ,

where c1 = ∥∇u0∥
2
2 +

∥∥∥|x|− s
2 u0

∥∥∥2

2
, c2 =

2(1−δ1)
CHC̃+C̃ . □

Next, the following lemma claims that the set Vδ is invariant

Lemma 4.2. Let u0 ∈ W∗, r satisfy (1.2), 0 < e < d, and (δ1, δ2) be the maximum section including
δ′ = 1 satisfying d(δ) > e for any δ ∈ (δ1, δ2). We can get all weak solutions of problem (1.1) where
J(u0) = e and I(u0) < 0 belong to Vδ, 0 ≤ t < Tmax.

Proof. From Lemma 2.8 and I(u0) < 0, we can get Iδ(u0) < 0. Combining with 0 < J(u0) < d(δ), it
follows from (4.2) that

0 < J(u(t)) +
∫ t

0

(
∥∇uτ(τ)∥22 +

∥∥∥|x|−s uτ(τ)
∥∥∥2

2

)
dτ = J(u0) < d(δ). (4.7)

Next, we will prove that Iδ(u(t)) < 0 for all t ∈ [0,Tmax). Otherwise, due to continuity of Iδ(u), there
exists a t1 ∈ (0,Tmax) which satisfies u(t1) ∈ ∂Vδ, i.e. Iδ(u(t1)) = 0 with u (t1) , 0. According to (2.5),
we have J(u(t1)) ≥ d(δ), which contradicts with (4.7). Therefore, the conclusion is proved. □

Remark 4.2. Providing the condition J(u0) = e is changed to 0 < J(u0) ≤ e in Lemma 4.2, then the
conclusion also holds.

Theorem 4.3. (0 < J(u0) < d) Let u0 ∈ W∗, 0 < J(u0) < d, I(u0) < 0, and r satisfies (1.2). Then u(t)
blows up in finite time and the upper bound for blow-up time Tmax is

Tmax ≤
pσ2

(r − 2) pσ −
(
∥∇u0∥

2
2 +

∥∥∥|x|− s
2 u0

∥∥∥2

2

) ,
where p and σ are given in (4.13) and (4.14), respectively.

Proof. First, it is clear that J(u) < d from J(u0) < d and (4.7). Then, we can get u ∈ V by Lemma 4.2
with δ = 1. From Lemma 2.9, we can find a λ∗ < 1 that satisfies I(λ∗u) = 0. Hence,

d ≤ J (λ∗u) = (λ∗)2
(
r − 2

2r

)
∥∆u∥22 +

(λ∗)r

r2 ∥u∥
r
r +

1
r

I (λ∗u)

<

(
1
2
−

1
r

)
∥∆u∥22 +

1
r2 ∥u∥

r
r .

(4.8)

On the contrary, it is assumed that u is the global weak solution of problem (1.1). Then Tmax = +∞.
For any T ∈ [0,Tmax), we construct

H (t) =
∫ t

0
R (τ) dτ + (T − t) R (0) +

p
2

(t + σ)2, (4.9)
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and H(t) > 0, where R(t) =
1
2

(
∥∇u∥22 +

∥∥∥|x|− s
2 u

∥∥∥2

2

)
, p > 0, σ > 0. We calculate the derivative of H(t) as

H′ (t) = R (t) − R (0) + p (t + σ) =
∫ t

0

d
dτ

R (τ) dτ + p (t + σ)

=

∫ t

0

(∫
Ω

∇u · ∇uτdx +
∫
Ω

|x|−su · uτdx
)

dτ + p (t + σ) ,
(4.10)

H′′ (t) = R′ (t) + p = −I (u) + p = −rJ (u) +
( r
2
− 1

)
∥∆u∥22 +

1
r
∥u∥rr + p. (4.11)

So, we can get

H (t) H′′ (t) − (1 + α)
[
H′ (t)

]2
= H (t) H′′ (t)

+ (1 + α) ·
{
ϱ (t) − [2H (t) − 2 (T − t) R (0)]

[∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ + p

]}
,

(4.12)

in which we define

ϱ (t) =
[∫ t

0

(
∥∇u∥22 +

∥∥∥|x|− s
2 u

∥∥∥2

2

)
dτ + p(t + σ)2

]
·

[∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ + p

]
−

[∫ t

0

∫
Ω

(
∇u · ∇uτ + |x|−su · uτdx

)
dxdτ + p (t + σ)

]2

.

Applying Holder’s inequality and the Cauchy-Schwarz inequality, we can get ϱ(t) ≥ 0. Next, we
choose α = r−2

2 > 0, and (4.12) becomes

H (t) H′′ (t) −
r
2
[
H′ (t)

]2

≥ H (t) H′′ (t) −
r
2

[2H (t) − 2 (T − t) R (0)]
[∫ t

0

(∥∥∥|x|− s
2 uτ

∥∥∥2

2
+ ∥∇uτ∥22

)
dτ + p

]
≥ H (t)

[
H′′ (t) − r

∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ − rp

]
= H (t)

[
−rJ (u) +

r − 2
2
∥∆u∥22 +

1
r
∥u∥rr − r

∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ + (1 − r)p

]
= H (t) M (t) ,

we denote κ (t) as

M (t) = −rJ (u) +
( r
2
− 1

)
∥∆u∥22 +

1
r
∥u∥rr − r

∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ + (1 − r)p.

From (4.2) and (4.8), the conditions under which we can choose p is

p ∈
(
0,

r (d − J (u0))
r − 1

]
(4.13)
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such that

M (t) =
r − 2

2
∥∆u∥22 +

1
r
∥u∥rr + (1 − r) p − rJ (u0)

≥ r (d − J (u0)) + (1 − r) p ≥ 0.

From what has been discussed above, we arrive at

H (t) H′′ (t) − (1 + α)
[
H′ (t)

]2
≥ 0.

After direct calculation, we have H(0) > 0, H′(0) = pσ > 0. Therefore, by Lemma 2.10, we can

find a T∗ that satisfies 0 < T∗ <
2H(0)

(r − 2) H′(0)
where H(t)→ ∞, t → T∗, and we can obtain that

Tmax ≤
pσ2

(r − 2) pσ −
(
∥∇u0∥

2
2 +

∥∥∥|x|− s
2 u0

∥∥∥2

2

) ,
where

β > max

0,
∥∇u0∥

2
2 +

∥∥∥|x|− s
2 u0

∥∥∥2

2

(r − 2) p

 . (4.14)

This obviously contradicts the assumption that H(t) is clearly defined on [0,T ] for any T > 0. Thus,
the finite time blow-up result is proved. □

Theorem 4.4. (J(u0) < 0) Assume that u0 ∈ W∗, I(u0) < 0, J(u0) < 0, and r satisfies (1.2). Then u(t)
blows up in finite time and

Tmax ≤ −
∥∇u(0)∥22 +

∥∥∥|x|− s
2 u(0)

∥∥∥2

2(
r2 − 2r

)
J (u0)

.

Proof. In view of (2.2), (2.3), and R(t), we can get

d
dt

R (t) =
∫
Ω

∇u · ∇utdx +
∫
Ω

|x|−su · utdx

=

∫
Ω

|u|r ln |u| dx − ∥∆u∥22 = −I (u)

=

( r
2
− 1

)
∥∆u∥22 +

1
r
∥u∥rr − rJ (u) .

(4.15)

According to (4.2) and (4.15), we arrive at

d
dt

R (t) ≥ −rJ(u) ≥ −rJ(u0) > 0. (4.16)

Then, from problem (1.1), we have

d
dt

J (u (t)) = −
(
∥∇ut∥

2
2 +

∥∥∥|x|− s
2 ut

∥∥∥2

2

)
≤ 0. (4.17)
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Making use of Hölder’s inequality and the Cauchy-Schwarz inequality, we get

−R (t)
d
dt

J (u) =
1
2

(
∥∇u∥22 +

∥∥∥|x|− s
2 u(t)

∥∥∥2

2

) (
∥∇ut∥

2
2 +

∥∥∥|x|− s
2 ut(t)

∥∥∥2

2

)
≥

1
2

(
d
dt

R (t)
)2

≥ −
r
2

J(u)
d
dt

R (t) .
(4.18)

By a simple calculation, we have

d
dt

(
J (u) (R (t))−

r
2
)
= (R (t))−

r
2−1

(
R (t)

d
dt

J (u) −
r
2

J (u)
d
dt

R (t)
)
≤ 0, (4.19)

for all t ∈ [0, t). According to (4.19), J(u0) < 0, and L(0) > 0, we obtain

J (u) (R (t))−
r
2 ≤ J (u0) (R (0))−

r
2 ≡ −b < 0. (4.20)

Combining (4.16) and (4.19), we have

d
dt

(R (t))
2−r

2 =
2 − r

2
(R (t))−

r
2

d
dt

R (t)

≤ r
(
r − 2

2

)
(R (t))−

r
2 J (u)

≤
2r − r2

2
b < 0.

(4.21)

Integrating (4.21) over [0, t] for any t ∈ (0,Tmax), then combining this with the fact r > 2, we have

0 < (R (t))1− r
2 ≤ (R (0))1− r

2 −

(
r2 − 2r

2

)
bt, t ∈ (0,Tmax]. (4.22)

Obviously, (4.22) cannot be established for all t > 0. Thus, Tmax < +∞. Besides, it follows from (4.22)
that

Tmax ≤
(R (0))

2−r
2(

r2−2r
2

)
b
= −
∥∇u(0)∥22 +

∥∥∥|x|− s
2 u(0)

∥∥∥2

2(
r2 − 2r

)
J (u0)

< ∞.

The proof is completed. □

5. Critical initial energy J(u0) = d

Lemma 5.1. If u0 ∈ W∗, letting u be a solution to problem (1.1) which is not a steady-state solution,
we can find a t∗ ∈ (0,Tmax) that satisfies∫ t∗

0

(
∥∇uτ (τ)∥22 +

∥∥∥|x|− s
2 uτ (τ)

∥∥∥2

2

)
dτ > 0.

Proof. Assume that u(x, t) is an arbitrary solution to problem (1.1) with J(u0) = d which is not a
steady-state solution. Using the reduction to absurdity, we suppose that∫ t∗

0

(∥∥∥∥∥∇uτ (τ)∥22 + |x|
− s

2 uτ (τ)
∥∥∥∥2

2

)
dτ ≡ 0, 0 ≤ t < Tmax.

Thus, we can conclude ut = 0, which gives u(x, t) = u0(x) for x ∈ Ω and t ∈ [0,T ), namely u(x, t) is a
steady-state solution, which is a contradiction. □
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Theorem 5.1. Let u0 ∈ W∗ and r satisfy (1.2). If J(u0) = d, I(u0) > 0, then problem (1.1) allows a
global weak solution u ∈ L∞(0,∞; W∗), ut ∈ L2(0,∞; H1

0(Ω)) with
∫ t

0

∫
Ω

u2
τ

|x|s dxdτ < ∞.

Proof. First, we select a sequence {θk}
∞
k=1 ⊂ (0, 1) that satisfies lim

k→∞
θk = 1. Then, we discuss

problem (1.1) with initial data u (x, 0) = u0k = θku0(x).
We then claim that I(u0k) > 0 and J(u0k) < d. In fact, from θk ⊂ (0, 1) and I(u0) > 0, we get

I(u0k) = θ2
k ∥∆u0∥

2
2 − θ

r
k ln θk ∥u0∥

r
r − θ

r
k

∫
Ω

|u0|
r ln |u0|dx

≥ θ2
k

(
∥∆u0∥

2
2 − θ

r−2
k

∫
Ω

|u0|
r ln |u0|dx

)
≥ θ2

k I(u0) > 0.

(5.1)

In addition, combining the above inequality and Lemma 2.6, we have

d
dθk

J(θku0) =
1
θk

(
θ2

k ∥∆u0∥
2
2 − θ

r
k ln θk ∥u0∥

r
r − θ

r
k

∫
Ω

|u0|
r ln |u0|dx

)
=

1
θk

I(u0k) > 0,

which implies that
J(u0k) = J(θku0) < J(u0) = d. (5.2)

Since u0k → u0 as k → +∞, by (5.1) and (5.2), we will use a method similar to Theorem 4.1 in the
subsequent proof. □

Theorem 5.2. Let u0 ∈ W∗ and u(t) be the weak solution of problem (1.1), and r satisfy (1.2). If
J(u0) = d, I(u0) > 0, then we can find positive constants satisfying

∥∇u (t)∥22 +
∥∥∥|x|− s

2 u(t)
∥∥∥2

2
≤ c3 exp {−c2t} ,

where c3 =

(
∥∇u (t̄0)∥22 +

∥∥∥|x|− s
2 u(t̄0)

∥∥∥2

2

)
exp {c2t̄0}, c2 =

2(1−δ1)
CHC̃ .

Proof. First, on the premise of J(u0) = d, we claim that I(u) > 0 for 0 < t < ∞ provided that I(u0) > 0.
Arguing by contradiction, we can find a t0 ∈ (0,Tmax) that satisfies I(u(t0)) = 0, which means that
J(u(t0) ≥ d. In view of energy equality (4.2), we get

J(u(t0)) +
∫ t0

0

(
∥∇uτ(τ)∥22 +

∥∥∥|x|−s uτ(τ)
∥∥∥2

2

)
dτ = J(u0) = d.

So, we get
∫ t0

0

(∥∥∥|x|−s uτ(τ)
∥∥∥2

2
+ ∥∇uτ(τ)∥22

)
dτ = 0 for 0 ≤ t ≤ t0, which implies

du
dt
= 0. It follows

that u(x, t) = u0 for 0 ≤ t ≤ t0. Then, we can conclude that I(u(t0)) = I(u0) > 0, which contradicts
I(u(t0)) = 0. Thus, for 0 < t < ∞, we can get I(u) > 0.

Next, combining (4.2) and Lemma 5.1, we obtain

J(u(t0)) = d −
∫ t0

0

(
∥∇uτ(τ)∥22 +

∥∥∥|x|−s uτ(τ)
∥∥∥2

2

)
dτ < d.
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So we can select the initial time t̄0 > 0 sufficiently small that satisfies I(u(t̄0)) > 0 and J(u(t̄0)) < d.
Then, using similar arguments as used in Theorem 4.2, we have

∥∇u (t)∥22 +
∥∥∥|x|− s

2 u(t)
∥∥∥2

2
≤ c0 exp {−c2(t − t̄0)} ,

where c0 = ∥∇u (t̄0)∥22 +
∥∥∥|x|− s

2 u(t̄0)
∥∥∥2

2
, c2 =

2(1−δ1)
CHC̃ . Thus, by direct calculation, we can get

∥∇u (t)∥22 +
∥∥∥|x|− s

2 u(t)
∥∥∥2

2
≤ c3 exp {−c2t} ,

where c3 = c0 exp {c2 t̄0}. The proof is completed. □

Theorem 5.3. Assume that u0 ∈ W∗, r satisfies (1.2), I(u0) < 0, and J(u0) = d. So the weak solution
u(t) of problem (1.1) blows up in finite time.

Proof. From Lemma 5.1, we can find a sufficiently small t̄1 > 0 that satisfies I(u) < 0 for 0 ≤ t ≤ t̄1.
Combining with (4.2), we obtain

J(u(t̄1)) = d −
∫ t̄1

0
∥∇uτ(τ)∥22 +

(∥∥∥|x|−s uτ(τ)
∥∥∥2

2

)
dτ < d.

Therefore, we let t = t̄1 as the new initial time, and we have I(u(t̄1)) > 0 and J(u(t̄1)) < d. Hence,
similar to Theorem 4.3, Theorem 5.3 is proved. □

6. Blow-up for high initial energy J(u0) > 0

Lemma 6.1. Assume that u0 ∈ W∗ satisfies

0 < J (u0) <
r − 2

2p (CH + 1) C̃
∥∇u0∥

2
2 , (6.1)

where CH and C̃ is defined in Remark 2.2. Then, for u ∈ W∗, we have I(u) < 0.

Proof. In view of (2.1), we have

J (u0) =
1
r

I(u0) + (
1
2
−

1
r

) ∥∆u0∥
2
2 +

1
r2 ∥u0∥

r
r

>
1
r

I(u0) + (
1
2
−

1
r

) ∥∆u0∥
2
2 .

(6.2)

Meanwhile, inequality (6.1) means that J (u0) < r−2
2p(CH+1) ∥∆u0∥

2
2, and combining (6.2) and the fact

CH + 1 > 1, we have I(u0) < 0.
Next, we shall prove I(u(t)) < 0 for t ∈ (0,Tmax). If it does not hold, by the continuity of I(u) with

respect to t, we can find the first t̃ ∈ (0,Tmax) satisfies I(u(t̃)) < 0 for t ∈ (0, t̃) and I(u(t̃)) = 0 with
u(t̃) , 0. Then, by Corollary 2.1, we know ∥∆u∥2 , 0. From (4.15), we obtain

d
dt

(
∥∇u (t)∥22 +

∥∥∥|x|− s
2 u(t)

∥∥∥2

2

)
= −2I(u) > 0, t ∈ (0, t̃), (6.3)
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and, further, by Remark 2.2, we can get

∥∇u0∥
2
2 < ∥∇u0∥

2
2 +

∥∥∥|x|− s
2 u0

∥∥∥2

2
<

∥∥∥∇u
(
t̃
)∥∥∥2

2
+

∥∥∥|x|− s
2 u(t̃)

∥∥∥2

2
< (CH + 1)

∥∥∥∇u(t̃)
∥∥∥2

2
. (6.4)

Now we look for the contradiction. In view of (4.17), we arrive at

J(u(t̃)) ≤ J(u0). (6.5)

Combining (2.3) (6.5), and I(u(t̃)) = 0, we have

J (u0) ≥ J(u(t̃)) =
r − 2

2r

∥∥∥∆u(t̃)
∥∥∥2

2
+

1
r2

∥∥∥u(t̃)
∥∥∥r

r
+

1
r

I(u(t̃))

>
r − 2

2r

∥∥∥∆u(t̃)
∥∥∥2

2
≥

r − 2
2rC̃

∥∥∥∇u(t̃)
∥∥∥2

2
.

Then, by (6.1), we have the inequality

∥∇u0∥
2
2 > (CH + 1)

∥∥∥∇u(t̃)
∥∥∥2

2
,

which is contradictory to (6.4). Hence, we have I(u) < 0 for u ∈ W∗. □

Theorem 6.1. Assume that u0 ∈ W∗, J(u0) satisfies (6.1), and r satisfies (1.2). Then u(t) blows up in
finite time, and the blow-up time Tmax satisfies

Tmax ≤
2qκ

(ϵ − 1)
(
∥∇u0∥

2
2 +

∥∥∥|x|− s
2 u0

∥∥∥2

2

)2 ,

where ϵ, q, and κ are given in (6.14), (6.15), and (6.20), respectively.

Proof. We suppose that u(x, t) is a global solution, which means that Tmax = +∞. Henceforth, we
structure the following auxiliary functions

L (t) =
∫ t

0

(
∥∇u (τ)∥22 +

∥∥∥|x|− s
2 u(τ)

∥∥∥2

2

)
dτ,

K (t) = (L (t))2 + q−1L′ (0) L (t) + κ, (6.6)

where q and κ are given later. First, from (6.3), we have

L′′ (t) = −2I(u) = −2
(
∥∆u∥22 −

∫
Ω

|u|r ln |u| dx
)

=
4
r2 ∥u∥

r
r +

2 (r − 2)
r

∫
Ω

|u|r ln |u| dx − 4
(
1
2
∥∆u∥22 −

1
r

∫
Ω

|u|r ln |u| dx +
1
r2 ∥u∥

r
r

)
= −4J (u) +

4
r2 ∥u∥

r
r +

2 (r − 2)
r

∫
Ω

|u|r ln |u| dx.

(6.7)

Next, we will consider two situations.
Case 1: J(u) ≥ 0 for t ∈ (0,∞)
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Let ϵ > 1. Combining energy equation (4.2), (6.7), and J(u0) ≥ 0, we have

L′′ (t) =
4
r2 ∥u∥

r
r +

2 (r − 2)
r

∫
Ω

|u|r ln |u| dx + 4 (ϵ − 1) J (u) − 4ϵJ (u)

>
4
r2 ∥u∥

r
r +

2 (r − 2)
r

∫
Ω

|u|r ln |u| dx − 4ϵJ (u)

= 4ϵ
∫ t

0

(
∥∇uτ (τ)∥22 +

∥∥∥|x|− s
2 uτ(τ)

∥∥∥2

2

)
dτ +

4
r2 ∥u∥

r
r +

2 (r − 2)
r

∫
Ω

|u|r ln |u| dx − 4ϵJ (u0) .

(6.8)

From Lemma 6.1, we have I(u) < 0, which means

∥∆u∥22 <
∫
Ω

|u|r ln |u| dx. (6.9)

By Remark 2.2, (6.8), and (6.9), we arrive at

L′′ (t) > −4ϵJ (u0) + 4ϵ
∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ +

4
r2 ∥u∥

r
r +

2 (r − 2)
r

∥∆u∥22

≥ −4ϵJ (u0) + 4ϵ
∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ +

2 (r − 2)
rC̃ (CH + 1)

(
∥∇u∥22 +

∥∥∥|x|− s
2 u

∥∥∥2

2

)
= −4ϵJ (u0) + 4ϵ

∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ +

2 (r − 2)
rC̃ (CH + 1)

L′ (t) .

(6.10)

We can also derive from (6.10) that

L′′ (t) > −4ϵJ (u0) +
2 (r − 2)

rC̃ (CH + 1)
L′ (t) . (6.11)

Then, by solving the above inequality, we arrive at

L′ (t) > L′ (0) e
2(r−2)

rC̃(CH+1) t
+

2rC̃ (CH + 1)
r − 2

ϵJ (u0)
(
1 − e

2(r−2)
rC̃(CH+1) t

)
. (6.12)

Substituting (6.12) into (6.10), we get

L′′ (t) > 4ϵ
∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ +

[
2 (r − 2)

rC̃ (CH + 1)
L′ (0) − 4ϵJ (u0)

]
e

2(r−2)
rC̃(CH+1) t

. (6.13)

We can therefore choose ϵ that satisfies the condition

1 < ϵ <
(r − 2) L′ (0)

2rC̃ (CH + 1) J (u0)
, (6.14)

which means that we can choose such ϵ that ensures the following condition on q holds

0 < q <
1

2ϵL′ (0)

[
2 (r − 2)

rC̃ (CH + 1)
L′ (0) − 4ϵJ (u0)

]
. (6.15)

From (6.14), (6.15), and e
2(r−2)

rC̃(CH+1) t
> 1, (6.13) becomes

L′′ (t) > 4ϵ
∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ + 2qϵL′ (0) . (6.16)
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By the definition of K(t) in (6.6), we directly calculate that

K′ (t) =
(
2L (0) + q−1L′ (0)

)
L′ (t) , (6.17)

and
K′′ (t) = 2

(
L′ (t)

)2
+

(
2L (t) + q−1L′ (0)

)
L′′ (t) . (6.18)

Then, (
K′ (t)

)2
=

(
4(L (t))2 + 4q−1L′ (0) + q−2(L′ (0)

)2
) (

L′ (t)
)2

=
(
4K (t) − 4κ + q−2(L′ (0)

)2
) (

L′ (t)
)2

= (4K (t) − ς)
(
L′ (t)

)2,

(6.19)

where ς = 4c − q−2(L′ (0))2 > 0, which means that

κ > (2q)−2(L′ (0)
)2. (6.20)

Then, (6.19) becomes
4K (t)

(
L′ (t)

)2
= ς

(
L′ (t)

)2
+

(
K′ (t)

)2. (6.21)

By (6.16), (6.18), (6.19), and (6.21), we have

2K (t) K′′ (t) − (1 + ϵ)
(
K′ (t)

)2

> 2K (t)
[
2
(
L′ (t)

)2
+

(
2L (t) + q−1L′ (0)

)
L′′ (t)

]
− (1 + ϵ) (4K (t) − ς)

(
L′ (t)

)2

> 4ϵK (t)
(
2L (t) + q−1L′ (0)

) (
2
∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ + qL′ (0)

)
+

(
K′ (t)

)2
+ ς

(
L′ (t)

)2
− (1 + ϵ)

(
K′ (t)

)2.

(6.22)

On the other hand, L′ (t) can be written as

L′ (t) = L′ (0) + 2
∫ t

0

∫
Ω

(
∇u∇uτ + |x|−su · uτ

)
dxdτ. (6.23)

Combining the Cauchy-Schwarz inequality and Hölder’s inequality, we have

(
L′ (t)

)2
=

(
L′ (0)

)2
+

[
2
∫ t

0

∫
Ω

(
∇u∇uτ + |x|−su · uτ

)
dxdτ

]2

+ 4L′ (0)
∫ t

0

∫
Ω

(
∇u∇uτ + |x|−su · uτ

)
dxdτ

≤
(
L′ (0)

)2
+ 4L (t)

∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ

+ 4L′ (0) (L (t))
1
2

[∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ

] 1
2

≤
(
L′ (0)

)2
+ 4L (t)

∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ + 2qL′ (0) L (t)

+ 2q−1L′ (0)
∫ t

0

(
∥∇uτ∥22 +

∥∥∥|x|− s
2 uτ

∥∥∥2

2

)
dτ

:= A (t) .

(6.24)
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Combining (6.21), (6.22), and (6.24), we can infer that

2K (t) K′′ (t) − (1 + ϵ)
(
K′ (t)

)2

> 4ϵK (t) A (t) +
(
K′ (t)

)2
+ ς

(
L′ (t)

)2
− (1 + ϵ)

(
K′ (t)

)2

≥ 4ϵK (t)
(
L′ (t)

)2
+ (4K (t) − ς)

(
L′ (t)

)2
+ ς

(
L′ (t)

)2
− (1 + ϵ)

(
K′ (t)

)2

= 4ϵK (t)
(
L′ (t)

)2
+ 4K (t)

(
L′ (t)

)2
− (1 + ϵ)

(
K′ (t)

)2

= (1 + ϵ) ς
(
L′ (t)

)2 > 0,

which says that, for t ∈ [0,∞), there is

K (t) K′′ (t) − (1 + α)
(
K′ (t)

)2 > 0,

and here we choose α =
ϵ − 1

2
. Besides, through simple calculation, we have

K′ (0) = q−1(L′ (0)
)2 > 0 and K(0) = κ > 0.

Therefore, by Lemma 2.10, there is a T2 with 0 < T2 ≤
2K(0)

(ϵ − 1) K′(0)
which satisfies K(t) → ∞, t →

T2, and we can obtain that

Tmax ≤
2qκ

(ϵ − 1) (L′ (0))2 .

Case 2: J(u(t̃)) < 0 for some t̃ > 0
By J(u0) > 0 and the continuity of J(u) on t, we can find a time t∗ ∈ (0,Tmax) that satisfies J(u(t) < 0

for t > t∗ and J(u(t∗)) = 0. Thus, we choose u(t∗) to regard as a new initial datum. Further, it follows
from Lemma 6.1 that I(u) < 0 for t > t∗. As to the proof of Theorem 4.4, the result of finite time
blow-up of the weak solutions is proved.

Based on the above two situations, we can infer the blow-up result of weak solutions in finite time
with supercritical initial energy. □
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