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1. Introduction

Fractional calculus has proven in recent years to be a helpful method of tackling the complexity of
complex systems from various scientific and engineering branches. It involves the generalization of
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the integer order differentiation and integration of a function to non-integer order, see [1]. In recent
years, there has been considerable interest in fractional differential equations, with numerous works
dedicated to the topic. Notable examples include the books by Benchohra et al. [2, 3]. The authors
of [4,5] investigated the qualitative theorems of solutions to diverse fractional differential equations
and inclusions about memory effects and predictive behavior arguments.

In a recent publication [6], Diaz introduced novel definitions for the special functions k-gamma and
k-beta. Interested readers can refer to additional sources such as [7, 8] to delve deeper into this topic.
Furthermore, in another work [9], Sousa et al. presented the ¢-Hilfer derivative of fractional order and
elucidated some crucial properties related to this type of fractional operator. Drawing inspiration from
the various papers cited earlier, we have introduced a new extension of the renowned Hilfer fractional
derivative [10-12].

On the other hand, delay differential equations are a type of functional differential equation that
arise in various biological and physical applications and often require consideration of variable or
state-dependent delays. The study of functional differential equations with delay has garnered
significant attention in recent years due to their crucial applications in mathematical models of
real-world phenomena. For examples, see [4,5] and the references therein.

In [13], Krim et al. studied the problem

{ ("D} +91) (@) = (0. ?1(0), ("D} + ) (0), ©€1:=10,T],
H(T) =7 €R,

where ngf is the Katugampola derivative of fractional order %, € (0, 1], and
g:IXRxXxR—->R

is a continuous function.
Using the Picard operator method, Krasnoselskii fixed point approach, and Gronwall’s inequality
lemma, Almalahi et al. [14] established the existence and stability theories for the problem:

HD}I"%y(0) = a0, Y(0), Y(8(0)), 0 € (0,a,],
k
70y 01 = > ey (k). k€0 a),
J=1

y(@) =96(0), o€ [-,0],

where 7 Dgl’ﬂz;‘p(-) is the @-Hilfer derivative of fractional order ¢, € (0, 1) and type ¢, € [0, 1], Ié: 0]
is the @-Riemann-Liouville integral of fractional order (1 — 1#3),

= +h(1-9%), 0<d <1, k,7=1,2,...,K
are prefixed points satisfying 0 < k; <k, < ... <k, < ay,and ¢, € R, 6 € C[-1}, 0], the function
g:(0,]xRxR—>R

is continuous, and
G € C0,a,] = [, ar]
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with g(o) < p,9, > 0.

In light of the above studies, we focus on a terminal-valued hybrid problem governed by a
nonlinear implicit (K, ¢)-Hilfer fractional differential equation with mixed-type arguments (retarded
and advanced):

(FOU 0w y) (0) = a (0, Vo). (DU Pw y) (0), 0 € (@, aal, (1.1)
y(@) = ) aye), (12)
J=1
y(©) = x(), 0€[a;—d,q], d>0, (1.3)
¥(©) = ¥(©), 0 €|an,a+d|,d>0, (1.4)

where DJ7#? s the (K, @)-Hilfer derivative of fractional order ¢, € (0, k) and type @, € [0, 1] defined
in Section 2. Furthermore,

1
U3 = R(ﬂZ(k_ﬂl) +), k>0,
g: o, el xC(|-d.d],R) xR — R, yeC(a,al, R0, €,7=1,....7

are pre-fixed points satisfying a; < ¢ <... <€ < ap,and @, y = 1,..., 7 are real numbers. For each
function y defined on [al —d,a + a] and for any o € (a;, a,], we denote by y, the element defined by

Ye(s) = (o +5), se|-d.d|.
The following are the primary novelties of the current paper:

e Given the diverse conditions imposed on problems (1.1)—(1.4), our study can be seen as both a
continuation and a generalization of the studies mentioned above, such as the papers [13, 14].

e The introduced (k, @)-Hilfer operator serves as an extension, encompassing previously
established fractional derivatives such as the Caputo, Hadamard, and Hilfer fractional derivatives
already present in the existing literature.

e The number of papers addressing a nonlocal condition combined with retarded and advanced
arguments is very limited. Therefore, our work aims to fill this gap in the literature.

e The introduced (k, @)-Hilfer operator serves as an extension, encompassing previously
established fractional derivatives such as the Caputo, Hadamard, and Hilfer fractional derivatives
already present in the existing literature.

The structure of this paper is as follows: Section 2 presents certain notations and preliminaries
about the @-Hilfer fractional derivative, the functions k-gamma and k-beta, and some auxiliary
results. Further, we give the definition of the (k, ¢)-Hilfer type fractional derivative and some
essential theorems and lemmas. In Section 3, we present three existence and uniqueness results for
the problems (1.1)—(1.4) that are founded on the Banach contraction principle, the Schauder and
Krasnoselskii fixed point theorems. In the last section, illustrative examples are provided in support of
the results obtained.
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2. Preliminaries

First, we present the weighted spaces, notations, definitions, and preliminary facts that are used in
this article. Please refer to [3] for all details on these spaces and notations.
Let
O<ay<a<oo, T=][ag,a], % €(0,k), 9 €[0,1], k>0

and

1
U3 = R(ﬁZ(k_ﬁl) + ).

The Banach space of continuous functions is denoted by C(T, R) with the norm

IYlleo = suplly(o)l : ¢ € T}.

Let AC"(T,R), C"(T,R) be the spaces of continuous functions, n-times absolutely continuous, and
n-times continuously differentiable functions on T, respectively.
Let
C([-d.d].R), C=C(a -d,a],R)

and

C= C([az,a2+a],R)

be the spaces gifted, respectively, with the norms

Iyl-ga) = sup{ly@)! : ¢ € |[~d.d]}.
lyllc = suplly(@)! : @ € [ar = d, ayl},
lyllc = sup {ly(e)l : 0 € [a, a2 +dl}.

Let ¢ € C([a;, 3], R) be an increasing function such that ¢’(o) # 0, for all o € T.
Now, let the weighted Banach space be defined as

ConicoT) = [y : (a1, 0] = R 2 0 = ¥§ (0,a)y(0) € C(T, R},
where
WP (0, a1) = (@(0) — ()™

with the norm
IVllcy, o = sup |5, (0. a)y(0)]
) €T

and

C:;Lk;(P(T) = {y € Cn_l(T) : y(n) € C193,k;(p(T)} , n€N,
ng,k;q)(T) = Co, kip(T)

with the norm

n—

= > IVl + 1yl

1
J=0

lIylle

93,k
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Next, let us define the Banach space
F= {y : [(11 -d, ay + a] —R: yl[al_dva]] €C, yl[az,az+a] € é and y|(a|,a2] € Cﬁ3,k;(p(T)}

with the norm
lIylle = max {llyllc, lIylle, [Iyllc,, . }-

Denote Xg(al, 1), (1 < p < o) to the space of each real-valued Lebesgue measurable functions g on
[a;, ay] such that |[q]] x?, < 00, with the norm given as

G, = ( f @’(g)@(g)wg)p,

aj

where @ is a non-deceasing and non-negative function on [ay, a,], such that ¢’ is continuous on [ay, a;]
with @(0) = 0.

Definition 2.1. [6] The k-gamma function is given as

(o) ‘(_)k
(@) :f 0" le"®%do, a>0,
0
where
I'k(a + K) = al'k(a),

T(a) = kﬁ-lr(g),

k

k) =T() =1,

and for K — 1, then
['(@) = T'k(a).

Furthermore the K-beta function is defined as follows:

1. .
Bk(a,a):Rf ok~ (1 - o)k 'dp,
0

so that
Bi(a, ) = 1B(g 3)
k 9 - k ka k
and T(@)T(a)
kla)l kla
B = Kt
@0 =T

Definition 2.2. [15] Let
ae Xg(ala 0.2), (p(Q) >0

be a non-decreasing function on (ay,ay] and @'(0) > 0 be continuous on (aj, ay) and ¢ > 0. The
generalized K-fractional integral operators of a function'g of order 9, are defined by

¢ = —
JoK5(0) = f P20, )@’ (5)3(s)ds,

ay

a _ .
wgl0) = f W50 (s, 000" (5)8(s)ds

©
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with kK > 0 and .

(@) — p(s)F !

- K[k (¢)

Additionally, the authors of the work [16] extended these operators and defined the generalized
fractional integrals by

0. )

ko ) _ 1 @’ (5)a(s)ds
Jou: 50 KLk(@1) Jor G(@(0) = (s), %)’

ncosy) = | f @’ (s)8(s)ds
e KDW(@) Jo - G(o(s) - @(0), 2)

where G(z,9) € AC[ay, az].

Theorem 2.3. [16] Let ¥, > 0, k > 0, and consider the integrable functiong: [a;, a;] — R. Then

GUSeS exists for all o € [ar, az].
Theorem 2.4. [16] Let g € X}y (a1, 0) and take ¥ > 0 and k > 0. Then J(?g € C([a;, 03], R).

Lemma 2.5. [10,11] Consider ¥, > 0, ¢, > 0, and k > 0. Then, one has
Tai 0T 0 8@) = T ale) = TuH T0 ale)
and
T T 000) = T5 =" 0(0) = T T 5" 0 0).
Lemma 2.6. [10,11] Let 3,9, > 0 and k > 0. Then, we have

F1,K: o\, _ ok
all+ \Pﬁ;p(g’ (11) - \Pﬁ:ﬁ_ﬁz(g’ al)

and
l?l»ki(P\PII;,z(p(a29 Q) = \Pk’(p (025 Q)

a— 1+

Theorem 2.7. [10,11]Let0 < a; <ay <o00,t >0,0<93 <1, k>0, andy € Cy,y.o(T). If

th
—>1-0
K > 3

then
(Tosey) (ap) = Jim, (Thkey) (o) = 0.

Definition 2.8. ((k, ¢)-Hilfer derivative [10, 11]) Let
t
-1<—x<
n ” n
withn €N, T = [a;, ay] an interval such that
—0 <L <a L0
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and
/g\a ©® € Cn([al’ a2],R)

are two functions such that @ is increasing and ©’(0) # 0, for all o € T. The (K, @)-Hilfer fractional
derivative DY () and D" () of a function’s of order 9 and type 0 < 9, < 1, withk > 0 is
defined by

) ) 1 4dY .
H 01,92, _ P (kn—91).k; n - (1-9)(kn—191),k;
D78 (0) = ( o e ((p’—(@%) (k s Vg\)) (©)

% (kn—91),k; 1-%)(kn—191),k;
= ( a12-£ " ]) @5’(,:) (kn ('(11+ 2(” ]) (p@\)) (Q)’

where

5 _( 1 d )"
* o' (@do]
Lemma 2.9. [10,11] Leto > a;,9%; > 0,0 <, <1, and Kk > 0. Thus, for

1
0< 193 < 1, 193 = R(ﬂZ(k_ﬂl) +ﬁ1)7

and one has
) -1
|1l (wg s a0) @ = 0

Theorem 2.10. [10,11] If
n 2]
g€ C193,k;(p[a1’a2]’ n-1< r <n, 0<¥ <1,

where n € N and k > 0, then

() — @(a;))"™ (o

11.K0 Hqyt1.02:0 _ _
(T2 L DI00) () = a(0) ;WW%@—ﬁD)@

Tal e q(a)},
where
1
U3 = K (Da(kn —91) + ).

Farticularly, for n = 1, one gets

3 (9(0) — @(ap))’! (1=92)(k=01) k: @
k(Do = Fy) + )" "7

( zik;cp ﬁiz)fll;ﬁz;(vg) (Q) — Q(Q) g(al)-

Lemma 2.11. [10,11] Let 9, > 0,0 <, < 1,andy € Cé3’k;(p(T), where K > 0, then for o € (a;, 3],
we have

(KDL Ta%y) (@) = y(e).

AIMS Mathematics Volume 9, Issue 8, 22859-22882.
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3. Main results

We start this section by taking the next fractional differential problem:

(H@f.lfz “Yy) ) =d(0). o€ (anal (3.1)

such that 0 < ¥, < k,0 <&, < 1, subjected to the conditions

y(@) = Y ay(e), (3.2)
J=1
y(©) =x(), o€lai—d,a], d>0, (3.3)
¥(©) = ¥(©), ©€|a,an+d|,d>0, (3.4)
where
ﬁz(k — 291) + 191
3 = ,
k
k>0,a,7=1,...,i,belong to R, @51 = -l and ¢, j=1,...,7 + 1, are pre-fixed points verifying
<€ =<...56 <0 = €y,
such that

ni+1

Z ‘Pﬂx(e], al)
and where 6(-) € C(T,R), x(-) € C, ¥ € C ([ay, a3], R\{0}), and ¥(:) € C.

Theorem 3.1. The function y verifies (3.1)—(3.4) if and only if
[ il
_ al] 1 k; (95
Z] Te (Taro) )
| & oY a) |
y(o) = | ()R (e 1) | (3.5)

c?]l+k (Pé‘) (Q) s © € (al9 C[2]9

X(Q)’ Q0 € [al - d’ al]a

X)), o€ [02, ap + a] .

Proof. Assume that y satisfies Eqs (3.1)—~(3.4), and by implementing the integral operator . '; MM ORVi
fractional order #; on both sides of (3.1), we have

(Foske Dl 0y y) (o) = (T2596) (o).

Using Theorem 2.10, we get

1| Ty (

116) )] 3.6
Y(o) | ¥¢, (0, aTk(kds) 4%6) @) (3.6)

y(o) =

AIMS Mathematics Volume 9, Issue 8, 22859-22882.
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In what follows, by putting 0 = €, into (3.6), and applying «, to both sides, one gets

_ 1 a]jfltﬂ(-li—_ﬁ})’k;@y(al) Lk
D=y [\P;g(e,, Tty O (T o) @)

By (3.2) and (3.6) with o = a,, we have

i 1

k(1=93),k;¢ q, J ki
ja1+ Y(al) ; l//(E])‘Pg’}(Ej, al)l"k(kﬂ3) + Z l//(ej) (ja1+ ) (61)

: jg‘(i_ﬂa)’k;(py(al) 91k
B Y(az) [‘P:%(az, ap)k(kds) + (jaw 5) (az)],

a

which implies

—(T0) (@) &

191,k;<95
k(1) k; P(az) " (e (jaw )(61)
aj+ 3’ ’(pY((ll) = _
1 ~ o,
lﬁ(az)‘Pg}(az, a)lk(kds) = lﬁ(éj)\l’l“;3 (€, a))T(kid3)
fi+1
L 191,k;(p6
; w(ej) ( ap+ )(6])
- i+l . (37)

a,
; Y€V (€, apl(kds)
Substituting (3.7) into (3.6), we obtain (3.5).

Now, we show that y verifies Eq (3.5), it follows that it also verifies (3.1)—(3.4). Applying
f@ﬂ"ﬂ”"(-) on both sides of (3.5), we get

ar+

fi+1

"2 ;;) (F298) ()
J=1

B a)¥Y (0,q)

Z ‘ﬁ(fj)‘yii (Eja (11)

J=1

(FDl%y y) (o) = DL + (F DU FU5) (o).

In view of Lemmas 2.9 and 2.11, we find Eq (3.1). Now, taking o = a, in Eq (3.5), we have

ii+1
“ 2 gy o) @
J:

_ a,¥§ (az, 1)

Z l//(ej)\}l§3 (E], aj )

J=1

+ (T06) (aa). (3.8)

Y(a)y(ap) =

AIMS Mathematics Volume 9, Issue 8, 22859-22882.
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Substituting o = ¢, into (3.5), we get

fi+1

- Z 7o (Te) @)
v(e)y(e) = — +(T006) (e
tile ) Z w(e,)\ll,%(e,, ar)
Then, we have
.
: - Z o e -
2370 j o 2 ot ey T 0@
21 (&) (e 1)
and thus,
D1k *5) (a i
: (jw(# 2 ey (o) © y
;a,y<e,) =- . - Z: ¢(e,) 1506) (e

W(@)Py, (o, “02 w&p% o

il

(f?'j @6) (az) Z lp(ejj) ( :?lhrk ‘P5) (€)
Y(ar)
lﬂ(az)\yﬂ}(az al)z (//(6])\11 (ej al)
B 1 +1
q,
1//((12)‘1’:%(112, ar) J:Zl l//(ej)\y&(e], ap)
Py o
(jaﬂ:’_k;(pé) ((12) Z L[/(—ejj) (ja?wk ‘06) (fj)
| e T

()WY (a2, oZ w(ej)q, (e, -

W)W, (0, a1) Z

W(@)‘P (Gj 01)

%‘ﬂ(az)‘{'g}(az, ap)
Y(e)Vy (e, a1)

AIMS Mathematics Volume 9, Issue 8, 22859-22882.
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(5191 K @5) (a2)¥§ (a2, 1) Z w(eJ)‘P‘P o Z o) (5191 K @5) (€)

) Si%w@ﬂgmwm
lﬁ(fj)‘yf,z (ej’ Cl])

J=1

Then,

fi+1
91 k(pé‘

ﬁ i Z v(e) Tu0) @) (T0505) (ar) "
Z;%ﬂ@) "“awmgagwxo T @ (59
Z w(fj)q’f%(% al)

J=1

From (3.8) and (3.9), we find that
y(@) = D ),

J=1

which implies that argument (3.2) holds.
In sequel, we present the following finding as a consequence of Theorem 3.1

Lemma 3.2. Let
ﬂz(k — 19]) + 19]
3 = ” ,

such that 0 < 9, < kand 0 <&, < 1, and suppose that y(-) € C, 3(-) € C, and
g:TXC([—d,a],R)XRHR
is a continuous function. Then, y € F is a solution of problems (1.1)—(1.4) iff y is a fixed point of the

mapping k: F — F defined by

[ n+1
—ZM Jal6) (&)

1 191k<p6

) O E i) +(TU00) @) e (anal o

yier= 4 (e )¥S (e, ar) '

x(0), QE[a1 d,a],

7)., 0¢€|m am+d|,

where ¢ is a function verifying
6(0) = 9(0, Yo(+), 6(0))

and
Qi1 = —1, G4 = 2.
Volume 9, Issue 8, 22859-22882.
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Next, we present the following hypotheses for using in the sequel analysis:

(Ax1)
g:TxC([—d,a],R)xReR

is a continuous function.

(Ax2) There exist real numbers ¢; > 0 and 0 < ¢, < 1, where

la(o, Y1, Y1) — 60, Y2, Y2)| < &illyr — Y2||[7d,a] + &ly1 = Yol
for any
Y1,Y2 € C([—d, d] ,R) 5 V],Vz € R,
and o € (ay, ay].

(Ax3) There exist functions m;, m,, n3; € C(T,R,) with

my = sup m;(0), M, = sup my(0), my = supmz(o) <1,
o€T €T €T

such that
90, . V)| < mi(0) + ma@)IYlip_ag) + m3@)F]

for any
ye C([—d,a],R), YeR

and O € ((11, ar].

(Ax4) The function ¥ is continuous on T and there exists ® > 0 such that

(o)l = ©.

Now, we will study the uniqueness theorem for problems (1.1)—(1.4) by utilizing the Banach fixed
point technique [17].

Theorem 3.3. Suppose that (Ax1), (Ax2), and (Ax4) are satisfied. If

_ 24 () — () T F

L= Snwna-a b

(3.11)

then, problems (1.1)—(1.4) have a unique solution in F.

Proof. In order to prove that the mapping k given in (3.10) possesses one fixed point in F. Let us take
y,y € F, thus for any
o€la—d,a]U|m,0+d|,

we have

ky(o) — ky(o)| = 0.

Thus
Iky — kyllc = Ilky — kyllz = 0. (3.12)

AIMS Mathematics Volume 9, Issue 8, 22859-22882.
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Further, for o € (a;, a,], we have
i+1
(& el

Z ey (Ta i) =) )

— 1 .
lky(e) - (o) < o — + (T 161(5) = 62(9)]) (o)

§ o
|w(€j)|\Pz93 (€j7 al)

where ¢, and 9, are functions satisfying the functional equations
01(0) = 9(0. Yo (), 61(0)),
62(0) = 8(0,Yo("), 62(0))-
By (Ax2), we have
161(0) = 62(0)| = 18(0, Yo, 61(0)) = 8(0, Yg» 62(0))|
< 4illy, —Vg||[_d,a] + £201(0) — 62(0)I.
Then,

61(0) — 6:(0)] < lf—‘@nyg ~Villaa]-

Therefore, for each o € (ay, a],

-

n+1
& )l (T2 s = Vol gy ) (€
k - kA ! ! e K _As I
| Y(Q) Y(Q)| < il | jl\Pﬂz(Q, (11) + 65(1 _{2)( a+ y [—d,d])(Q)
G(1 —42)2 (60
[ 7i+1
. Zm (Taem) )
ailly = Yl k|
< G(1 - ) i+l |a’]|lP03(Q, a) (ja1+ ( )) |-
; WS (€ a1)
By Lemma 2.6, we have
[ A+l 9
- Z|a,| (0(e) = @(an)
Gilly = ylle (@) — e(a)*®
k Ky
| Y(Q) Y(Q)| = @(1 {2) o ) i+l |a,]|lPﬁ3(Q, (11) + rk(ﬂl +k)
| (9 + ); 5 (60
Hence,
[ 7+1 9
- D lal(e(e) - e@)® -
Glly = Ylle | =1 () — @(ay)) "%
50 (kyt0) - 500)| < G o noew |
[k + k) Z I (E], Q)

AIMS Mathematics
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which implies that

2(1 ((p(az) — (p(al))l—193+’771
liky — kﬂ|cﬁg.k;¢ < G k(% + K)(1 - &) lly =Yl

Thus,

Iy = kyllcy, o < Llly =Vl (3.13)

By (3.12) and (3.13), we obtain

llky — kyllz < LIly = Yllz.

Based on (3.11), the mapping k is a contraction on F. Therefore, by the Banach fixed point technique,
k owns one fixed point y € F, which is a unique solution for problems (1.1)—(1.4). O

Our subsequent existence theorem for problems (1.1)—(1.4) will be proved by the Schauder fixed
point technique [17].

Theorem 3.4. Suppose that (Ax1), (Ax3), and (Ax4) are verified. If

9
—193 + *

¢ 2m; (@(a2) — @(ay)!
601 - mHI@ +k)

<1, (3.14)

then, problems (1.1)—(1.4) have at least one solution in F.

Proof. We will split the proof into several steps.
Step 1. The mapping k is continuous.
Consider {y,} to be a convergent sequence to y in F. For each

0€l[q —d,al]U[az,a2+a],
we have

lky.(0) —ky(o)l = 0.

For o € (a1, az], we have

[ 71+1

|Cl]| 91,k
YO 16u(s) = &
;w/@)l (ot 10,(5) = ) <)

lky() - ¥y(o)| < Tu®16,(5) = 8(s)) (@)

-

1 i + (
(o)l &l 1 (0, ar)
; (eI, (€, ar)

where ¢ and ¢,, are functions satisfying the functional equations

6(0) = 80, Yo(), 6(0)),
511(9) = g(Q’ YHQ(')’ 6}1(9))
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Since y, — Y, then we get 6,,(0) — d(0) as n — oo for each o € (ay, a,], and since g is continuous,

then we have
Ilky, — ky|[r — 0 as n — oo.

Step 2. We show k(By,) C By,.
Consider M to be a positive real number, where
i
s (1 -0)

Now, we present the next closed bounded ball

M > maX{ e, |L€||c~}~

By ={yeF:|lyls<M}.

Then, for each o € [a; — d, a;], we have

lky(0)l < llxllc

and for each p € [az, a, + a], we have

lky(o)l < |l¥lle-
Further, for each o € (ay, a;], (3.10) implies that

[ A+1

| ]| 91,K; @
. 3‘56
Z W/( j)l ar+ la(s, Y. (S))|) (6])

i o, [V, (0, a1)
£ (eI, (€, a1)
By hypothesis (Ax3), for o € (a;, ay], we have

60| = la(e Yo 6(@))|
< m1(0) + Ma(@IYoll_ag] + M3(@)I6(@).

1
k
vl < 1)

which implies that
l6()l < my + myM + m3l6(o),

then
m + sz

£
l—m3

16(0)l < = A

Thus for o € (ay, ay], from (3.15) we get

AZ 2, (T2 ) (&)

I3, (0, aky(o)l < =
& Z |a]|
Y (e, a1)

+ (T 195,y 0 (0)] -

A .
=W (0, ) (T D) (o).

(3.15)
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By Lemma 2.6, we have

[ i+l

Sl (06 - o) o
Al (@) — @(a))) "%
%5, (0, aky(@)l < & — T + K
k(@ +k
k(9 + )Z \Pﬁ3(€/’ )
Thus
20 (@(a) — (o) " F
vy
I¥5, (0, aky (o)l < oI, + K)
<M.
Then, for each
o€ [al —d,a2+a],
we obtain
lIkylls < M.
Step 3. We prove that the set k(B),) is relatively compact.
Let
ki, ka € (a1, 2], ki <ka
and lety € By,. Then,
Z la)| 01k(p6 E)I_
o 1 Ilﬂ(E,)l Turi !
W (ky, apky(k)) — Y¢ (ky, apky(ky)| <
P9 ki, apky(ky) — 3. (ko apky (k)| < Wq) sk Zl o
|W(€])| (Ej’ (11) ]
P K)o Yy (ko) o
y al-e’—’é ki) — = ali-’(pé k
— (Tosses(5)) (k) ) (Toe5(5)) (k)
" ]
|all| 19 K
(111+ 6
. Z W(e) )@
S —_
Y(ky) lﬁ(kz) Si )|
| |l//(6j)|\P1(!; (6/’ al) |
f"‘ ¥y, (ky, ap) P ‘p(kl,S) vy (k2’al)\Pﬁl (ka, 5) o d
+
. o) o) eIy

.\ Ve (ko ap)
W(ky)
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By Lemma 2.6, we get

[ 7i+1

)| e 7
| ;l/lc(y—;)l ( ;9,+k (96) (6,)|

s‘ L
Yky) (ko)
N G| W (ki a»l)q’;’:p(kl, s) PP (ka, al)‘i";’l‘” (ka, 5)
* f ) ) k)

AW (ky, a1) (ko) — @(k) *
O + k)

[¥9 (k1. apky(ki) — W9, (ka, apky (k)|

X

i+l

Z |Q’]|
L4 (€)M ()

l’(s)lds

As ki — k», the right side of the above inequality tends to zero. From Steps 1-3, using the Arzela-
Ascoli theorem, we infer that k: F — T is a continuous and compact mapping. Consequently, we
deduce that k owns at least one fixed point, which is a solution for problems (1.1)—(1.4). |

Our third outcome depends on the Krasnoselskii fixed point technique [17].
Theorem 3.5. Suppose that (Ax1)—(Ax4) are verified. If

4 (o) — @a) =+ F
GIe@, + k(1 - &)

<1, (3.16)

then, problems (1.1)—(1.4) have a solution in F.

Proof. Let us assume that the ball
B,={yeF:lylr<w), wzr+n
with

:(mT +w) (@(az) — (p(al))l—ﬂﬁ”?l

" G(1 - ML + K) ’

1-93+ 5L

(m] + Mw) ((az) — @(ar))
(1 — mHT(@ + k)

rp 1= max {Il)(llc, Il

Next, we introduce the mappings V; and V, on B,, as follows:
A+l a
J 91.k;
- Tt *6)(€)
; ¥(e) (T50)

fi+1

B Q]‘{lg; (Q’ ap)
Viy(e) =3 ¥() ; W(e)Py (e, a1)

0, o€la —d,a],

, o€ (a,a],

(3.17)

0, ge[az,a2+a],
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and

(T216) (o)
Y(o)
x(©), o¢€la—d,al,

) Y € (al7a2]a

Vay(o) =

7)., o€ |m,am+d|,

where ¢ is a function verifying
6(0) = 9(0; Yo(), 6(0)).

Then (3.10) can be written as
ky(o) = Viy(o) + Voy(0), y € F.

Step 1. We prove that
Vly + Vz? S BoJ

forany y,y € B,,.
By (Ax3) and from (3.10), for o € (a;, a], we have

l6(0)| = 18(0, Yo, 6(0))I
<mi(0) + ma(OYell[-g.a) + m3(@)I6 (),

which implies that

6(0)] < mj + myw + m3l6(0)l,

and then
5(0)] < my + mw .
Q= 1—-m

3

Thus, for o € (a1, a,] and by (3.17), we have

A(m) — @(a) "+
OIv(? + k)

5, (0, a1)Viy(o)l <
Then, for each p € [al —-d,a + a] , we obtain

A((m) — @(a) "%
Gy + k)

IViylle <
For o € (a;, a;] and by (3.18), we have

A@(ar) — play) "%
Oy + k)

195, (0, 1) Vay (o)l <

(3.18)

(3.19)
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For each ¢ € [a; — d, a;], we have

IVay(@)l < lixlle,
and for each p € [az, a + a], we have

IVay(o)l < II¥ll-

Then, for each p € [al —d,a + a], we get

1-3+ 5L
A(e(az) — @(ay)) } (3.20)

\% < Ylle
IV2ylle < max {ILVIIC, Ille, OLd, + K)

From (3.19) and (3.20), for each o € [al —-d,a + a], we have

IV1y + Voylls < IViylls + [IV2Ylls
<r+n

< w,

which infers that
Viy+ Vyy €B,,.

Step 2. The mapping V, is a contraction.
In view of the condition (3.16) and Theorem 3.3, the mapping V; is a contraction on F with the
norm || - ||g.

Step 3. V, is continuous and compact.
Let {y,} be a sequence such that y, — y in F. For each

o€l —d,al]U[ag,a2+a],
we have

IVaya(0) = Vay(o)l = 0.

For o € (a1, az], we have

1 .
ol (T2 16,(5) = 6(9)]) (0,

such that ¢ and ¢, are functions verifying the functional equations

IVayn(0) = Vay(o)l <

0(0) = 8(0, Yo(*),6(0)),
0,(0) = 8(0, Yo ("), 0,(0)).

Since y, — Yy, then we get 6,(0) — 8(0) as n — oo for each o € (aj, a,], and since g is continuous,
then we have
IVay, — Voyllr = 0as n — oo.
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Then V, is continuous. Next we prove that V, is uniformly bounded on B,,. For each
[N [Cl] —d,(12+a]

and anyy € B, we get

A(p(a) - (p(al))l—z93+”Tl
Ok +Kk) .

IV2yllz < max {”X”c, I¥lles

This implies that the mapping V, is uniformly bounded on B,,. In order to show the compactness of
V,, we take ki, k, € (a;, ay] such that k; < k,, and y € B,,. Then

‘I’£3 (ky, a1)

e (ko,ay)
l’k; —_— 1%— ﬂ],k;
T o) - = (g

| W ki, a) PPk, s) P9 (ka, a)) Pl (ka, )
= f ) ) (k)
LP:;;(kz,al)(
Y(ka)

[P§ (K1, a)Vay(ky) — W8 (ka, a)Vay(ko)| <

" (s)y(s)lds

T )

By Lemma 2.6, we get

J %9 (ky, 5)

koo _
WS, (k1 01)Vay(ky) — W3 (Ko, a)Vay(ky)| < A Tl a®y, .9 Fi e, a0y,
? ’ a Y(ky) Y(ka)
|
AV, (k2, ar) (@(k2) — @ (ki)™
G (9, + k)

9" (9)lds

Note that
W8 (ki, a1)Vay (ki) — ¥ (ka, a)Voy(ko)| = 0 as ky — k.

This proves that V,B,, is equicontinuous on (aj, a,]. Therefore, V, is compact. Thus, based on the
Krasnoselskii fixed point technique, we conclude that k possesses a fixed point, which satisfies
problems (1.1)—(1.4). O

4. Applications

We give various examples of (1.1)—(1.4), with

1
T=[1,x], 9 = R(ﬂz(k_ﬂl) + ),

—_

1 L. Yy
105 + 125¢7¢ 34yl l+y|’

(0, Y,Y) =

YU(o) = (0 +sin(p) + 2),

3
13¢73
where p € T, y € C([—d, a] ,R), andy € R.
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Example 4.1. Taking 9, — 3, 9 = 3,

i=3,d=d= % and 95 = %, we have the system below:

11 1.
(roi w y)©@ = o (090, (101w v) @), o€ Lm, 4.1)
y(m) = y(3) + 2x(3) + 3x(3), 4.2)
2
y() =x(0), o€ [5,1 ; (4.3)
Y(Q) :/?(Q)a o € (m,m+ § . (44)
We have
1
Corkio(T) = C31.o(D) =y : (L] > R: (1 = m)¢y € C(T,R)},
and then
2 1 ~
F = y . g,ﬂ' + 5 - R . yl[%,l] S C, yl[ﬂ,n’+%] € C and yl(l,ﬂ'] S C%’]’@(T) .
By continuity of the function g, the hypothesis (Ax1) holds. For every
11 —~
yeC =33 ,R], yeR and p€T,
one has {
90, Y-V < 1oz i3z (1+ Wl aay + B1).-
Then, the condition (Ax3) is satisfied with
1
my(o) = ma(0) = m3(0) = 105 + 125072
and
* * * 1
m;=m, =m; = —.
1 2 3 230
The condition (Ax4) is verified since we have that
> .
Wl >
We have \
52¢7 (7" — m)*
_ 2 W 6.001995278633 < 1.
1374 +/n
Hence, in view of Theorem 3.4, we infer that problems (4.1)—(4.4) possess a solution in F.
Example 4.2. Considering 1, — 0, ¢ = %, k=100 =0a =1L, a=1a=5 ¢ = %, 6 =2,
€& = %, i=3d=d= %, p= %, and 93 = %, we have the next system:
H 3 0:0 _ (pry 30 _ 30
1 ‘Z)l+ 'ﬁy (Q) - D1+ y (Q) =g o yQ(.)’ D1+ l//y (Q) > O € (1’3]’ (45)
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y(3) =y(3) +y(2) + 5x(3), (4.6)
1
ylo)=¢°, o€ [5, 1], (4.7
7
y(o)=¢° o€ [3, E] (4.8)
We have
Cooseo(T) = Cyp(T) = {y L (1,3] > R : J(vo - 1y € C(T, R)},
and then
17 ~
F= {y : [5, 5] —R: yl[%’l] e C, y|[3,%] €C and Y|, € Ci,l;(p(T)}'
Additionally, for every
— 11 —
Yi.¥Y1 € C(|:_§’ §:| ’R)7 Y2,¥2 € R’ and O € T,
one has

la(0, Y1, ¥2) — 8(0, Y1, (||Y1 —V1||[_d,a] +1y2 —V2|)-

_ 1
< -
Y2l S 105 712502

Then, the condition (Ax2) holds with

1

élzézzﬁ-

Since
L ~0.000105319912 < 1.

Hence, all of the hypotheses of Theorem 3.3 are verified. It follows that problems (4.5)—(4.8) possess
one solution in F.

5. Conclusions

Our research considered a class of problems involving nonlinear implicit (K, ¢)-Hilfer hybrid
fractional differential equations with nonlocal terminal conditions. We achieved this by proving the
existence and uniqueness of solutions for these equations. Our strategy hinged on powerful
mathematical tools: the Banach contraction principle, Schauder’s fixed point theorem, and
Krasnoselskii’s fixed point techniques. To showcase the practical applications of our findings and the
ease of using our theorems, we presented some illustrative examples. These illustrations effectively
highlight the flexibility and wide-reaching impact of the studied operator across various cases. It is
noteworthy that the introduced (K, ¢)-Hilfer operator operates as an extension, encompassing
previously established fractional derivatives such as the Caputo, Hadamard, and Hilfer fractional
derivative already present in the existing literature. This broader conceptual framework substantially
contributes to the ongoing advancement of fractional calculus, thus laying the groundwork for
promising directions of future exploration within this ever-evolving and dynamic domain.
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