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1. Introduction

In this paper, we study the following stochastic heat equation

∂

∂t
u(t, x) =

1
2
4u(t, x) + θV(x)u(t, x), (t, x) ∈ R+ × R

d, (1.1)

which is also called parabolic Anderson model. Here, parameter θ > 0 and V is a centered generalized
Gaussian field which is defined by the Gaussian family {〈V, ϕ〉;ϕ ∈ S(Rd)} with mean zero and
covariance

E[〈V, φ〉〈V, ψ〉] =

∫
Rd

∫
Rd
φ(x)ψ(y)k(x, y)dxdy, ∀ φ, ψ ∈ S(Rd), (1.2)

where S(Rd) is the Schwartz space, and k(x, y) is a symmetric positive definite kernel function. We
assume that there exists a constant C > 0 such that for almost everywhere (x, y) ∈ R2d,

|k(x, y)| ≤ C(γh(x − y) + 1). (1.3)
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Here, γh is a nonnegative and nonnegative definite function which satisfies that γh(x) ∈ L1
loc(R

d), and
there exists a α ∈ (0, 2 ∧ d) such that γh(rx) = r−αγh(x) for all r > 0.

There exist many Gaussian fields satisfying (1.3). For example, the stationary case includes Bessel
field [1], Gaussian field with Riesz potential covariance [2], and fractional white noise [3] (Hurst
parameters Hi ∈ (1/2, 1) for 1 ≤ i ≤ d), while the nonstationary case partly includes 2-d massive free
field [4] and log-correlated Gaussian field [5]. In these fields, the covariances of Gaussian field with
Riesz potential covariance and fractional white noise are homogeneous themselves, and γh in (1.3) can
be taken as them. The covariance of Bessel field is represented as the Bessel function Gb(x), which is
not homogeneous but satisfies the asymptotic behaviours for when x→ 0,

Gb(x) ∼


Γ( d−b

2 )
2bπb/2 |x|b−d, if 0 < b < d,

1
2d−1πd/2 ln 1

|x| , if b = d,
Γ( b−d

2 )
2bπb/2 , if b > d,

(1.4)

when |x| → ∞, Gb(x) ∼ (2
d+b−1

2 π
d−1

2 Γ(b
2 ))−1|x|

b−1−d
2 e−|x|. The covariances of 2-d massive free field and

log-correlated Gaussian field satisfy that when x → y, k(x, y) ∼ ln 1
|x−y| , which are bounded away

from the diagonal region {x = y}. It can be observed that the covariance of Bessel field (0 < b < d) is
asymptotically homogeneous, where it requires that b > d−2 such that (1.3) is satisfied when α = d−b;
the covariances of Bessel field (b ≥ d), 2-d massive free field, and log-correlated Gaussian field are
bounded or asymptotically logarithmic, satisfying (1.3) for all α sufficiently closed to 0. In addition,
we can construct a series of nonstationary fields satisfying (1.3) by setting V(x) = g(x)Ṽ(x) for the
nontrivial, bounded, and measurable function g and stationary Gaussian field Ṽ satisfying (1.3).

At present, the rough initial conditions are getting more and more attention in the field of stochastic
partial differential equations. Bertini and Giacomin [6] focused on the initial conditions with growing
tails in stochastic Burgers and Kardar-Parisi-Zhang (abbr. KPZ) equations. Amir, Corwin, and
Quastel [7] utilized the Dirac δ initial condition (or narrow wedge initial conditions) to study the
distribution of stochastic heat (or KPZ) equations. Until the publishing of [8], Chen and Dalang first
introduced and studied the rough initial conditions for the nonlinear stochastic heat equation, which are
quite extensive, including Dirac δ measure, non-tempered measure with exponentially growing tails,
etc.

For (1.1), we consider the rough initial condition: the initial value u0 is a Borel measure on Rd

owing a Jordan decomposition u0 = u+
0 − u−0 . Let |u0| := u+

0 + u−0 be the variation measure of u0. We
assume that for t > 0 and x ∈ Rd,

pt ∗ |u0|(x) :=
∫
Rd

pt(x − y)|u0|(dy) < ∞, (1.5)

where “∗” represents the convolution and pt(x) := (2πt)−d/2 exp{−|x|2/(2t)} is the usual heat kernel
function. It is worth noting that due to the temporal continuity of pt(x) on (0,∞), condition (1.5)
implies that for 0 < δ < T and x ∈ Rd,

sup
t∈[δ,T ]

pt ∗ |u0|(x) < ∞. (1.6)

There have been many results for the Hölder continuity of the stochastic heat equation in the Itô-
Skorokhod integral and rough initial conditions, such as [9–13]. In the earlier literatures [8, 14],
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Chen and Dalang studied the continuity for the nonlinear stochastic heat and fractional heat equations
with rough initial conditions in the Itô-Skorokhod integral, including the parabolic Anderson model.
In Chen and Huang [15], the time-space Hölder continuity was established for nonlinear stochastic
heat equations driven by time-white and space-colored Gaussian fields, with rough initial conditions
concerning Itô-Skorokhod integral. However, the published papers about Hölder continuity in the
Stratonovich sense are not as rich as in the Itô-Skorokhod sense due to the technical complexity. When
initial value u0 ≡ 1, Hu, Huang, Nualart and Tindel [16] proved the time-space Hölder continuity for
the stochastic heat equation driven by time-space stationary Gaussian fields in the Stratonovich integral.
For the similar model, under the rough initial condition, Lyu [17] obtained the spatial Hölder continuity
in the case of time-space stationary Gaussian fields, which are homogeneous on space. Later, Lyu and
Li [18] proved the time-space Hölder continuity for time-independent log-correlated Gaussian field
and initial value u0 ≡ 1. As far as we know, there are very few results for temporal Hölder continuity
in the case of nonstationary Gaussian field and rough initial condition.

In this paper, under the conditions (1.3) and (1.5), we tend to prove the temporal Hölder continuity
for the Feynman-Kac formula of (1.1) in the Stratonovich integral. According to [ [17], Lemma 3.1],
the Feynman-Kac formula is a mild solution to (1.1) in the Stratonovich integral. As mentioned in [16],
the path-wise solution in the Young integral can be viewed as a version of the Feynman-Kac formula
in the Stratonovich integral. Thus, to obtain the Hölder continuity in the Stratonovich sense, we only
need to prove the Hölder continuity in the Young sense. However, the strategy is usually unsuccessful
for the rough initial condition.

According to (5.13) in [16], when the initial value u0 belongs to the weighted Besov-Hölder space
B
κ,eλ
∞,∞(Rd) (κ ∈ (0, 1)), it was obtained as the temporal Hölder continuity of solution in the sense of the

norm of Bκu,wt
∞,∞ (Rd) (κu ∈ (κ, 1)). Because the weighted Besov space Bκu,wt

∞,∞ coincides with the weighted
Hölder space Cκu(Rd; wt), we can directly obtain the temporal Hölder continuity in the point-wise
sense. Unluckily, if u0 is a measure, it usually does not belong to Bκ,eλ∞,∞(Rd) (κ ∈ (0, 1)), such as Dirac
δ0 ∈ B

−d(1−1/q),eλ
q,∞ (q ∈ [1,∞]) but < Bκ,eλ∞,∞(Rd) (κ ∈ (0, 1)). When u0 belongs to the Besov space on torus

B−κq,∞ (κ ∈ [0, 1/2)), by reference to [19,20], the temporal Hölder continuity of solution was obtained in
the sense of the norm of Bκu

q,∞(Td) (κu ∈ (κ, 1)), but q cannot arrive at infinity in solution space Bκu
q,∞(Td).

This leads to that we still have no way to prove the temporal Hölder continuity in the point-wise sense.
Instead of the above method, we directly prove the Hölder continuity for the Feynman-Kac formula

by the Kolmogorov continuity theorem. It has been known that under the rough initial condition, the
previous Feynman-Kac formula based on Brownian motion is not well-defined any more. Hence, we
will use the Feynman-Kac formula based on Brownian bridge. In the earlier work [21], Chen, Hu, and
Nualart proved the Feynman-Kac formula for the nonlinear stochastic heat equation on R in the Itô-
Skorokhod integral with time-space white noise and rough initial conditions. Hu, Nualart, and Song [3]
(also see [16]) obtained the Feynman-Kac formula for the stochastic heat equation driven by time-space
Gaussian fields with function-valued initial data in the Itô-Skorokhod and Stratonovich integral. After
it, Huang, Lê, and Nualart [22] obtained the Feynman-Kac moment representation based on Brownian
bridge for the stochastic heat equation in the Itô-Skorokhod integral, driven by time-white Gaussian
fields with rough initial conditions. Inspired by it, Lyu [17] proved the Feynman-Kac formula for the
stochastic heat equation in the Stratonovich integral, with time-space Gaussian fields and rough initial
condition. Similarly, this paper also obtained the Feynman-Kac formula based on Brownian bridge
uθ(t, x) defined in (2.1) in the case of nonstationary Gaussian field and rough initial condition, but the
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Feynman-Kac moment representation of uθ(t, x) that we get in (2.6) is different from the representation
in [17].

Different from Brownian motion and stationary Gaussian field, the computations of Hölder
continuity are complex in the case of Brownian bridge and nonstationary Gaussian field. To overcome
the difficulty, on the one hand, we construct a novel decomposition of Brownian bridge in Lemma 2.5;
on the other hand, because the technique of Fourier transform cannot be directly applied to estimate
positive definite kernel k(x, y), we will use the estimates of the heat kernel in Lemma 2.1.

We state the temporal Hölder continuity of the Feynman-Kac formula uθ(t, x) in (2.1) as follows.

Theorem 1.1. Assume that conditions (1.3) and (1.5) hold. Set 0 < δ < 1 ≤ T and β ∈ (0, 1 − α/2),
where α is taken from (1.3). Then, there exists some constant C > 0 such that for all θ > 0, t, s ∈ [δ,T ],
x ∈ Rd, and integer n ≥ 1,

E|uθ(t, x) − uθ(s, x)|n ≤ CneCθ2n2T 2
exp

{
Cθ

4
2−α T

4−α
2−α n

4−α
2−α

}
((2n − 1)!!)1/2T (βd/2+1)n

· δ−(d/2+1)βn
(

sup
r∈[δ,T/(1−β)]

pr ∗ |u0|(x)
)n
|t − s|βn/2. (1.7)

Moreover, there exists a temporal β

2 -Hölder continuous modification of uθ(t, x) on (0,∞).

As an extension of temporal Hölder continuity in [ [16], Theorem 4.12], where the Gaussian fields
are stationary and initial value u0 ≡ 1, Theorem 1.1 contains the case of nonstationary Gaussian fields
and initial value of measure. However, patient readers may observe from Theorem 1.1 that when initial
value u0 ≡ 1, on the one hand, the order of Hölder continuity is not optimal, where β/2 < 1/2; on the
other hand, the Hölder continuity of the solution is limited on open interval (0,∞) excluding the zero
point. For this reason, we intend to make some technical explanations as follows:

(1) Because the measure-valued initial data u0 is considered, we choose to use the Feynman-Kac
formula based on Brownian bridge (2.1). In the estimates of the Hölder continuity, (2.1) leads
to the need to utilize the continuity of bridge B0,t with respect to t; see Proposition 5.3. Here,
remark that the continuity of

∫ s

0
V(Bx,z

0,t (r))dr at the t = s point is necessary for our estimates. If
we consider the Feynman-Kac formula based on Brownian motion with function-valued initial
data, then the continuity of the term can be bypassed. So, when u0 ≡ 1, the order of Hölder
continuity is low in Theorem 1.1.

(2) Under condition (1.5), the proof of Hölder continuity can only depend on the regularity of heat
kernel pt(x) rather than of u0. However, in the step of estimates of the heat kernel, the terms t and
s with negative power are produced; see Lemma 2.1. For the Feynman-Kac formula (2.1), in the
computations of (2.37)–(2.39), we have no way to get rid of the term (t−d/2−1 + s−d/2−1)βn produced
in estimates of the heat kernel. Moreover, we obtain an additional term δ−(d/2+1)βn in (1.7) relative
to the estimates of moment in Proposition 4.1, which implies that δ cannot tend to 0. Thus, when
u0 ≡ 1, the coefficient in the right side of (1.7) is not exact, such that the Hölder continuity cannot
be proved at zero point.

In order to compensate the defect of Theorem 1.1 in the case of function-valued initial data, we
specifically show the following result in which the Hölder continuity is extended to the zero point.

Theorem 1.2. Under condition (1.3), the following results hold:
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(i) When initial value u0 is a κ-Hölder continuous function in Cκ(Rd) with κ ∈ (0, 1], for ρ ∈ (0, κ),
θ > 0, and x ∈ Rd, there exists a modification of uθ(t, x), which is ρ

2 -Hölder continuous on [0,∞).
(ii) When initial value u0 is a constant, that is, u0 ≡ C, for ν ∈ (0, 1 − α/4), θ > 0, and x ∈ Rd, there

exists a modification of uθ(t, x), which is ν-Hölder continuous on [0,∞).

The order of Hölder continuity in Theorem 1.2 (i) coincides with it in [8, 15], though their settings
are different from ours, where they considered the Itô-Skorokhod integral and time-white Gaussian
fields which are colored in space. The order in Theorem 1.2 (ii) is the same as it is in [ [16],
Theorem 4.12].

Next, we make some comments on the results in Theorems 1.1 and 1.2 as follows:

(a) With respect to the special fields, including Bessel field (b ≥ d), 2-d massive free field, and log-
correlated Gaussian field, the orders of Hölder continuity are sufficiently closed to 1/2 and 1 in
Theorem 1.1 and Theorem 1.2 (ii), respectively, because these fields always satisfy (1.3) for all
small α. For the special fields, we can prove a more precise modulus of continuity in Theorem 1.1
than (1.7), which is similar to [ [18], Proposition 2.4]. However, the more precise modulus
does not impact on the order of Hölder continuity. For the homogeneous or asymptotically
homogeneous Gaussian fields, like Gaussian field with Riesz potential covariance, fractional
white noise, and Bessel field (0 < b < d), the orders of Hölder continuity in Theorems 1.1 and 1.2
are optimal within our framework if we take α equal to the (asymptotically) homogeneous degree
of these fields in condition (1.3).

(b) For Theorem 1.2, the Hölder continuity in (i) is limited by the Hölder continuity of u0. Though
the initial condition in (ii) is a special case in (i), the order in (ii) is obviously higher than it is
in (i), i.e., ν > 1/2 > ρ/2. It is found that, different from (ii), the Hölder continuity in (i) is only
determined by the regularity of u0 by comparing (2.41) and (2.47) in the proof of Theorem 1.2.

(c) Notice that the order in Theorem 1.2 (i) is not necessarily higher than Theorem 1.1, because the
Hölder continuity at zero point is considered in Theorem 1.2 (i). To sum up Theorem 1.1 and
Theorem 1.2 (i), the order of Hölder continuity on (0,∞) is (β ∨ ρ)/2 when u0 ∈ Cκ(Rd). On the
other hand, it is found that the order in Theorem 1.1 is lower than it is in Theorem 1.2 (ii), i.e.,
β/2 < 1/2 < ν. Obviously, the initial condition is very special in Theorem 1.2 (ii).

Methodology: In the sense of the Stratonovich integral, our method heavily depends on the
Feynman-Kac formula based on the Brownian bridge (2.1) and Feynman-Kac formula based on
Brownian motion (2.4), which produce the different Hölder continuities and modulus of continuity
in Theorems 1.1 and 1.2. Meanwhile, our method can only be applied to the linear model. However,
in the sense of the Itô-Skorokhod integral, the method in [8,13–15] can cover the case of the nonlinear
model, the advantages of which are that the estimates of Hölder continuity are stable for rough and
regular initial conditions. In fact, the above settings of the integral are different, and our method
mainly compensates the lack of result in the Stratonovich integral (or Young integral) rather than the
Itô-Skorokhod integral.

Organisation: Section 2 is the preliminaries about Fourier transform, estimates of heat kernel, and
Brownian bridge. In Section 3, we give the definitions of the Feynman-Kac formula, Feynman-Kac
functional, and Feynman-Kac moment representation. In Section 4, we show the well-definiteness and
moment estimates of the Feynman-Kac functional and Feynman-Kac formula. Section 5 is the proof
of temporal Hölder continuity in Theorem 1.1.
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2. Preliminaries

Notations: Write R+ := [0,∞) and N+ := {1, 2, 3, · · · }. Let (Ω,F,P) be the probability space with
expectation E. Set p ∈ [1,∞], and denote the Lebesgue space on (Ω,F,P) by Lp(Ω). For region D ⊆
Rd, let Lp(D) be Lebesgue space on D. Denote by L1

loc(R
d) the space composed of locally integrable

functions on Rd. For κ ∈ (0, 1], Cκ(Rd) is the space composed of κ-Hölder continuous functions. S(Rd)
is Schwartz space on Rd, and its dual space S′(Rd) is the space of tempered distributions. Let C be
a universal nonnegative constant. f . g represents that there is a constant C > 0 not dependent on
variables such that f ≤ Cg.

Fourier transform: The Fourier transform of a function f ∈ S(Rd) is defined as

F f (ξ) :=
∫
Rd

eiξ·x f (x)dx,

and the inverse Fourier transform is given by F −1 f (ξ) = (2π)−dF f (−ξ). The generalized Fourier
transform of f ∈ S′(Rd) is defined by the dual

〈F f , g〉 = 〈 f ,F g〉, ∀g ∈ S(Rd). (2.1)

For nonnegative definite function γh in (1.3), according to the Bochner theorem (e.g., p.158, [23]),
there exists a nonnegative and symmetric tempered measure µh such that γh = F µh. Noticing that γh(x)
is a function, it is found that

γh(x) =

∫
Rd

eiξ·xµh(dξ), a.e., (2.2)

by (2.1) and the Fubini theorem. Because γh satisfies that γh(rx) = r−αγh(x) for all r > 0, µh is
homogeneous, that is, µh(d(rξ)) = rαµh(dξ) for all r > 0.

Estimates of heat kernel: We give the estimates of heat kernel used to prove the Hölder continuity.
The results similar to (i) and (iii) in Lemma 2.1 have been proved in [ [15], Lemma 3.1], but our proof
is slightly different from [15] in details.

Lemma 2.1. For the heat kernel pt(x) = (2πt)−d/2 exp{−|x|2/(2t)}, the following results hold.
(i) For all x, y ∈ Rd and t > 0, it holds that

|pt(x) − pt(y)| . t−(d+1)/2|x − y|. (2.3)

(ii) For all z1, z2, x, y ∈ Rd, and t > 0, it holds that

|pt(z1 + x) − pt(z1 + y) − pt(z2 + x) + pt(z2 + y)| . t−d/2−1|z1 − z2||x − y|. (2.4)

(iii) For all x ∈ Rd and t, s > 0, it holds that

|pt(x) − ps(x)| . (t−d/2−1 + s−d/2−1)|t − s|. (2.5)

Proof. (i) By pt = F −1e−
t
2 |·|

2
, the inequality |eiξ·y − eiξ·x| ≤ |ξ||x − y|, and the integral substitution, we

have

|pt(x) − pt(y)| = (2π)−d
∣∣∣∣∣∫
Rd

(e−iξ·x − e−iξ·y)e−t|ξ|2/2dξ
∣∣∣∣∣
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≤ (2π)−d
∫
Rd
|ξ|e−t|ξ|2/2dξ|x − y|

. t−(d+1)/2|x − y|. (2.6)

(ii) According to the arguments similar to (2.6), it holds that

|pt(z1 + x) − pt(z1 + y) − pt(z2 + x) + pt(z2 + y)|

= (2π)−d
∣∣∣∣∣∫
Rd

(e−iξ·z1 − e−iξ·z2)(e−iξ·x − e−iξ·y)e−t|ξ|2/2dξ
∣∣∣∣∣

≤ (2π)−d
∫
Rd
|ξ|2e−t|ξ|2/2dξ|z1 − z2||x − y|

. t−d/2−1|z1 − z2||x − y|.

(iii) From pt = F −1e−
t
2 |·|

2
, |eiξ·x| = 1, and the inequality |ea − eb| ≤ |a − b|(ea + eb), it implies that

|pt(x) − ps(x)| = (2π)−d
∣∣∣∣∣∫
Rd

e−iξ·x
(

exp{−
t
2
|ξ|2} − exp{−

s
2
|ξ|2}

)
dξ

∣∣∣∣∣
≤ 2−d−1π−d

∫
Rd
|ξ|2

(
exp{−

t
2
|ξ|2} + exp{−

s
2
|ξ|2}

)
dξ|t − s|

= 2−d−1π−d(t−d/2−1 + s−d/2−1)
∫
Rd
|ξ|2 exp{−

1
2
|ξ|2}dξ|t − s|

. (t−d/2−1 + s−d/2−1)|t − s|,

where the second to last step is due to the integral substitution.
So, we complete the proof. �

Lemma 2.2. Under condition (1.3), for β > 0, there exist some C > 0 dependent on α and β such that
for all t > 0, ∫

Rd
(γh(y + x) + 1)pβt (y)dy ≤ Ct(1−β)d/2(t−α/2 + 1). (2.7)

Proof. By the spherical substitution, γh ∈ L1
loc(R

d), and γh(tx) = t−αγh(x) (α ∈ (0, 2 ∧ d)), it gives that∫
Rd
γh(y)pβ1(y)dy = (2π)−βd/2

∫ ∞

0
r−α+d−1e−βr2/2dr

∫
{|y|=1}

γh(y)dS

< ∞. (2.8)

By the facts that γh = F µh and F pt(ξ) = e−
t|ξ|2

2 , pβt (x) = (2π)(1−β)d/2β−d/2t(1−β)d/2 pt/β(x), and |eia| = 1,∫
Rd

(γh(y + x) + 1)pβt (y)dy = (2π)(1−β)d/2β−d/2t(1−β)d/2
( ∫
Rd
γh(y + x)pt/β(y)dy + 1

)
= (2π)(1−β)d/2β−d/2t(1−β)d/2

( ∫
Rd

eiξ·x exp{−
t

2β
|ξ|2}µh(dξ) + 1

)
≤ (2π)(1−β)d/2β−d/2t(1−β)d/2

( ∫
Rd

exp{−
t

2β
|ξ|2}µh(dξ) + 1

)
AIMS Mathematics Volume 9, Issue 12, 34838–34862.
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= (2π)(1−β)d/2β−d/2t(1−β)d/2
( ∫
Rd
γh(y)pt/β(y)dy + 1

)
. (2.9)

Moreover, using the integral substitution, γh(tx) = t−αγh(x), and (2.8), it gives that∫
Rd

(γh(y + x) + 1)pβt (y)dy ≤ (2π)(1−β)d/2β−d/2t(1−β)d/2
(
(t/β)−α/2

∫
Rd
γh(y)p1(y)dy + 1

)
≤ Ct(1−β)d/2(t−α/2 + 1). (2.10)

Thus, (2.7) is proved. �

Brownian bridge: Let B(s) or Bs be a d-dimensional standard Brownian motion on R+, which is
independent of V . Set Bx

s := Bs + x as a Brownian motion starting from point x ∈ Rd. Moreover, for
t > 0, the d-dimensional standard Brownian bridge is defined as

B0,t(s) := Bs −
s
t

Bt, ∀s ∈ [0, t]. (2.11)

For 0 ≤ s ≤ t and x, y ∈ Rd, write ax,y
s,t := t−s

t x + s
t y. Based on the notations B0,t and ax,y

s,t , the Brownian
bridge from x to y is defined as

Bx,y
0,t (s) := B0,t(s) + ax,y

s,t , ∀s ∈ [0, t]. (2.12)

Write B0 = B and B0,0
0,t = B0,t without ambiguity.

By the relation that ax,y
s,t = ay,x

t−s,t and the computations of covariances, it can be directly checked that
the following two elementary lemmas hold.

Lemma 2.3. {Bx,y
0,t (s)}s∈[0,t] is identically distributed as {By,x

0,t (t − s)}s∈[0,t].

Lemma 2.4. {Bx,y
0,t (s)}s∈[0,t] is independent of {Bx(s)}s≥t.

Based on Lemma 2.4, we obtain a decomposition of the Brownian bridge.

Lemma 2.5. For 0 < t2 < t1 and 0 ≤ r ≤ t2, let

Gt2,t1 :=
B(t2)

t2
−

B(t1)
t1

. (2.13)

Then,

B0,t1(r) = B0,t2(r) + rGt2,t1 , (2.14)

where Gt2,t1 is independent of {B0,t2(r)}r∈[0,t2] and Gt2,t1 ∼ N
(
0, t1−t2

t2t1

)
.

Lemma 2.6. Let F be a nonnegative measurable functional on C([0, λt]), where C([0, λt]) is the space
composed of continuous functions on [0, λt] for t > 0 and λ ∈ (0, 1). Then,

EF({B0,t(s)}0≤s≤λt) ≤ (1 − λ)−d/2EF({B(s)}0≤s≤λt). (2.15)

Proof. Using [ [22], (2.8)] in the case of x = y = 0 and the nonnegativity of F, we obtain

EF({B0,t(s)}0≤s≤λt) = (1 − λ)−d/2E
[
F({B(s)}0≤s≤λt) exp

{
−
|B(λt)|2

2(1 − λ)t

}]
≤ (1 − λ)−d/2EF({B(s)}0≤s≤λt). (2.16)

Thus, the proof is completed. �
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3. Feynman-Kac representations

When u0 is a measure satisfying (1.5), we consider the following Feynman-Kac formula:

uθ(t, x) :=
∫
Rd
EB exp

{
θ

∫ t

0
V(Bx,y

0,t (s))ds
}

pt(y − x)u0(dy), (2.1)

for (t, x) ∈ R+ × R
d. Here, Bx,y

0,t is the d-dimensional Brownian bridge from x to y, and the integral∫ t

0
V(Bx,y

0,t (s))ds is defined as a L2(Ω)-limit, that is,∫ t

0
V(Bx,y

0,t (s))ds := lim
ε→0

∫ t

0
Vε(B

x,y
0,t (s))ds, ∀(t, x, y) ∈ R+ × R

2d, (2.2)

where we set Vε(x) := 〈V(·), p2ε(x − ·)〉 with p2ε(x) = (4πε)−d/2e−|x|
2/(4ε). To simplify it, we also use the

notation

V̂x,y(t) =

∫ t

0
V(Bx,y

0,t (s))ds. (2.3)

We will prove the well-definiteness of V̂x,y(t) in Lemma 3.1. Based on it, if the Feynman-Kac formula
uθ(t, x) is a L1(Ω)-integrable stochastic process, we call uθ(t, x) well-defined, which will be proved in
Corollary 4.2.

When u0 is a measurable function, (2.1) is rewritten as

uθ(t, x) := EB

[
exp

{
θ

∫ t

0
V(Bx

s)ds
}
u0(Bx

t )
]
, (2.4)

where Bx
t is a d-dimensional Brownian motion at starting point x ∈ Rd, and the integral

∫ t

0
V(Bx

s)ds is
similarly defined, like (2.2).

Let EV be the expectation with respect to V , and EB be the expectation with respect to B. Then, by
the independence between V and B, E can be represented as EB ⊗ EV . Conditioning on the Brownian
motion, V̂x,y(t) is a centered Gaussian process with conditional covariance

EV[V̂x,y1(t)V̂x,y2(t)] =

∫ t

0

∫ t

0
k(Bx,y1

0,t (s), Bx,y2
0,t (r))dsdr, ∀y1, y2 ∈ R

d. (2.5)

Let {B j; j = 1, · · · , n} be a family of d-dimensional independent standard Brownian motions for
positive integer n. Set {Bx,y

j,0,t(s) := B j(s) − s
t B j(t) + ax,y

s,t ,∀s ∈ [0, t]; j = 1, · · · , n} as a family of
independent Brownian bridges from x to y. Then, based on (2.1) and (2.5), the n-order Feynman-Kac
moment representation satisfies that

Eun
θ(t, x) =

∫
Rdn
E exp

{
θ2

2

n∑
j,k=1

∫ t

0

∫ t

0
k
(
Bx,y j

j,0,t(s), Bx,yk
k,0,t(r)

)
drds

} n∏
j=1

pt(y j − x)u0(dy1) · · · u0(dyn). (2.6)

Similar to (2.1), for (t, s, x) ∈ (0,∞)2 × Rd, we define the Feynman-Kac functional ūθ(t, s, x) as

ūθ(t, s, x) :=
∫
Rd
EB exp

{
θV̂x,y(t)

}
ps(y − x)|u0|(dy). (2.7)

AIMS Mathematics Volume 9, Issue 12, 34838–34862.



34847

When s = t, we write ūθ(t, x) := ūθ(t, t, x). Through (2.5) and (2.7), we can obtain the n-order moment
representation

Eūn
θ(t, s, x) =

∫
Rdn
E exp

{
θ2

2

n∑
j,k=1

∫ t

0

∫ t

0
k
(
Bx,y j

j,0,t(s), Bx,yk
k,0,t(r)

)
drds

} n∏
j=1

ps(y j − x)|u0|(dy1) · · · |u0|(dyn).

(2.8)

Lemma 3.1. If condition (1.3) holds, then V̂x,y(t) in (2.2) is well-defined.

Proof. By the similar method to [ [16], Proposition 4.2.] and [ [17], Proposition 3.1.], we only need to
show that for T > 0,

sup
ε>0

sup
(t,x,y)∈[0,T ]×R2d

E

∣∣∣∣∣ ∫ t

0
Vε(B

x,y
0,t (s))ds

∣∣∣∣∣2 < ∞. (2.9)

In fact, using the inequality |a + b|2 ≤ 2|a|2 + 2|b|2 and the integral substitution, we obtain

E

∣∣∣∣∣ ∫ t

0
Vε(B

x,y
0,t (s))ds

∣∣∣∣∣2 ≤ 2E
∣∣∣∣∣ ∫ t/2

0
Vε1(B

x,y
0,t (s))ds

∣∣∣∣∣2 + 2E
∣∣∣∣∣ ∫ t

t/2
Vε1(B

x,y
0,t (s))ds

∣∣∣∣∣2
≤ 2E

∣∣∣∣∣ ∫ t/2

0
Vε1(B

x,y
0,t (s))ds

∣∣∣∣∣2 + 2E
∣∣∣∣∣ ∫ t/2

0
Vε1(B

x,y
0,t (t − s))ds

∣∣∣∣∣2
≤ 2E

∣∣∣∣∣ ∫ t/2

0
Vε(B

x,y
0,t (s))ds

∣∣∣∣∣2 + 2E
∣∣∣∣∣ ∫ t/2

0
Vε1(B

y,x
0,t (s))ds

∣∣∣∣∣2, (2.10)

where the last step is due to {By,x
0,t (s)}s∈[0,t]

d
= {Bx,y

0,t (t − s)}s∈[0,t]. Notice that the above two terms are
similar, and we only need to show the estimates of the first term. Recall that ax,y

s,t = t−s
t x + s

t y. Then, by
Lemma 2.6 for {B0,t(s)}s∈[0,t/2] and the integral substitution, we have

E

∣∣∣∣∣ ∫ t/2

0
Vε(B

x,y
0,t (s))ds

∣∣∣∣∣2
≤ 2d/2EB

[
EV

∣∣∣∣∣ ∫ t/2

0
Vε1(B(s) + ax,y

s,t )ds
∣∣∣∣∣2]

≤ 2d/2E

∫ t/2

0

∫ t/2

0

∫
Rd

∫
Rd

k(x1 + B(s) + ax,y
s,t , y1 + B(r) + ax,y

r,t )pε(x1)pε(y1)dx1dy1dsdr

. 2d/2E

∫ t/2

0

∫ t/2

0

∫
Rd

∫
Rd

(γh(x1 + B(s) + ax,y
s,t − y1 − B(r) − ax,y

r,t ) + 1)pε(x1)pε(y1)dx1dy1dsdr

.

∫ t/2

0

∫ t/2

0

∫
Rd
Eeiξ·(B(s)−B(r))eiξ·(ax,y

s,t −ax,y
r,t )e−ε|ξ|

2
µh(dξ)dsdr + t2

.

∫ t/2

0

∫ t/2

0

∫
Rd

e−
1
2 |s−r||ξ|2µh(dξ)dsdr + t2

. t2− α2 + t2, (2.11)

where the second to last step is due to (2.2), F p2ε(ξ) = e−ε|ξ|
2
, and |eia| = 1, and the last step is due

to (2.8), γh = F µh, and µh(d(rξ)) = rαµh(dξ) for all r > 0.
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Finally, substituting (2.11) into (2.10), and by α < 2, we can obtain that

sup
ε>0

sup
(t,x,y)∈[0,T ]×R2d

E

∣∣∣∣∣ ∫ t

0
Vε(B

x,y
0,t (s))ds

∣∣∣∣∣2 . T 2− α2 + T 2, (2.12)

which shows that (2.9) holds. �

4. Moment estimates of Feynman-Kac formulas

Lemma 4.1. Under condition (1.3), there exist some C > 0 dependent on k(x, y) such that for all
θ, t > 0 and n ∈ N+,

E exp
{
θ2

n∑
j,k=1

∫ t

0

∫ t

0
γh

(
B j(s) − Bk(r)

)
drds

}
≤ Cn exp

{
Cθ

4
2−α t

4−α
2−α n

4−α
2−α

}
. (2.1)

Proof. By (2.2), the Jensen inequality, and the independence of {B j}1≤ j≤n, we have

E exp
{
θ2

n∑
j,k=1

∫ t

0

∫ t

0
γh(B j(s) − Bk(r))dsdr

}

= E exp
{
θ2n2

∫
Rd

∣∣∣∣∣∣∣1n
n∑

j=1

∫ t

0
eiξ·B j(s)ds

∣∣∣∣∣∣∣
2

µh(dξ)
}

≤ E exp
{
θ2n

n∑
j=1

∫
Rd

∣∣∣∣∣∣
∫ t

0
eiξ·B j(s)ds

∣∣∣∣∣∣2 µh(dξ)
}

≤

(
E exp

{
θ2n

∫
Rd

∣∣∣∣∣∣
∫ t

0
eiξ·B(s)ds

∣∣∣∣∣∣2 µh(dξ)
})n

. (2.2)

By Brownian scaling {B(rs)}s∈R+

d
= {r1/2B(s)}s∈R+

and µh(d(rξ)) = rαµh(dξ) for any r > 0 and the
integral substitution, we find that for r > 0,∫

Rd

∣∣∣∣∣∣
∫ t

0
eiξ·B(s)ds

∣∣∣∣∣∣2 µh(dξ) d
= r

α
2−2

∫
Rd

∣∣∣∣∣∣
∫ rt

0
eiξ·B(s)ds

∣∣∣∣∣∣2 µh(dξ). (2.3)

Set process At :=
∫
Rd |

∫ t

0
eiξ·B(s)ds|2µh(dξ). Then, taking r = (θ2nt)

2
2−α and using (2.3), we obtain

E exp
{
θ2nAt

}
= E exp

{
(rt)−1Art

}
. (2.4)

Using the similar methods to [ [17], (3.20)], we find that there exist some C > 0 such that for all t > 0,

E exp
{
(rt)−1Art

}
≤ CeCrt, (2.5)

by Lemma 2.2 in [17]. At last, summing up (2.2), (2.4), and (2.5), and using (θ2nt)
2

2−α instead of r, the
proof of (2.5) can be completed. �
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Proposition 4.1. Under conditions (1.3) and (1.5), there exist some C > 0 such that for all t, s, θ > 0,
x ∈ Rd, and n ∈ N+,

Eūn
θ(t, s, x) ≤ CneCθ2n2t2 exp

{
Cθ

4
2−α t

4−α
2−α n

4−α
2−α

}(
ps ∗ |u0|(x)

)n
. (2.6)

Proof. By (2.8) and (1.3), we obtain

Eūn
θ(t, s, x) ≤ eCθ2n2t2

∫
Rdn
E exp

{
Cθ2

n∑
j,k=1

∫ t

0

∫ t

0
γh

(
Bx,y j

j,0,t(s) − Bx,yk
k,0,t(r)

)
drds

}
·

n∏
j=1

ps(y j − x)|u0|(dy1) · · · |u0|(dyn). (2.7)

By (2.2) and the inequality |a + b|2 ≤ 2|a|2 + 2|b|2, we obtain

n∑
j,k=1

∫ t

0

∫ t

0
γh

(
Bx,y j

j,0,t(s) − Bx,yk
k,0,t(r)

)
drds ≤ 2

∫
Rd

∣∣∣∣∣ n∑
j=1

∫ t/2

0
eiξ·B

x,y j
j,0,t (s)ds

∣∣∣∣∣2µh(dξ)

+ 2
∫
Rd

∣∣∣∣∣ n∑
j=1

∫ t

t/2
eiξ·B

x,y j
j,0,t (s)ds

∣∣∣∣∣2µh(dξ). (2.8)

In addition, by the integral substitution and {Bx,y
j,0,t(s)}s∈[0,t]

d
= {By,x

j,0,t(t − s)}s∈[0,t], we have∫
Rd

∣∣∣∣∣ n∑
j=1

∫ t

t/2
eiξ·B

x,y j
j,0,t (s)ds

∣∣∣∣∣2µh(dξ) d
=

∫
Rd

∣∣∣∣∣ n∑
j=1

∫ t/2

0
eiξ·B

y j ,x
j,0,t (s)ds

∣∣∣∣∣2µh(dξ). (2.9)

Recall that ax,y
s,t = t−s

t x + s
t y. To substitute (2.8) and (2.9) into (2.7), and by using (2.2) and the Cauchy-

Schwartz inequality, we obtain

Eūn
θ(t, s, x) ≤ eCθ2n2t2

( ∫
Rdn
E exp

{
Cθ2

n∑
j,k=1

∫ t/2

0

∫ t/2

0
γh

(
B j,0,t(s) − Bk,0,t(r) + ax,y j

s,t − ax,yk
r,t

)
drds

}
·

n∏
j=1

ps(y j − x)|u0|(y j)dy1 · · · dyn

)1/2

·

( ∫
Rdn
E exp

{
Cθ2

n∑
j,k=1

∫ t/2

0

∫ t/2

0
γh

(
B j,0,t(s) − Bk,0,t(r) + ay j,x

s,t − ayk ,x
r,t

)
drds

}
·

n∏
j=1

ps(y j − x)|u0|(y j)dy1 · · · dyn

)1/2

. (2.10)

Let a(s, r, t, x, y, z) be a measurable fucntion from R3
+ × R

3d to Rd. We claim that for all t, θ > 0 and
x, y1, · · · , yn ∈ R

d, it holds that

E exp
{
θ2

n∑
j,k=1

∫ t

0

∫ t

0
γh(B j,0,t(s) − Bk,0,t(r) + a(s, r, t, x, y j, yk))drds

}
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≤ E exp
{
θ2

n∑
j,k=1

∫ t

0

∫ t

0
γh(B j,0,t(s) − Bk,0,t(r))dsdr

}
. (2.11)

In fact, through the Taylor expansion, we only need to compare their m-order moments. Precisely,
using (2.2), we find that for any positive integer m,

E
[ n∑

j,k=1

∫ t

0

∫ t

0
γh

(
B j,0,t(s) − Bk,0,t(r) + a(s, r, t, x, y j, yk)

)
dsdr

]m

=

∫
Rdm

∫
[0,t]m

∫
[0,t]m

n∑
jl,··· , jm=1

n∑
kl,··· ,km=1

E
m∏

l=1

eiξl·(B jl ,0,t(sl)−Bkl ,0,t(rl))

·

m∏
l=1

eiξl·a(s,r,t,x,y j,yk)ds1 · · · dsmdr1 · · · drmµh(dξ1) · · · µh(dξm)

≤ E
[ n∑

j,k=1

∫ t

0

∫ t

0
γh(B0,t(s) − B0,t(r))dsdr

]m

.

Here in the last inequality, we have used |eia| = 1, the nonnegativity of µh, and the fact that

E
m∏

j=1

eiξ j·(B jl ,0,t(sl)−Bkl ,0,t(rl)) = exp
{
−

1
2

Var
( m∑

j=1

ξ j · (B jl,0,t(sl) − Bkl,0,t(rl))
)}
≥ 0.

Then, by (2.10), (2.11), and Lemma 2.6, we obtain

Eūn
θ(t, s, x) ≤ eCθ2n2t2E exp

{
Cθ2

n∑
j,k=1

∫ t/2

0

∫ t/2

0
γh

(
B j,0,t(s) − Bk,0,t(r)

)
drds

}
(ps ∗ |u0|(x))n

≤ 2d/2eCθ2n2t2E exp
{
Cθ2

n∑
j,k=1

∫ t/2

0

∫ t/2

0
γh

(
B j(s) − Bk(r)

)
drds

}
(ps ∗ |u0|(x))n

≤ CneCθ2n2t2 exp
{
Cθ

4
2−α t

4−α
2−α n

4−α
2−α

}
(ps ∗ |u0|(x))n, (2.12)

where the last step is due to Lemma 4.1. Hence, we complete the proof of (2.6). �

Corollary 4.1. Under conditions (1.3) and (1.5), there exist some C > 0 such that for all t, θ > 0,
x ∈ Rd, and n ∈ N+,

E|uθ(t, x)|n ≤ CneCθ2n2t2 exp
{
Cθ

4
2−α t

4−α
2−α n

4−α
2−α

}(
pt ∗ |u0|(x)

)n
. (2.13)

Proof. By the Cauchy-Schwartz inequality and (2.6), it is readily checked that

E|uθ(t, x)|n ≤ (Eu2n
θ (t, x))1/2 ≤ (Eū2n

θ (t, x))1/2. (2.14)

Recalling ūθ(t, x) := ūθ(t, t, x), and by (2.14) and Proposition 4.1, we complete the proof of (2.13). �

By Proposition 4.1 and Corollary 4.1, we directly obtain the following result.

Corollary 4.2. Under conditions (1.3) and (1.5), for t, s > 0, x ∈ Rd, and n ∈ N+, ūθ(t, s, x) and uθ(t, x)
are well-defined as the Ln(Ω)-integrable stochastic processes.
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5. Hölder continuity on time variable

In this section, we will prove Theorem 1.1. Before it, the following results are required.

Proposition 5.1. Under conditions (1.3) and (1.5), for all t ≥ s > 0, n ∈ N+, and x ∈ Rd,

E

∣∣∣∣∣ ∫
Rd
EB[exp{V̂x,z(t)} − exp{V̂x,z(s)}]pt(z − x)u0(dz)

∣∣∣∣∣n
≤ 2n−1θn((2n − 1)!!)1/2

{(
Eūn

2θ(t, x)
)1/2

+
(
Eūn

2θ(s, t, x)
)1/2

}
·

(∫
Rd
E
∣∣∣V̂x,z(t) − V̂x,z(s)

∣∣∣2 pt(z − x)|u0|(dz)
)n/2

. (2.1)

Proof. Using the inequalities |ea − eb| ≤ |a − b|(ea + eb), (|a| + |b|)n ≤ 2n−1(|a|n + |b|n) and the Cauchy-
Schwartz inequality, we obtain

E

∣∣∣∣∣ ∫
Rd
EB[exp{V̂x,z(t)} − exp{V̂x,z(s)}]pt(z − x)u0(dz)

∣∣∣∣∣n
≤ θnE

[∫
Rd
EB

[(
exp{θV̂x,z(t)} + exp{θV̂x,z(s)}

)∣∣∣V̂x,z(t) − V̂x,z(s)
∣∣∣]pt(z − x)|u0|(dz)

]n

≤ 2n−1θnE

[∫
Rd
EB

[
exp{θV̂x,z(t)}

∣∣∣V̂x,z(t) − V̂x,z(s)
∣∣∣] pt(z − x)|u0|(dz)

]n

+ 2n−1θnE

[∫
Rd
EB

[
exp{θV̂x,z(s)}

∣∣∣V̂x,z(t) − V̂x,z(s)
∣∣∣] pt(z − x)|u0|(dz)

]n

≤ 2n−1θnE
[( ∫

Rd
EB exp{2θV̂x,z(t)}pt(z − x)|u0|(dz)

)1/2

·

( ∫
Rd
EB

∣∣∣V̂x,z(t) − V̂x,z(s)
∣∣∣2 pt(z − x)|u0|(dz)

)1/2]n

+ 2n−1θnE
[( ∫

Rd
EB exp{2θV̂x,z(s)}pt(z − x)|u0|(dz)

)1/2

·

( ∫
Rd
EB

∣∣∣V̂x,z(t) − V̂x,z(s)
∣∣∣2 pt(z − x)|u0|(dz)

)1/2]n

≤ 2n−1θn
{(
Eūn

2θ(t, x)
)1/2

+
(
Eūn

2θ(s, t, x)
)1/2

}
·

{
EV

[ ∫
Rd
EB

∣∣∣V̂x,z(t) − V̂x,z(s)
∣∣∣2 pt(z − x)|u0|(dz)

]n}1/2

. (2.2)

Using the Minkowsky integral inequality and (conditional) Gaussian variance property, we get{
EV

[ ∫
Rd
EB

∣∣∣V̂x,z(t) − V̂x,z(s)
∣∣∣2 pt(z − x)|u0|(dz)

]n}1/2

≤

(∫
Rd
EB

[
EV

∣∣∣V̂x,z(t) − V̂x,z(s)
∣∣∣2n] 1

n pt(z − x)|u0|(dz)
)n/2

≤ ((2n − 1)!!)1/2
(∫
Rd
E
∣∣∣V̂x,z(t) − V̂x,z(s)

∣∣∣2 pt(z − x)|u0|(dz)
)n/2

. (2.3)
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Substituting (2.3) into (2.2), we can complete the proof of (2.1). �

Proposition 5.2. Under condition (1.3), there exists a C > 0 dependent on α such that for all x, z ∈ Rd,
T > 1, and 0 ≤ s ≤ t ≤ T,

E

∣∣∣∣∣ ∫ t

s
V(Bx,z

0,t (r))dr
∣∣∣∣∣2 ≤ CTα/2|t − s|2−α/2. (2.4)

Proof. Case I: t/2 ≤ s ≤ t. Recall that az,x
r,t := t−r

t z + r
t x and Bz,x

0,t (r) = B0,t(r) + az,x
r,t . Then, by the integral

substitution, {Bx,z
0,t (s)}s∈[0,t]

d
= {Bz,x

0,t (t − s)}s∈[0,t], and Lemma 2.6, we get

E

∣∣∣∣∣ ∫ t

s
V(Bx,z

0,t (r))dr
∣∣∣∣∣2 = E

∣∣∣∣∣ ∫ t−s

0
V(B0,t(r) + az,x

r,t )dr
∣∣∣∣∣2

≤ (
t
s
)d/2E

∣∣∣∣∣ ∫ t−s

0
V(B(r) + az,x

r,t )dr
∣∣∣∣∣2

≤ 2d/2
∫ t−s

0

∫ t−s

0
Ek(B(r1) + az,x

r1,t, B(r2) + az,x
r2,t)dr1dr2

.

∫ t−s

0

∫ t−s

0
E[γh(B(r1) + az,x

r1,t − B(r2) − az,x
r2,t) + 1]dr1dr2

.

∫ t−s

0

∫ t−s

0

∫
Rd

(γh(y + az,x
r1,t − az,x

r2,t) + 1)p|r1−r2 |(y)dydr1dr2, (2.5)

where the second to last step is due to (1.3). By Lemma 2.2, we have∫
Rd

(γh(y + az,x
r1,t − az,x

r2,t) + 1)p|r1−r2 |(y)dy . (|r1 − r2|
−α/2 + 1). (2.6)

Substituting (2.6) into (2.5), it is obtained that

E

∣∣∣∣∣ ∫ t

s
V(Bx,z

0,t (r))dr
∣∣∣∣∣2 . ∫ t−s

0

∫ t−s

0
(|r1 − r2|

−α/2 + 1)dr1dr2

.
(
(1 − α/2)−1|t − s|2−α/2 + |t − s|2

)
≤ CTα/2|t − s|2−α/2, (2.7)

by the relations that s ≤ t ≤ T , T > 1, and α ∈ (0, 2 ∧ d).
Case II: 0 ≤ s < t/2. From the inequality |a + b|2 ≤ 2(|a|2 + |b|2), it gives that

E

∣∣∣∣∣ ∫ t

s
V(Bx,z

0,t (r))dr
∣∣∣∣∣2 ≤ 2E

∣∣∣∣∣ ∫ t

t/2
V(Bx,z

0,t (r))dr
∣∣∣∣∣2 + 2E

∣∣∣∣∣ ∫ t/2

s
V(Bx,z

0,t (r))dr
∣∣∣∣∣2. (2.8)

Using Lemma 2.6, (1.3), and the integral substitution, we have

E

∣∣∣∣∣ ∫ t/2

s
V(Bx,z

0,t (r))dr
∣∣∣∣∣2 ≤ 2d/2E

∣∣∣∣∣ ∫ t/2

s
V(B(r) + az,x

r,t )dr
∣∣∣∣∣2

.

∫ t/2

s

∫ t/2

s
E[γh(B(r1) + az,x

r1,t − B(r2) − az,x
r2,t) + 1]dr1dr2

AIMS Mathematics Volume 9, Issue 12, 34838–34862.



34853

.

∫ t/2−s

0

∫ t/2−s

0

∫
Rd

(γh(y + az,x
r1+s,t − az,x

r2+s,t) + 1)p|r1−r2 |(y)dydr1dr2

.

∫ t/2−s

0

∫ t/2−s

0

∫
Rd

(γh(y + az,x
r1+s,t − az,x

r2+s,t) + 1)p|r1−r2 |(y)dydr1dr2

≤ CTα/2|t/2 − s|2−α/2, (2.9)

where we have used the computations similar to (2.7) in the last step.
To combine (2.8) with (2.7) and (2.5), it is found that

E

∣∣∣∣∣ ∫ t

s
V(Bx,z

0,t (r))dr
∣∣∣∣∣2 ≤ CTα/2(|t/2|2−α/2 + |t/2 − s|2−α/2) ≤ CTα/2|t − s|2−α/2. (2.10)

So, to sum up (2.7) and (2.10) in the above two cases, we can complete the proof. �

Proposition 5.3. Under condition (1.3), set β ∈ (0, 1 − α/2), and there exists C > 0 dependent on α
and β such that for all x, z ∈ Rd, T > 1, and 0 < s ≤ t ≤ T,

E

∣∣∣∣∣ ∫ s

0
V(Bx,z

0,t (r))dr −
∫ s

0
V(Bx,z

0,s(r))dr
∣∣∣∣∣2 ≤ CTα/2+βs2−β−α/2t−β|t − s|β(|x − z|2β + 1). (2.11)

Proof. By Bx,z
0,t (r) = B0,t(r) + ax,z

r,t , Lemma 2.5, and the inequality |a + b|n ≤ 2n−1(|a|n + |b|n), we have

I := E
∣∣∣∣∣ ∫ s

0
V(Bx,z

0,t (r))dr −
∫ s

0
V(Bx,z

0,s(r))dr
∣∣∣∣∣2

= E

∣∣∣∣∣ ∫ s

0
V(B0,s(r) + rGs,t + ax,z

r,t )dr −
∫ s

0
V(B0,s(r) + ax,z

r,s )dr
∣∣∣∣∣2

≤

∫
Rd
E

∣∣∣∣∣ ∫ s/2

0
V(B0,s(r) + ry + ax,z

r,t )dr −
∫ s/2

0
V(B0,s(r) + ax,z

r,s )dr
∣∣∣∣∣2 p t−s

st
(y)dy

+

∫
Rd
E

∣∣∣∣∣ ∫ s

s/2
V(B0,s(r) + ry + ax,z

r,t )dr −
∫ s

s/2
V(B0,s(r) + ax,z

r,s )dr
∣∣∣∣∣2 p t−s

st
(y)dy

≤

∫
Rd
E

∣∣∣∣∣ ∫ s/2

0
V(B0,s(r) + ry + ax,z

r,t )dr −
∫ s/2

0
V(B0,s(r) + ax,z

r,s )dr
∣∣∣∣∣2 p t−s

st
(y)dy

+

∫
Rd
E

∣∣∣∣∣ ∫ s/2

0
V(B0,s(r) + (s − r)y + ax,z

s−r,t)dr −
∫ s/2

0
V(B0,s(r) + ax,z

s−r,s)dr
∣∣∣∣∣2 p t−s

st
(y)dy

≤ 2d/2
∫
Rd
E

∣∣∣∣∣ ∫ s/2

0
V(B(r) + ry + ax,z

r,t )dr −
∫ s/2

0
V(B(r) + ax,z

r,s )dr
∣∣∣∣∣2 p t−s

st
(y)dy

+ 2d/2
∫
Rd
E

∣∣∣∣∣ ∫ s/2

0
V(B(r) + (s − r)y + ax,z

s−r,t)dr −
∫ s/2

0
V(B(r) + ax,z

s−r,s)dr
∣∣∣∣∣2 p t−s

st
(y)dy

:= I1 + I2, (2.12)

where the second to last inequality is due to the integral substitution and {B0,t(s)}s∈[0,t]
d
= {B0,t(t−s)}s∈[0,t],

and the last inequality is due to Lemma 2.6.
For I1, using the symmetry of k(x, y) and the integral substitution, it is obtained that

I1 = 2d/2
∫
Rd

∫ s/2

0

∫ s/2

0
E
[
k(Br1 + r1y + ax,z

r1,t, Br2 + r2y + ax,z
r2,t)
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− k(Br1 + r1y + ax,z
r1,t, Br2 + ax,z

r2,s) − k(Br1 + ax,z
r1,s, Br2 + r2y + ax,z

r2,t)

+ k(Br1 + ax,z
r1,s, Br2 + ax,z

r2,s)
]
dr1dr2 p t−s

st
(y)dy

= 2d/2+1
∫
Rd

∫ s/2

0

∫ r1

0
η

r1,r2,y
s,t,x,z dr1dr2 p t−s

st
(y)dy, (2.13)

where we set

η
r1,r2,y
s,t,x,z :=E

[
k(Br1 + r1y + ax,z

r1,t, Br2 + r2y + ax,z
r2,t) − k(Br1 + r1y + ax,z

r1,t, Br2 + ax,z
r2,s)

− k(Br1 + ax,z
r1,s, Br2 + r2y + ax,z

r2,t) + k(Br1 + ax,z
r1,s, Br2 + ax,z

r2,s)
]
. (2.14)

By r2 ≤ r1 and the independence of Brownian increments and the integral substitutions, we obtain

η
r1,r2,y
s,t,x,z = E

[
k(Br1 − Br2 + Br2 + r1y + ax,z

r1,t, Br2 + r2y + ax,z
r2,t)

− k(Br1 − Br2 + Br2 + r1y + ax,z
r1,t, Br2 + ax,z

r2,s) − k(Br1 − Br2 + Br2 + ax,z
r1,s, Br2 + r2y + ax,z

r2,t)

+ k(Br1 − Br2 + Br2 + ax,z
r1,s, Br2 + ax,z

r2,s)
]

=

∫ ∫
R2d

k(x + y, y)
[
pr1−r2(x + (r2 − r1)y + ax,z

r2,t − ax,z
r1,t) − pr1−r2(x + r2y + ax,z

r2,t − ax,z
r1,s)

]
·
[
pr2(y − r2y − ax,z

r2,t) − pr2(y − ax,z
r2,s)

]
dxdy

+

∫ ∫
R2d

k(x + y, y)
[
pr1−r2(x + (r2 − r1)y + ax,z

r2,t − ax,z
r1,t) − pr1−r2(x + r2y + ax,z

r2,t − ax,z
r1,s)

− pr1−r2(x − r1y + ax,z
r2,s − ax,z

r1,t) + pr1−r2(x + ax,z
r2,s − ax,z

r1,s)
]
pr2(y − ax,z

r2,s)dxdy. (2.15)

We write bs,t := ( t−s
st )1/2. To substitute (2.15) into (2.13), and by the absolute-value inequality and the

integral substitutions about y, we get

I1 ≤ 2d/2+1
∫
Rd

∫ s/2

0

∫ r1

0

∫ ∫
R2d
|k(x + y, y)|

∣∣∣∣pr1−r2(x + bs,t(r2 − r1)y + ax,z
r2,t − ax,z

r1,t)

− pr1−r2(x + bs,tr2y + ax,z
r2,t − ax,z

r1,s)
∣∣∣∣∣∣∣∣pr2(y − bs,tr2y − ax,z

r2,t) − pr2(y − ax,z
r2,s)

∣∣∣∣dxdydr1dr2 p1(y)dy

+ 2d/2+1
∫
Rd

∫ s/2

0

∫ r1

0

∫ ∫
R2d
|k(x + y, y)|

∣∣∣∣pr1−r2(x + bs,t(r2 − r1)y + ax,z
r2,t − ax,z

r1,t)

− pr1−r2(x + bs,tr2y + ax,z
r2,t − ax,z

r1,s) − pr1−r2(x − bs,tr1y + ax,z
r2,s − ax,z

r1,t) + pr1−r2(x + ax,z
r2,s − ax,z

r1,s)
∣∣∣∣

· pr2(y − ax,z
r2,s)dxdydr1dr2 p1(y)dy

=: I11 + I12. (2.16)

Notice that β ∈ (0, 1). Thanks to (2.3) and (1.3), it holds that

J̃11 :=
∫ ∫

R2d
|k(x + y, y)|

∣∣∣∣pr1−r2(x + bs,t(r2 − r1)y + ax,z
r2,t − ax,z

r1,t)

− pr1−r2(x + bs,tr2y + ax,z
r2,t − ax,z

r1,s)
∣∣∣∣∣∣∣∣pr2(y − bs,tr2y − ax,z

r2,t) − pr2(y − ax,z
r2,s)

∣∣∣∣dxdy

.

∫ ∫
R2d

(γh(x) + 1)
∣∣∣∣pr1−r2(x + bs,t(r2 − r1)y + ax,z

r2,t − ax,z
r1,t) − pr1−r2(x + bs,tr2y + ax,z

r2,t − ax,z
r1,s)

∣∣∣∣1−β
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·

∣∣∣∣pr2(y − bs,tr2y − ax,z
r2,t) − pr2(y − ax,z

r2,s)
∣∣∣∣1−βdxdy(r1 − r2)−β(d+1)/2r−β(d+1)/2

2

· | − bs,tr1y − ax,z
r1,t + ax,z

r1,s|
β| − bs,tr2y − ax,z

r2,t + ax,z
r2,s|

β. (2.17)

On the one hand, by bs,t = ( t−s
st )1/2 and ax,z

r,t − ax,z
r,s =

(t−s)
st (x − z)r, it is found that

| − bs,tr1y − ax,z
r1,t + ax,z

r1,s|
β| − bs,tr2y − ax,z

r2,t + ax,z
r2,s|

β = (
t − s

st
)βrβ1rβ2 |y + bs,t(x − z)|2β. (2.18)

On the other hand, notice the fact that pβt (x) = (2π)(1−β)d/2β−d/2t(1−β)d/2 pt/β(x). Then, by the inequality
|a + b|β ≤ |a|β + |b|β(β ∈ [0, 1]) and Lemma 2.2, we have∫ ∫

R2d
(γh(x) + 1)

∣∣∣∣pr1−r2(x + bs,t(r2 − r1)y + ax,z
r2,t − ax,z

r1,t) − pr1−r2(x + bs,tr2y + ax,z
r2,t − ax,z

r1,s)
∣∣∣∣1−β

·

∣∣∣∣pr2(y − bs,tr2y − ax,z
r2,t) − pr2(y − ax,z

r2,s)
∣∣∣∣1−βdxdy

≤

∫
Rd

(γh(x) + 1)
(
p1−β

r1−r2
(x + bs,t(r2 − r1)y + ax,z

r2,t − ax,z
r1,t) + p1−β

r1−r2
(x + bs,tr2y + ax,z

r2,t − ax,z
r1,s)

)
dx

·

∫
Rd

(
p1−β

r2
(y − bs,tr2y − ax,z

r2,t) + p1−β
r2

(y − ax,z
r2,s)

)
dy

≤ C(r1 − r2)βd/2((r1 − r2)−α/2 + 1)rβd/2
2

∫
Rd

(
pr2/(1−β)(y − bs,tr2y − ax,z

r2,t) + pr2/(1−β)(y − ax,z
r2,s)

)
dy

≤ C(r1 − r2)βd/2((r1 − r2)−α/2 + 1)rβd/2
2 , (2.19)

where the last step is due to the integral substitutions about y and ‖pt‖L1(Rd) = 1.
To substitute (2.18) and (2.19) into (2.17), we get

J̃11 ≤ C(
t − s

st
)β(r1 − r2)−β/2((r1 − r2)−α/2 + 1)rβ1rβ/22 |y + bs,t(x − z)|2β. (2.20)

In addition, by the inequality |a + b|2β ≤ 22β−1 ∨ 1(|a|2β + |b|2β) (β ∈ (0, 1)),∫
Rd
|y + bs,t(x − z)|2βp1(y)dy ≤ C

∫
Rd

(|y|2β + (
t − s

st
)β|x − z|2β)p1(y)dy

≤ C((
t − s

st
)β|x − z|2β + 1). (2.21)

Noticing that −α/2 − β/2 > −1 (i.e., β < 1 − α/2 < 2 − α), and by (2.20), (2.21), and the Fubini
theorem,

I11 ≤ C(
t − s

st
)β

∫ s/2

0

∫ r1

0
(r1 − r2)−β/2((r1 − r2)−α/2 + 1)rβ1rβ/22 dr1dr2

∫
Rd
|y + bs,t(x − z)|2βp1(y)dy

≤ Cs2−α/2(sα/2 + 1)t−β(t − s)β
∫
Rd
|y + bs,t(x − z)|2βp1(y)dy

≤ Cs2−α/2(sα/2 + 1)t−β(t − s)β((
t − s

st
)β|x − z|2β + 1). (2.22)

For β ∈ (0, 1), by (1.3) and (2.4),

J̃12 :=
∫ ∫

R2d
|k(x + y, y)|

∣∣∣∣pr1−r2(x + bs,t(r2 − r1)y + ax,z
r2,t − ax,z

r1,t) − pr1−r2(x + bs,tr2y + ax,z
r2,t − ax,z

r1,s)
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− pr1−r2(x − bs,tr1y + ax,z
r2,s − ax,z

r1,t) + pr1−r2(x + ax,z
r2,s − ax,z

r1,s)
∣∣∣∣pr2(y − ax,z

r2,s)dxdy

.

∫ ∫
R2d

(|γh(x)| + 1)
∣∣∣∣pr1−r2(x + bs,t(r2 − r1)y + ax,z

r2,t − ax,z
r1,t) − pr1−r2(x + bs,tr2y + ax,z

r2,t − ax,z
r1,s)

− pr1−r2(x − bs,tr1y + ax,z
r2,s − ax,z

r1,t) + pr1−r2(x + ax,z
r2,s − ax,z

r1,s)
∣∣∣∣1−βpr2(y − ax,z

r2,s)dxdy

(r1 − r2)−βd/2−β|bs,tr1y + ax,z
r1,t − ax,z

r1,s|
β|bs,tr2y + ax,z

r2,t − ax,z
r2,s|

β. (2.23)

Using the inequality |a + b|β ≤ |a|β + |b|β(β ∈ [0, 1]) and Lemma 2.2,∫
Rd

(|γh(x)| + 1)
∣∣∣∣pr1−r2(x + bs,t(r2 − r1)y + ax,z

r2,t − ax,z
r1,t) − pr1−r2(x + bs,tr2y + ax,z

r2,t − ax,z
r1,s)

− pr1−r2(x − bs,tr1y + ax,z
r2,s − ax,z

r1,t) + pr1−r2(x + ax,z
r2,s − ax,z

r1,s)
∣∣∣∣1−βdx

≤

∫
Rd

(|γh(x)| + 1)
(
p1−β

r1−r2
(x + bs,t(r2 − r1)y + ax,z

r2,t − ax,z
r1,t) + p1−β

r1−r2
(x + bs,tr2y + ax,z

r2,t − ax,z
r1,s)

+ p1−β
r1−r2

(x − bs,tr1y + ax,z
r2,s − ax,z

r1,t) + p1−β
r1−r2

(x + ax,z
r2,s − ax,z

r1,s)
)
dx

≤ C(r1 − r2)βd/2((r1 − r2)−α/2 + 1). (2.24)

Using the Fubini theorem for (2.23), and substituting (2.24) and (2.18) into (2.23),

J̃12 .

∫
Rd

(|γh(x)| + 1)
∣∣∣∣pr1−r2(x + bs,t(r2 − r1)y + ax,z

r2,t − ax,z
r1,t) − pr1−r2(x + bs,tr2y + ax,z

r2,t − ax,z
r1,s)

− pr1−r2(x − bs,tr1y + ax,z
r2,s − ax,z

r1,t) + pr1−r2(x + ax,z
r2,s − ax,z

r1,s)
∣∣∣∣1−βdx

∫
Rd

pr2(y − ax,z
r2,s)dy

(r1 − r2)−βd/2−β|bs,tr1y + ax,z
r1,t − ax,z

r1,s|
β|bs,tr2y + ax,z

r2,t − ax,z
r2,s|

β

≤ C(
t − s

st
)β(r1 − r2)−β((r1 − r2)−α/2 + 1)rβ1rβ2 |y + bs,t(x − z)|2β. (2.25)

Recalling that −α/2 − β > −1, and by (2.25), (2.21), and the similar computations to (2.22),

I12 ≤ C(
t − s

st
)β

∫ s/2

0

∫ r1

0
(r1 − r2)−β((r1 − r2)−α/2 + 1)rβ1rβ2dr1dr2

∫
Rd
|y + bs,t(x − z)|2βp1(y)dy

≤ Cs2−α/2(sα/2 + 1)t−β(t − s)β((
t − s

st
)β|x − z|2β + 1). (2.26)

To substitute (2.22) and (2.26) into (2.16),

I1 ≤ Cs2−α/2(sα/2 + 1)t−β(t − s)β((
t − s

st
)β|x − z|2β + 1). (2.27)

Notice that I2 is similar to I1. By ax,z
s−r,t − ax,z

s−r,s = t−s
st (x − z)(r − s) and the similar computations

to (2.27), we obtain

I2 ≤ Cs2−α/2(sα/2 + 1)t−β(t − s)β((
t − s

st
)β|x − z|2β + 1). (2.28)
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At last, substituting (2.27) and (2.28) into (2.12), and by the relations that 2− β− α/2 > 0 (because
of β ∈ (0, 1 − α/2) and α ∈ (0, 2 ∧ d)), T > 1, and s ≤ t ≤ T ,

I ≤ Cs2−α/2(sα/2 + 1)t−β(t − s)β((
t − s

st
)β|x − z|2β + 1)

≤ CTα/2+βs2−β−α/2t−β(t − s)β(|x − z|2β + 1). (2.29)

So, we complete the proof. �

The proof of Theorem 1.1. Without loss of generality, we assume that t ≥ s. Firstly, by (2.1), we have

uθ(t, x) − uθ(s, x) =

∫
Rd
EB[exp{V̂x,z(t)} − exp{V̂x,z(s)}]pt(z − x)u0(dz)

+

∫
Rd
EB exp{V̂x,z(s)}[pt(z − x) − ps(z − x)]u0(dz). (2.30)

Then, by the inequality |a + b|n ≤ 2n−1(|a|n + |b|n), we obtain

E|uθ(t, x) − uθ(s, x)|n ≤ 2n−1E

∣∣∣∣∣ ∫
Rd
EB[exp{V̂x,z(t)} − exp{V̂x,z(s)}]pt(z − x)u0(dz)

∣∣∣∣∣n
+ 2n−1E

∣∣∣∣∣ ∫
Rd
EB exp{V̂x,z(s)}[pt(z − x) − ps(z − x)]u0(dz)

∣∣∣∣∣n
:= I1 + I2. (2.31)

In I1, by the elementary inequality (a + b)2 ≤ 2(a2 + b2), we find that for x, z ∈ Rd,

E
∣∣∣V̂x,z(t) − V̂x,z(s)

∣∣∣2 = E

∣∣∣∣∣ ∫ t

0
V(Bx,z

0,t (r))dr −
∫ s

0
V(Bx,z

0,s(r))dr
∣∣∣∣∣2

≤ 2E
∣∣∣∣∣ ∫ t

s
V(Bx,z

0,t (r))dr
∣∣∣∣∣2 + 2E

∣∣∣∣∣ ∫ s

0
V(Bx,z

0,t (r))dr −
∫ s

0
V(Bx,z

0,s(r))dr
∣∣∣∣∣2. (2.32)

Thanks to β < 1 − α/2 and α > 0, it holds that 2 − α/2 − 2β > α/2 > 0. To combine (2.32) with
Propositions 5.2 and 5.3, and by the relations that T > 1 and s ≤ t ≤ T ,

E
∣∣∣∣V̂x,z(t) − V̂x,z(s)

∣∣∣∣2 ≤ CTα/2|t − s|2−α/2 + CTα/2+βs2−β−α/2t−β|t − s|β(|x − z|2β + 1)

≤ CT 2−β|t − s|β(|x − z|2β + 1). (2.33)

In addition, by the inequality |a|2β ≤ e|a|
2
(β ∈ (0, 1)), we find that∫

Rd
(|x − z|2β + 1)pt(z − x)|u0|(dz) . tβpt/(1−β) ∗ |u0|(x) + pt ∗ |u0|(x). (2.34)

Hence, by (2.33), (2.34), and T > 1, we find that∫
Rd
E
∣∣∣∣V̂x,z(t) − V̂x,z(s)

∣∣∣∣2 pt(z − x)|u0|(dz) ≤ CT 2−β|t − s|β
∫
Rd

(|x − z|2β + 1)pt(z − x)|u0|(dz)

≤ CT 2 sup
r∈[δ,T/(1−β)]

pr ∗ |u0|(x)|t − s|β, (2.35)
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where the last step is due to δ ≤ s ≤ t, too.
Using Proposition 5.1 and (2.35), we obtain

I1 ≤ Cnθn((2n − 1)!!)1/2T n
{(
Eūn

2θ(t, x)
)1/2

+
(
Eūn

2θ(s, t, x)
)1/2

}
·
(

sup
r∈[δ,T/(1−β)]

pr ∗ |u0|(x)
)n/2
|t − s|βn/2. (2.36)

Second, from (2.5), we find that for β ∈ (0, 1),

I2 ≤ CnE
[ ∫
Rd
EB exp{V̂x,z(s)}|pt(z − x) − ps(z − x)||u0|(dz)

]n

≤ Cn(t−d/2−1 + s−d/2−1)βn|t − s|βn

· E
[ ∫
Rd
EB exp{V̂x,z(s)}|pt(z − x) − ps(z − x)|1−β|u0|(dz)

]n

. (2.37)

Then, by the inequalities that |a + b|β ≤ |a|β + |b|β(β ∈ [0, 1]) and |a + b|n ≤ 2n−1(|a|n + |b|n), and
p1−β

t (x) = (2π)βd/2(1 − β)−d/2tβd/2 pt/(1−β)(x),

E
[ ∫
Rd
EB exp{V̂x,z(s)}|pt(z − x) − ps(z − x)|1−β|u0|(dz)

]n

≤ E
[ ∫
Rd
EB exp{V̂x,z(s)}

(
p1−β

t (z − x) + p1−β
s (z − x)

)
|u0|(dz)

]n

≤ Cn(tβd/2 + sβd/2)nE
[ ∫
Rd
EB exp{V̂x,z(s)}(p t

1−β
(z − x) + p s

1−β
(z − x))|u0|(dz)

]n

≤ Cn(tβd/2 + sβd/2)n
[
Eūn

θ(s, t/(1 − β), x) + Eūn
θ(s, s/(1 − β), x)

]
, (2.38)

where we recall that ūθ(t, s, x) is defined in (2.7).
To substitute (2.38) into (2.37), and by the relation δ ≤ s ≤ t ≤ T ,

I2 ≤ Cn(tβd/2 + sβd/2)n(t−d/2−1 + s−d/2−1)βn
[
Eūn

θ(s, t/(1 − β), x) + Eūn
θ(s, s/(1 − β), x)

]
|t − s|βn

≤ CnT βdn/2δ−(d/2+1)βn
[
Eūn

θ(s, t/(1 − β), x) + Eūn
θ(s, s/(1 − β), x)

]
|t − s|βn. (2.39)

To combine (2.31) with (2.36) and (2.39),

E|uθ(t, x) − uθ(s, x)|n ≤ Cnθn((2n − 1)!!)1/2T n
{(
Eūn

2θ(t, x)
)1/2

+
(
Eūn

2θ(s, t, x)
)1/2

}
·
(

sup
r∈[δ,T/(1−β)]

pr ∗ |u0|(x)
)n/2
|t − s|βn/2

+ CnT βdn/2δ−(d/2+1)βn
[
Eūn

θ(s, t/(1 − β), x) + Eūn
θ(s, s/(1 − β), x)

]
|t − s|βn.

Moreover, by Proposition 4.1 and the relations that δ < 1 ≤ T , β < 1 and θ ≤ eθ
2
, we can obtain that

for all n ∈ N+,

E|uθ(t, x) − uθ(s, x)|n ≤ CnθneCθ2n2t2((2n − 1)!!)1/2T n exp
{
Cθ

4
2−α t

4−α
2−α n

4−α
2−α

}
·
(

sup
r∈[δ,T/(1−β)]

pr ∗ |u0|(x)
)n
|t − s|βn/2
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+ CneCθ2n2t2T βdn/2δ−(d/2+1)βn exp
{
Cθ

4
2−α t

4−α
2−α n

4−α
2−α

}
·
(

sup
r∈[δ,T/(1−β)]

pr ∗ |u0|(x)
)n
|t − s|βn

≤ CneCθ2n2T 2
exp

{
Cθ

4
2−α T

4−α
2−α n

4−α
2−α

}
((2n − 1)!!)1/2T (βd/2+1)n

· δ−(d/2+1)βn
(

sup
r∈[δ,T/(1−β)]

pr ∗ |u0|(x)
)n
|t − s|βn/2. (2.40)

At last, by (1.6), (2.40), and the classic Kolmogorov continuity theorem, we find that for all β ∈
(0, 1 − α/2), there exists a temporal β

2 -Hölder continuous modification of uθ(t, x) on [δ,T ]. Because δ
and T are any, the proof can be completed. �

The proof of Theorem 1.2. Assume that T > 1 and 0 ≤ s ≤ t ≤ T . Let n be a positive integer.
(i) Through (2.4) and Lemma 2.4, it can be proved that

uθ(t, x) − uθ(s, x) = EB

[(
exp

{
θ

∫ t

0
V(Bx

r )dr
}
− exp

{
θ

∫ s

0
V(Bx

r )dr
})

u0(Bx
t )
]

+ EB

[
exp

{
θ

∫ s

0
V(Bx

r )dr
}
u0(Bx

t )
]
− EB

[
exp

{
θ

∫ s

0
V(Bx

r )dr
}
u0(Bx

s)
]

=

∫
Rd
EB

[
exp

{
θ

∫ t

0
V(Bx,z

0,t (r))dr
}
− exp

{
θ

∫ s

0
V(Bx,z

0,t (r))dr
}]

pt(z − x)u0(dz)

+ EB

[
exp

{
θ

∫ s

0
V(Bx

r )dr
}
u0(Bx

t )
]
− EB

[
exp

{
θ

∫ s

0
V(Bx

r )dr
}
u0(Bx

s)
]
. (2.41)

Next, by the similar computations to (2.31), we obtain

E|uθ(t, x) − uθ(s, x)|n

≤ 2n−1E

∣∣∣∣∣ ∫
Rd
EB

[
exp

{
θ

∫ t

0
V(Bx,z

0,t (r))dr
}
− exp

{
θ

∫ s

0
V(Bx,z

0,t (r))dr
}]

pt(z − x)u0(dz)
∣∣∣∣∣n

+ 2n−1E

∣∣∣∣∣EB

[
exp

{
θ

∫ s

0
V(Bx

r )dr
}
u0(Bx

t )
]
− EB

[
exp

{
θ

∫ s

0
V(Bx

r )dr
}
u0(Bx

s)
]∣∣∣∣∣n

:= D1 +D2. (2.42)

ForD1, using the method of proof similar to Proposition 5.1, it not difficult to check that

D1 ≤ 2n−1θn((2n − 1)!!)1/2
{(
Eūn

2θ(t, x)
)1/2

+
(
Eūn

2θ(s, t, x)
)1/2

}
·

(∫
Rd
E

∣∣∣∣∣ ∫ t

s
V(Bx,z

0,t (r))dr
∣∣∣∣∣2 pt(z − x)|u0|(dz)

)n/2

. (2.43)

To associate the above (2.43) with Propositions 5.2 and 4.1,

D1 ≤ Cnθn((2n − 1)!!)1/2Tαn/4
{(
Eūn

2θ(t, x)
)1/2

+
(
Eūn

2θ(s, t, x)
)1/2

}
|t − s|(1−α/4)n

≤ CneCθ2n2t2((2n − 1)!!)1/2Tαn/4 exp
{
Cθ

4
2−α t

4−α
2−α n

4−α
2−α

}
(pt ∗ |u0|(x))n|t − s|(1−α/4)n. (2.44)
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ForD2, from the independence of Brownian increments and κ-Hölder continuity of u0, it is found that

D2 = 2n−1E

∣∣∣∣∣EB

[
exp

{
θ

∫ s

0
V(Bx

r )dr
}
u0(Bt − Bs + Bx

s)
]
− EB

[
exp

{
θ

∫ s

0
V(Bx

r )dr
}
u0(Bx

s)
]∣∣∣∣∣n

≤ 2n−1E

∣∣∣∣∣ ∫
Rd
EB

[
exp

{
θ

∫ s

0
V(Bx

r )dr
}∣∣∣∣u0

(
(t − s)1/2y + Bx

s
)
− u0(Bx

s)
∣∣∣∣]p1(y)dy

∣∣∣∣∣n
≤ CnE

[
EB exp

{
θ

∫ s

0
V(Bx

r )dr
}]n( ∫

Rd
|y|κp1(y)dy

)n

(t − s)κn/2

≤ CneCθ2n2t2 exp
{
Cθ

4
2−α t

4−α
2−α n

4−α
2−α

}
(t − s)κn/2, (2.45)

where the last step is due to Proposition 4.1.
Notice that 0 ≤ s ≤ t ≤ T . To combine (2.42) with (2.44) and (2.45), it is found that for all x ∈ Rd

and integer n ≥ 1,

E|uθ(t, x) − uθ(s, x)|n ≤ CneCθ2n2T 2
exp

{
Cθ

4
2−α T

4−α
2−α n

4−α
2−α

}
((2n − 1)!!)1/2T (1−κ/2)n

·
(

sup
r∈[0,T ]

pr ∗ |u0|(x)
)n
|t − s|κn/2, (2.46)

where we have used the fact that κ/2 < 1 − α/4 for κ ∈ (0, 1] and α ∈ (0, 2 ∧ d).
So, by (2.46) and the Kolmogorov continuity theorem, we can prove the result.
(ii) By u0 ≡ C and the method similar to (2.41), it is obtained that

uθ(t, x) − uθ(s, x) = Cn
∫
Rd
EB

[
exp

{
θ

∫ t

0
V(Bx,z

0,t (r))dr
}
− exp

{
θ

∫ s

0
V(Bx,z

0,t (r))dr
}]

pt(z − x)dz. (2.47)

Moreover, using the computations similar to (2.44) and 0 ≤ s ≤ t ≤ T , we find that for all x ∈ Rd and
integer n ≥ 1,

E|uθ(t, x) − uθ(s, x)|n ≤ CneCθ2n2T 2
((2n − 1)!!)1/2Tαn/4 exp

{
Cθ

4
2−α T

4−α
2−α n

4−α
2−α

}
|t − s|(1−α/4)n. (2.48)

Lastly, through (2.48) and the Kolmogorov continuity theorem, we can complete the proof. �

6. Conclusions

This work mainly studies the temporal Hölder continuity for the Feynman-Kac formula of the
parabolic Anderson model under the rough initial condition pt ∗ |u0|(x) < ∞. As a comparison, we
also consider the function-valued initial conditions u0 ≡ C and u0 ∈ Cκ(Rd) with κ ∈ (0, 1]. However,
many function-valued initial data have not been considered in this paper, which will be a future work.
Besides, our future work is also going to investigate the case of time-space generalized Gaussian field
and rough initial condition.
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