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1. Introduction

In this paper, we study the following stochastic heat equation

(%u(t, x) = %Au(t, x) + OV(xX)u(t, x), (t,x) € R, xR, (1.1)

which is also called parabolic Anderson model. Here, parameter 6 > 0 and V is a centered generalized
Gaussian field which is defined by the Gaussian family {(V,¢);¢ € S(R?)} with mean zero and
covariance

BV, o)V, ] = f SO y)dxdy, ¥ b € SERY), (12)
R‘] ]Rd

where S(R?) is the Schwartz space, and k(x, y) is a symmetric positive definite kernel function. We
assume that there exists a constant C > 0 such that for almost everywhere (x,y) € R,

[k(x, )l < Clyn(x = y) + 1). (1.3)
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Here, v, is a nonnegative and nonnegative definite function which satisfies that y,(x) € L}M(Rd), and
there exists a @ € (0,2 A d) such that y,(rx) = r*y,(x) for all r > 0.

There exist many Gaussian fields satisfying (1.3). For example, the stationary case includes Bessel
field [1], Gaussian field with Riesz potential covariance [2], and fractional white noise [3] (Hurst
parameters H; € (1/2,1) for 1 <i < d), while the nonstationary case partly includes 2-d massive free
field [4] and log-correlated Gaussian field [5]. In these fields, the covariances of Gaussian field with
Riesz potential covariance and fractional white noise are homogeneous themselves, and y;, in (1.3) can
be taken as them. The covariance of Bessel field is represented as the Bessel function G,(x), which is
not homogeneous but satisfies the asymptotic behaviours for when x — 0,

Tt

2,,7r—b/2|)€|b_d, if 0<b< d,
1 1 :
G},(.X) ~ 51,72 In TR if b=d, (14)
r) .
ShbT2 > lf b > d,
d+b—1 d b=1-d

when |x| — o0, Gp(x) ~ (272 H%F(g))‘llxlTe‘“'. The covariances of 2-d massive free field and
log-correlated Gaussian field satisfy that when x — y, k(x,y) ~ In ﬁ, which are bounded away
from the diagonal region {x = y}. It can be observed that the covariance of Bessel field (0 < b < d) is
asymptotically homogeneous, where it requires that b > d—2 such that (1.3) is satisfied when @ = d—b;
the covariances of Bessel field (b > d), 2-d massive free field, and log-correlated Gaussian field are
bounded or asymptotically logarithmic, satisfying (1.3) for all e sufficiently closed to 0. In addition,
we can construct a series of nonstationary fields satisfying (1.3) by setting V(x) = g(x)V(x) for the
nontrivial, bounded, and measurable function g and stationary Gaussian field V satisfying (1.3).

At present, the rough initial conditions are getting more and more attention in the field of stochastic
partial differential equations. Bertini and Giacomin [6] focused on the initial conditions with growing
tails in stochastic Burgers and Kardar-Parisi-Zhang (abbr. KPZ) equations. Amir, Corwin, and
Quastel [7] utilized the Dirac ¢ initial condition (or narrow wedge initial conditions) to study the
distribution of stochastic heat (or KPZ) equations. Until the publishing of [8], Chen and Dalang first
introduced and studied the rough initial conditions for the nonlinear stochastic heat equation, which are
quite extensive, including Dirac 6 measure, non-tempered measure with exponentially growing tails,
etc.

For (1.1), we consider the rough initial condition: the initial value u is a Borel measure on R?
owing a Jordan decomposition uy = u; — u,. Let |ug| := u; + u; be the variation measure of uy. We
assume that for ¢ > 0 and x € R,

e * luol(x) := f Pi(x = Y)luol(dy) < oo, (1.5)
R4

where “x” represents the convolution and p,(x) := (27t)~%? exp{—|x|*/(2t)} is the usual heat kernel
function. It is worth noting that due to the temporal continuity of p,(x) on (0, c0), condition (1.5)

implies that for 0 < 6 < T and x € R,

sup p; * |upl(x) < oo. (1.6)
te[6,T]

There have been many results for the Holder continuity of the stochastic heat equation in the It6-
Skorokhod integral and rough initial conditions, such as [9-13]. In the earlier literatures [8, 14],
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Chen and Dalang studied the continuity for the nonlinear stochastic heat and fractional heat equations
with rough initial conditions in the It6-Skorokhod integral, including the parabolic Anderson model.
In Chen and Huang [15], the time-space Holder continuity was established for nonlinear stochastic
heat equations driven by time-white and space-colored Gaussian fields, with rough initial conditions
concerning Itd-Skorokhod integral. However, the published papers about Holder continuity in the
Stratonovich sense are not as rich as in the It6-Skorokhod sense due to the technical complexity. When
initial value uy = 1, Hu, Huang, Nualart and Tindel [16] proved the time-space Holder continuity for
the stochastic heat equation driven by time-space stationary Gaussian fields in the Stratonovich integral.
For the similar model, under the rough initial condition, Lyu [17] obtained the spatial Holder continuity
in the case of time-space stationary Gaussian fields, which are homogeneous on space. Later, Lyu and
Li [18] proved the time-space Holder continuity for time-independent log-correlated Gaussian field
and initial value uy = 1. As far as we know, there are very few results for temporal Holder continuity
in the case of nonstationary Gaussian field and rough initial condition.

In this paper, under the conditions (1.3) and (1.5), we tend to prove the temporal Holder continuity
for the Feynman-Kac formula of (1.1) in the Stratonovich integral. According to [ [17], Lemma 3.1],
the Feynman-Kac formula is a mild solution to (1.1) in the Stratonovich integral. As mentioned in [16],
the path-wise solution in the Young integral can be viewed as a version of the Feynman-Kac formula
in the Stratonovich integral. Thus, to obtain the Holder continuity in the Stratonovich sense, we only
need to prove the Holder continuity in the Young sense. However, the strategy is usually unsuccessful
for the rough initial condition.

According to (5.13) in [16], when the initial value u, belongs to the weighted Besov-Holder space
B (R9) (x € (0, 1)), it was obtained as the temporal Holder continuity of solution in the sense of the
norm of B (RY) (k, € (k,1)). Because the weighted Besov space B85 coincides with the weighted
Holder space C*(R%;w,), we can directly obtain the temporal Holder continuity in the point-wise
sense. Unluckily, if u, is a measure, it usually does not belong to B';;’:éo(Rd) (k € (0, 1)), such as Dirac
0o € B;i(,l_l/ D€ (g € [1,00]) but ¢ BLLRY) (k € (0, 1)). When ug belongs to the Besov space on torus
B (k € [0,1/2)), by reference to [19,20], the temporal Holder continuity of solution was obtained in

the sense of the norm of B’;?M(Td) (x4 € (k, 1)), but g cannot arrive at infinity in solution space BQ’M(T").
This leads to that we still have no way to prove the temporal Holder continuity in the point-wise sense.

Instead of the above method, we directly prove the Holder continuity for the Feynman-Kac formula
by the Kolmogorov continuity theorem. It has been known that under the rough initial condition, the
previous Feynman-Kac formula based on Brownian motion is not well-defined any more. Hence, we
will use the Feynman-Kac formula based on Brownian bridge. In the earlier work [21], Chen, Hu, and
Nualart proved the Feynman-Kac formula for the nonlinear stochastic heat equation on R in the Ito-
Skorokhod integral with time-space white noise and rough initial conditions. Hu, Nualart, and Song [3]
(also see [16]) obtained the Feynman-Kac formula for the stochastic heat equation driven by time-space
Gaussian fields with function-valued initial data in the 1t6-Skorokhod and Stratonovich integral. After
it, Huang, L€, and Nualart [22] obtained the Feynman-Kac moment representation based on Brownian
bridge for the stochastic heat equation in the It6-Skorokhod integral, driven by time-white Gaussian
fields with rough initial conditions. Inspired by it, Lyu [17] proved the Feynman-Kac formula for the
stochastic heat equation in the Stratonovich integral, with time-space Gaussian fields and rough initial
condition. Similarly, this paper also obtained the Feynman-Kac formula based on Brownian bridge
uy(t, x) defined in (2.1) in the case of nonstationary Gaussian field and rough initial condition, but the
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Feynman-Kac moment representation of uy(#, x) that we get in (2.6) is different from the representation
in [17].

Different from Brownian motion and stationary Gaussian field, the computations of Holder
continuity are complex in the case of Brownian bridge and nonstationary Gaussian field. To overcome
the difficulty, on the one hand, we construct a novel decomposition of Brownian bridge in Lemma 2.5;
on the other hand, because the technique of Fourier transform cannot be directly applied to estimate
positive definite kernel k(x, y), we will use the estimates of the heat kernel in Lemma 2.1.

We state the temporal Holder continuity of the Feynman-Kac formula uy(¢, x) in (2.1) as follows.

Theorem 1.1. Assume that conditions (1.3) and (1.5) hold. Set0 <6 <1 < T andf € (0,1 — a/2),
where « is taken from (1.3). Then, there exists some constant C > 0 such that for all8 > 0, t, s € [0, T],
x € RY, and integer n > 1,

4-a
@

Elug(t, x) — ttg(s, 0" < C"e" T exp {COT T n>= f(2n — 1)1 2B+ n

—(d/2+1 " 2
e (T SR T E) R (L.7)
re[6,T/(1-B)]

Moreover, there exists a temporal 'g—Hc')'lder continuous modification of uy(t, x) on (0, o).

As an extension of temporal Holder continuity in [ [16], Theorem 4.12], where the Gaussian fields
are stationary and initial value uy = 1, Theorem 1.1 contains the case of nonstationary Gaussian fields
and initial value of measure. However, patient readers may observe from Theorem 1.1 that when initial
value uy = 1, on the one hand, the order of Holder continuity is not optimal, where 8/2 < 1/2; on the
other hand, the Holder continuity of the solution is limited on open interval (0, co) excluding the zero
point. For this reason, we intend to make some technical explanations as follows:

(1) Because the measure-valued initial data u, is considered, we choose to use the Feynman-Kac
formula based on Brownian bridge (2.1). In the estimates of the Holder continuity, (2.1) leads
to the need to utilize the continuity of bridge Bj, with respect to #; see Proposition 5.3. Here,
remark that the continuity of fos V(Bgf(r))dr at the + = s point is necessary for our estimates. If
we consider the Feynman-Kac formula based on Brownian motion with function-valued initial
data, then the continuity of the term can be bypassed. So, when u, = 1, the order of Holder
continuity is low in Theorem 1.1.

(2) Under condition (1.5), the proof of Holder continuity can only depend on the regularity of heat
kernel p,(x) rather than of uy. However, in the step of estimates of the heat kernel, the terms # and
s with negative power are produced; see Lemma 2.1. For the Feynman-Kac formula (2.1), in the
computations of (2.37)—(2.39), we have no way to get rid of the term (r~4/>~! + s74/2=1)/" produced
in estimates of the heat kernel. Moreover, we obtain an additional term 6~¢/?*D5" in (1.7) relative
to the estimates of moment in Proposition 4.1, which implies that ¢ cannot tend to 0. Thus, when
uy = 1, the coefficient in the right side of (1.7) is not exact, such that the Holder continuity cannot
be proved at zero point.

In order to compensate the defect of Theorem 1.1 in the case of function-valued initial data, we
specifically show the following result in which the Holder continuity is extended to the zero point.

Theorem 1.2. Under condition (1.3), the following results hold:
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(i) When initial value u is a k-Hoélder continuous function in C<(R?) with k € (0, 1], for p € (0,«),
0 > 0, and x € R% there exists a modification of uy(t, x), which is g-Hc')'lder continuous on [0, 00).

(ii) When initial value uy is a constant, that is, uy = C, for v € (0,1 —a/4), § > 0, and x € R?, there
exists a modification of uy(t, x), which is v-Holder continuous on [0, o0).

The order of Holder continuity in Theorem 1.2 (i) coincides with it in [8, 15], though their settings
are different from ours, where they considered the It6-Skorokhod integral and time-white Gaussian
fields which are colored in space. The order in Theorem 1.2 (ii) is the same as it is in [ [16],
Theorem 4.12].

Next, we make some comments on the results in Theorems 1.1 and 1.2 as follows:

(a) With respect to the special fields, including Bessel field (b > d), 2-d massive free field, and log-
correlated Gaussian field, the orders of Holder continuity are sufficiently closed to 1/2 and 1 in
Theorem 1.1 and Theorem 1.2 (i1), respectively, because these fields always satisfy (1.3) for all
small . For the special fields, we can prove a more precise modulus of continuity in Theorem 1.1
than (1.7), which is similar to [ [18], Proposition 2.4]. However, the more precise modulus
does not impact on the order of Holder continuity. For the homogeneous or asymptotically
homogeneous Gaussian fields, like Gaussian field with Riesz potential covariance, fractional
white noise, and Bessel field (0 < b < d), the orders of Holder continuity in Theorems 1.1 and 1.2
are optimal within our framework if we take « equal to the (asymptotically) homogeneous degree
of these fields in condition (1.3).

(b) For Theorem 1.2, the Holder continuity in (1) is limited by the Holder continuity of #y. Though
the initial condition in (ii) is a special case in (i), the order in (ii) is obviously higher than it is
in (i), i.e., v > 1/2 > p/2. It is found that, different from (ii), the Holder continuity in (i) is only
determined by the regularity of uy by comparing (2.41) and (2.47) in the proof of Theorem 1.2.

(c) Notice that the order in Theorem 1.2 (i) is not necessarily higher than Theorem 1.1, because the
Hoélder continuity at zero point is considered in Theorem 1.2 (i). To sum up Theorem 1.1 and
Theorem 1.2 (i), the order of Holder continuity on (0, o) is (8 V p)/2 when uy € CX(R?). On the
other hand, it is found that the order in Theorem 1.1 is lower than it is in Theorem 1.2 (ii), i.e.,
B/2 < 1/2 < v. Obviously, the initial condition is very special in Theorem 1.2 (ii).

Methodology: In the sense of the Stratonovich integral, our method heavily depends on the
Feynman-Kac formula based on the Brownian bridge (2.1) and Feynman-Kac formula based on
Brownian motion (2.4), which produce the different Holder continuities and modulus of continuity
in Theorems 1.1 and 1.2. Meanwhile, our method can only be applied to the linear model. However,
in the sense of the Itd6-Skorokhod integral, the method in [8, 13—15] can cover the case of the nonlinear
model, the advantages of which are that the estimates of Holder continuity are stable for rough and
regular initial conditions. In fact, the above settings of the integral are different, and our method
mainly compensates the lack of result in the Stratonovich integral (or Young integral) rather than the
[t6-Skorokhod integral.

Organisation: Section 2 is the preliminaries about Fourier transform, estimates of heat kernel, and
Brownian bridge. In Section 3, we give the definitions of the Feynman-Kac formula, Feynman-Kac
functional, and Feynman-Kac moment representation. In Section 4, we show the well-definiteness and
moment estimates of the Feynman-Kac functional and Feynman-Kac formula. Section 5 is the proof
of temporal Holder continuity in Theorem 1.1.
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2. Preliminaries

Notations: Write R, := [0,00) and N, := {1,2,3,---}. Let (Q, &, P) be the probability space with
expectation E. Set p € [1, o], and denote the Lebesgue space on (€, &, P) by LP(Q). For region D C
RY, let LP(D) be Lebesgue space on D. Denote by L}DC(Rd) the space composed of locally integrable
functions on R¥. For « € (0, 1], C*(R?) is the space composed of x-Holder continuous functions. S(R?)
is Schwartz space on R?, and its dual space S’'(RY) is the space of tempered distributions. Let C be
a universal nonnegative constant. f < g represents that there is a constant C > 0 not dependent on
variables such that f < Cg.

Fourier transform: The Fourier transform of a function f € S(R?) is defined as

F 1) = f € (),
Rd

and the inverse Fourier transform is given by F~!f(¢) = (2n)“F f(=¢). The generalized Fourier
transform of f € S'(RY) is defined by the dual

(Ff.e)=(fTg,  VYgeSER. (2.1)

For nonnegative definite function 7y, in (1.3), according to the Bochner theorem (e.g., p.158, [23]),
there exists a nonnegative and symmetric tempered measure y, such that y, = ¥ w,. Noticing that y,(x)
is a function, it is found that

yn(x) = f e p(dé), a.e., 2.2)
R4

by (2.1) and the Fubini theorem. Because vy, satisfies that y,(rx) = r *y,(x) for all r > 0, pj; is
homogeneous, that is, ,(d(r§)) = r*u,(dé) for all r > 0.

Estimates of heat kernel: We give the estimates of heat kernel used to prove the Holder continuity.
The results similar to (i) and (iii) in Lemma 2.1 have been proved in [ [15], Lemma 3.1], but our proof
is slightly different from [15] in details.

Lemma 2.1. For the heat kernel p,(x) = (2nt)~¥? exp{—|x|*/(2t)}, the following results hold.
(i) For all x,y € R? and t > 0, it holds that

1p:(x) = )| < 7 HDPx -y, (2.3)

(ii) For all z,,25, x,y € R%, and t > 0, it holds that

1Pz + X) = plzi + ) — Pz + %) + iz + Y S 7% Nz = zallx = ). (2.4)
(iii) For all x e R and t, s > 0, it holds that
Ip(x) = ps(O| s >+ 57— ). (2.5)

Proof. (i) By p; = F'¢ 1!, the inequality | — €€ < |¢||lx — yl, and the integral substitution, we
have

Ip(x) = p)| = @)™

f (€76 — ¢ EN) e P2 g
R4

AIMS Mathematics Volume 9, Issue 12, 34838-34862.



34844

< 2m) f £l g — 3
]Rd
< @Ry 2.6)

(i1) According to the arguments similar to (2.6), it holds that

|pi(z1 + x) — pz1 +y) — pi(z2 + X) + plz2 + )|

( e*if'll _ efif-zz)( efi,f-x _ efif-y) eft|§|2/2 d.f
]Rd

< 2 f P delz, ~ ol
R

<SPz = gllx - V.

= (2m)™

(iil) From p, = F e 1", |¢%*| = 1, and the inequality |¢? — ¢”| < |a — b|(e” + ¢’), it implies that

P(x) = ps(0)] = 2m)™

fR e (expl- 31ef) - expl-lef1)de

< o1 fR 6P (expl-5 P} + exp(-21eP))dzl - s

I e e BN f P expl—g el — s
R4

S @+ s - s,
where the second to last step is due to the integral substitution.
So, we complete the proof. O

Lemma 2.2. Under condition (1.3), for 8 > 0, there exist some C > 0 dependent on « and 8 such that
forallt >0,

f ol + ) + Dpf Gy < CLAPHR G 4 1), @.7)
Rd

Proof. By the spherical substitution, y, € L' (R%), and y,,(tx) = t %y,(x) (@ € (0,2 A d)), it gives that

loc

f Y Py = Qr) P> f " e 12, f Yi(y)dS
Rd

0 {yl=1}
< oo. (2.8)

By the facts that y, = Fuy, and F p,(€) = % , PP(x) = Qu)IPARga 1P (x), and [e™] = 1,

f (v + x) + DL )y = Q) PRI f 7y + D)pys()dy + 1)
R4

= Q@m)1 PR g-d2 1P f exp{—ﬁa buun(dg) + 1)

< ()1 PP gD f Pl () + 1)
R4

AIMS Mathematics Volume 9, Issue 12, 34838-34862.



34845

- (27.()(1—ﬁ)d/zﬁ—d/zt(l—ﬁ)d/Z( f d YO pyps(y)dy + 1). (2.9)
R

Moreover, using the integral substitution, y,(tx) = t*y,(x), and (2.8), it gives that

f (y(y + ) + D )dy < ()1 P22 151l 2((t/,3)_”/ 2 f Yep1(y)dy + 1)
R4 R4

< CAIPIR(al2 1 7). (2.10)
Thus, (2.7) is proved. O

Brownian bridge: Let B(s) or By be a d-dimensional standard Brownian motion on R, which is
independent of V. Set B* := B + x as a Brownian motion starting from point x € R?. Moreover, for
t > 0, the d-dimensional standard Brownian bridge is defined as

Bo,(s) := B, - ;B,, Vs € [0,1]. (2.11)

X,y

+1» the Brownian

For 0 < s < tand x,y € RY, write @} := E2x + 2y. Based on the notations By, and a
bridge from x to y is defined as

By)(s) := Bou(s) +ag;, Vs el[0,1]. (2.12)

Write B’ = B and B} = By, without ambiguity.

By the relation that ay; = ;"\, and the computations of covariances, it can be directly checked that

the following two elementary lemmas hold.
Lemma 2.3. {Bg:f(s)}se[o,t] is identically distributed as {Bﬁ’j(t — )} seq0.-
Lemma 2.4. {Bg:f ()} sefo. i independent of {B*()}sx-
Based on Lemma 2.4, we obtain a decomposition of the Brownian bridge.
Lemma 2.5. ForO<t, <t;and 0 <r < 1, let
B(ty)  B(t)

Gy, = . 2.13
1t t2 t] ( )

Then,
BO,Z] (r) = BO,tz(r) + rGtz,tl’ (214)
where G,,,, is independent of {Bo.,(r)}efo,) and Gy, 5, ~ N(O M)

> hh
Lemma 2.6. Let F be a nonnegative measurable functional on C([0, At]), where C([0, At]) is the space
composed of continuous functions on [0, At] for t > 0 and A € (0, 1). Then,

EF({Bo.«($)}ozsza) < (1 = )" EF({B(5)}os<ar)- (2.15)
Proof. Using [ [22], (2.8)] in the case of x = y = 0 and the nonnegativity of F, we obtain
B(Ar))?
BF(Bos(Mossea) = (1 = 0 PE| FUBossea exp | - 2'(1(—_)1'”}]
< (1 = )™PEF{B(s)}ozszar)- (2.16)
Thus, the proof is completed. O
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3. Feynman-Kac representations

When u is a measure satisfying (1.5), we consider the following Feynman-Kac formula:

uolt, ) 1= f Bpexp{0 f V(B (&)ds by = Duoldy), @.1)
R4 0

for (r,x) € R, x R%. Here, By} is the d-dimensional Brownian bridge from x to y, and the integral
fot V(Bg:f(s))ds is defined as a L*(Q)-limit, that is,

! !
f V(B (s))ds := liI%f Ve(By) (s))ds, Y(t, x,y) € R, x R, (2.2)
0 ’ #=0Jo ’

where we set V() 1= (V(-), pas(x — -)) With pou(x) = (4re) 2 1/4)_ To simplify it, we also use the
notation

Vey(0) = f V(By2(5))ds. (2.3)
0

We will prove the well-definiteness of ‘A/x,y(t) in Lemma 3.1. Based on it, if the Feynman-Kac formula
up(t, x) is a L' (Q)-integrable stochastic process, we call uy(t, x) well-defined, which will be proved in
Corollary 4.2.

When u is a measurable function, (2.1) is rewritten as

ug(t, x) := EB[exp {0 j: V(Bf)a’s}uo(Bj‘)], 2.4)

where B is a d-dimensional Brownian motion at starting point x € R, and the integral fot V(BY)ds is
similarly defined, like (2.2).

Let Ey be the expectation with respect to V, and Eg be the expectation with respect to B. Then, by
the independence between V and B, E can be represented as Egz ® Ey. Conditioning on the Brownian
motion, Vx,y(t) is a centered Gaussian process with conditional covariance

f f
By[Viy, (6)Viy, ()] = f f k(By)'(s), ByY (N)dsdr, — ¥yi,y, € R, (2.5)
0 0

Let {Bj;j = 1,---,n} be a family of d-dimensional independent standard Brownian motions for
X,y

positive integer n. Set {B;’g’t(s) = Bj(s) = 3Bj(t) + a;;,¥s € [0,¢];j = 1,---,n} as a family of
independent Brownian bridges from x to y. Then, based on (2.1) and (2.5), the n-order Feynman-Kac
moment representation satisfies that

92 n ! ! v . n
Bul(r, ) = fR dnEeXP{E; fo fo (B335 B )drdsh | | pos = ouotdyn) - uatdy). 26)

j=1

Similar to (2.1), for (¢, s, x) € (0, 00)? x R?, we define the Feynman-Kac functional iiy(t, s, x) as
ig(t, s, X) := fd Epexp {QVx,y(t)} Ps(y = 0luol(dy). (2.7)
R
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When s = 1, we write ity(t, x) := iy(t, t, x). Through (2.5) and (2.7), we can obtain the n-order moment
representation

92 n A ! x N n
B, 5, x) = fR Eexp{3 ), fo fo By Bt )drds} [ | puty; = oluol(dyn) - ol
Jk=1 j=1
(2.8)

Lemma 3.1. If condition (1.3) holds, then Vx,y(t) in (2.2) is well-defined.

Proof. By the similar method to [ [16], Proposition 4.2.] and [ [17], Proposition 3.1.], we only need to
show that for T > 0,

< 0. (2.9)

sup sup ‘f V(B (s))ds

>0 (t,x,)€[0,T]xR2d

In fact, using the inequality |a + b|* < 2|al* + 2|b|* and the integral substitution, we obtain

2

t 2 /2 2
E‘ f V(B (s))ds| <2E f Ve (B3 (s))ds| +2E
0 ’ 0 ’

!
Ve, (B ())ds
/2 '

2

/2 2 /2
<2E f Ve, (B (s)ds| + 2E' f Ve (B (t — $))ds
0 ’ 0 ’

2

, (2.10)

1/2 2 t/2
<2E f Ve(By(s))ds +2E‘ f Ve, (BY, (5))dss
0 0

) d .

where the last step is due to {Bf)’f(s)}se[o,,] = {Bg’f(l — 8)}sefo.- Notice that the above two terms are
similar, and we only need to show the estimates of the first term. Recall that ¢y = =*x + %y. Then, by
Lemma 2.6 for {By,(s)}sejo./2) and the integral substitution, we have

‘f V(B (s))ds

< zd/2EB[ f V., (B(s) + a%)ds

]

/2 /2
< 0di2g f f fi fd k(xy + B(s) + a,;,y1 + B(r) + a,))ps(x1) ps(y1)dxidy dsdr
0 RI JR

/2 1/2
$2°E f f f 1<7h(x1 + B(s) + ag) —y1 — B(r) — a;}) + Dpo(x)ps(y))dxidy dsdr
R{

0

Bt BO-B0) it @i =a)) ool | eV dsdr + 12
e 2P L (dE)d sdr + 1
e 2.11)

where the second to last step is due to (2.2), F p.(§) = e‘8'§'2, and |¢| = 1, and the last step is due
to (2.8), y» = F p, and u,(d(ré)) = r*u,(dé) for all r > 0.
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Finally, substituting (2.11) into (2.10), and by @ < 2, we can obtain that

2

!
sup  sup E‘ f V(B (s)ds| T 2+ T2, (2.12)
&>0 (1,x,y)€[0,TIxR 0 ’
which shows that (2.9) holds. m|

4. Moment estimates of Feynman-Kac formulas

Lemma 4.1. Under condition (1.3), there exist some C > 0 dependent on k(x,y) such that for all
0,t>0andn € N,,

n ! !
E exp {92 Z f f 7i(Bj(s) - Bk(r))drds} < C"exp {C@ithL} 2.1)
o Jo

Proof. By (2.2), the Jensen inequality, and the independence of {B;},<;<,, we have

n ! !
Eexp {92 Z f f Yu(Bj(s) — Bk(r))dsdr}
k=100
1l (7,
= Eexp {92112 f - Z f B
Rd [T = 0
n !
< E exp {621’1 Z f f eiﬁBj(S)dS
j:1 Rd 0
. 2
< (Eexp {anf f B s
R4 |Jo

By Brownian scaling {B(rs)} ez, 4 {r'2B(s)}er, and w,(d(ré)) = rw,(dé) for any r > 0 and the

integral substitution, we find that for r > 0,
rt
f By
0

. 2
f f 5B wi(dé) 4 ,,‘Z'—ZI
re [Jo Re

Set process A, := fRd | fot B 521, (d€). Then, taking r = (6°nt)== and using (2.3), we obtain

2
)

2
i)

(@)} 2.2)

2
Hn(dé). (2.3)

Eexp {0°nA,} = Eexp {(r1) Ay} (2.4)
Using the similar methods to [ [17], (3.20)], we find that there exist some C > 0 such that for all # > 0,

Eexp {(r1) A, < Ce ", (2.5)

by Lemma 2.2 in [17]. At last, summing up (2.2), (2.4), and (2.5), and using (Hznt)ﬁ instead of r, the
proof of (2.5) can be completed. |
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Proposition 4.1. Under conditions (1.3) and (1.5), there exist some C > 0 such that for all t, s,0 > 0,

xeRY andn e N,,
E(1, 5,x) < C"e“"" exp {CO77 155 n™ |(p, * upl(x))".
Proof. By (2.8) and (1.3), we obtain
n t !
By (t, s, x) < PR f E exp {C92 Z f f yh(B)f’g"t(s) — Bi’(y)"t(r))drds}
Rdn 0 0 I o

Jik=1
n

| [ 205 = luol(dyy) - luol(dy).

J=1

By (2.2) and the inequality |a + b|* < 2|al* + 2|b|*, we obtain

n t f . n 12 o
Z f f Vu(Bjo)(s) = BLy,(r))drds <2 f Z f B g g
20,1 k,0,t ,
jk=1 0 0 R = 0
n 1 ) X,)‘j
2. f ¢ P00V
j:1 t/2

2
Mn(dE)

2
Mn(dE).

+2f
Rd

., . . . . d .
In addition, by the integral substitution and {B%J(s)}se[o,ﬂ = {B)j”g’t(t — 5)}sefo.7, We have

n 4 . x,yj 2 d n t/2 . Vj,x
f 2, f BV ds| p(dé) =f Zf e Pnds
R <= Ji)2 R 1= Jo

J=1 J=1

2
Mn(dE).

(2.6)

2.7)

(2.8)

(2.9)

Recall that af:,y = "Tsx + 2y. To substitute (2.8) and (2.9) into (2.7), and by using (2.2) and the Cauchy-

Schwartz inequality, we obtain

n 1/2 /2
Eil(1, 5, %) < ecez”z’z( f Eexp {C Y f f Y(Bjos(s) = Buo(r) + a5’ — @i )dr ds}
dn 0 0

R k=1

n 1/2
255 = luly ey -y

J=1

n 12 )2
([Leswfc ) [ [ m(Binds = Buaty+ @ - a)ards)
n k=1

n 1/2
2 = kv s --dva)

J=1

(2.10)

Let a(s, 1,1, x, Y, z) be a measurable fucntion from R? x R3 to R?. We claim that for all 7,4 > 0 and

X, V1, ,yn € RY it holds that

n t t
Eexp {92 Z f f yh(Bj,O,t(S) - Bk,(),t(r) + Cl(S, r, t’ X, yja )’k))drds}
0 JO

Jk=1
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n ! !
<Eexp {92 Z f f Yu(Bjo.(s) — Bk,o,z(”))de’”}- (2.11)
=idJo Jo

In fact, through the Taylor expansion, we only need to compare their m-order moments. Precisely,
using (2.2), we find that for any positive integer m,

n t t .
B3 [ ) (B = B+ ats vy s

Jk=1
n n m
:f f f Z E El_[eifl'(le,o,t(Sz)—Bk,,o,r(Fl))
R JW0m SO0 j, I k=1 1=
m

| e ds, - dsydr - drag(dé) - pn(déy)

=1

<g f f Yi(Buy(s) - Bo,(rdsdr]
k=10 0

Js

Here in the last inequality, we have used |e“| = 1, the nonnegativity of u;,, and the fact that

m. B . 1 m
E 1—[ i Bioss0=Bryo ) = exp{ - EVW( Z & (Bjoa(s) = Bkl,O,t(rl)))} > 0.
=

j=1

Then, by (2.10), (2.11), and Lemma 2.6, we obtain

n /2 /2
Edij(t, s, %) < """ Bexp {C@ZZ f f n(Bj,o,xs)—Bk,o,xr))drds}(m*|uo|<x>>"
0 0

Jk=1

n t/2 /2
< 2428 R exp {C92 Z f f 7/2(BJ(S) - Bk(r))drds}(ps * [uo| (x))"
o Jo

k=1
< €T exp {COTF 1 T (g ol ()", (2.12)
where the last step is due to Lemma 4.1. Hence, we complete the proof of (2.6). O

Corollary 4.1. Under conditions (1.3) and (1.5), there exist some C > 0 such that for all t,6 > O,
xeRY andn e N,,

Elug(t, 0" < C"e" exp {CO™7 5 n |(p,  lugl(x))'". (2.13)

Proof. By the Cauchy-Schwartz inequality and (2.6), it is readily checked that
Elug(t, 0" < Bug'(t, x))'"* < (Bigg"(t, x))'/%. (2.14)
Recalling iy(t, x) := iiy(t, t, x), and by (2.14) and Proposition 4.1, we complete the proof of (2.13). O

By Proposition 4.1 and Corollary 4.1, we directly obtain the following result.

Corollary 4.2. Under conditions (1.3) and (1.5), fort,s > 0, x € R?, and n € N, iiy(t, s, x) and uy(t, x)
are well-defined as the L"(Q)-integrable stochastic processes.
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5. Holder continuity on time variable

In this section, we will prove Theorem 1.1. Before it, the following results are required.

Proposition 5.1. Under conditions (1.3) and (1.5), forallt > s > 0, n € N,, and x € R¢,

n

E

fR Eplexpl Vec(0) - exp( V. (5)pi(c = ()

< 2" ((2n — I {(Biyy(t, )" + (Bityy(s, 1, x))'"?)
n/2
( f E|V.(t) - Vo) itz - X)Iuol(dz)) : 2.1)
Rd

Proof. Using the inequalities |e® — e’| < |a — b|(e” + €°), (la| + |b])" < 2" '(Ja|* + |b|") and the Cauchy-
Schwartz inequality, we obtain

n

E

f Elexp( V() — exp{¥ea()1pi(z = Dtol(d2)
Rd

< HHE [Ld EB[( eXp{an,z(t)} + eXp{er,z(s)})lf/x,z(t) - Vx,z(s)”pt(z - x)|uo|(d2)]

< 2" 9B [f Ep [exp{QVm(I)} Ve (t) - ‘A/x,z(s)” Pz - x)|u0|(dz)]
Rd
+ 2R [ f Ep |exp{oV, ()| Vez(t) = Ve(s)|| Pz - X)|Mo|(dz)]
Rd
N 1/2
< 2”‘19”15[( fd Epexp{20V..(1)}p:(z — x)luol(dz))
AR N ) 1/29n
([ Bl = Vst ptz = e |

. 12
oo f By expl207(9)pi(z ~ V)
Rd

R R ) 1/29n
([ Bl = Vst ptz = e |

< 20" (B, (1, %)) + (Bityy(s. 1, x))'"°)

~{Ev[fRdEB

Using the Minkowsky integral inequality and (conditional) Gaussian variance property, we get

{EV[ fR By

1 n/2
< ( f B Bv|Veed) = Vee)| "] puta - x>|uo|(dz>)
R4

n 1/2
‘A/x,z(t) - ‘A/x,z(s)|2pt(z - x)|u0|(dz)] } . (22)

R R ) w172
Veat) = Vio(s)] pilz - x)luol(a’z)] }

n/2
< (@2n—1)H'? ( f E|V,.(1) = Veo(s)| pu(z - x)|uo|(d2)) : (2.3)
R‘i
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Substituting (2.3) into (2.2), we can complete the proof of (2.1). O
Proposition 5.2. Under condition (1.3), there exists a C > 0 dependent on a such that for all x, z € R?,
T>1and0<s<t<T,

t 2
E‘ f V(Byi(r)dr| < CT™ |t — s~ (2.4)

Proof. CaseI: t/2 < s < t. Recall that a} := =~z + ~x and B x(r) By,(r) +a;;. Then, by the integral

o d
substitution, {By7(8)}seo.1 = {By,(t = $)}sef0.> and Lemma 2.6, we get

=E

=S 2
‘ f V(B“(r))dr f V(Bo(r) + a;)dr
0

2
< (Gyg

f_s V(B(r) + a;)dr

<2412 f f Bk(B(r) + a2, B(ry) + a2')drdr,
f f E[yn(B(r1) + a;", — B(ry) — a;,) + 11drdr,
f f f vy + a; = az) + Dpy, . (0dydridrs, (2.5)
where the second to last step is due to (1.3). By Lemma 2.2, we have
[0+ a5 = a0+ Dty 5 = 1), 26)
Substituting (2.6) into (2.5), it is obtained that

‘ f V(B (r))dr f B f _S(Irl—rgl_“/2+l)dr1dr2
0 0

< (= a/2) e = P+ 1 - sP)
< CT*P|t — s>, (2.7)

by the relations that s < ¢ < 7T, T > 1,and a € (0,2 A d).
Case II: 0 < s < t/2. From the inequality |a + b|> < 2(|al* + |b|?), it gives that

¢ 2
E f V(Byi(r)dr

Using Lemma 2.6, (1.3), and the integral substitution, we have

2

/2
+2E‘ f V(BY(r)dr| . (2.8)

t 2
SZE‘ f V(BE(r))dr
1/2 ’

< 2d/2E

/2 /2 2
]E' f V(sz(r))dr f V(B(r) + a;)dr
’ /2 /2
f f E[yn(B(r) + a;", — B(ry) — a;,) + 11drdr,
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t/2—s 1/2—s
< f f fd(yh(y + ai’lﬁ-s,t - ai’;:—s,t) + Dpiyr—r(0)dydridr,
0 0 R

t/2—s 1/2—s
< f f d(yh(y +ar, —ay )+ Dpp—n, dydridr,
0 0 R
< CT*|t)2 - 5|79, (2.9)

where we have used the computations similar to (2.7) in the last step.
To combine (2.8) with (2.7) and (2.5), it is found that

2
< CT*P(t/2P7 7 + [t/2 = s77*?) < CT*P|e — P72, (2.10)

!
E‘ f V(Bg:f(r))dr
So, to sum up (2.7) and (2.10) in the above two cases, we can complete the proof. O

Proposition 5.3. Under condition (1.3), set B € (0,1 — a/2), and there exists C > 0 dependent on «
and B such that for all x,z € RET>1,and0<s<t<T,

S S 2
E’ f V(By(r)dr — f V(B3 (r)dr| < CT*PsFP PPt — sf(lx — 2/ + 1). 2.11)
0 | 0 )

Proof. By ngf(r) = Bo,(r) + a7, Lemma 2.5, and the inequality |a + b|" < 2" !(|a|* + |b|"), we have

rto

2

3= E‘ f S V(BE:(r)dr — f S V(BE(r)dr
0 0

2

= E‘ f V(Bos(r) + rGy, + a;;)dr — f V(By,s(r) + a;5)dr
0

0
st
]Rd

N S 2
+ f E’ f V(Bos(r) + ry + a;))dr — f V(Bo,s(r) + a;5)dr| pe=()dy
RY 5/2 ‘ "

s/2
< E
R4

/2 s/2
+ f E‘ f V(Bo(r) + (s = )y + a;’, )dr — f V(Bo(r) + a;*.)dr
R 0 0

<2 [ 5
R4

s/2 s/2
12412 f 1 E‘ f V(B(r) + (s = )y + a%, )dr - f V(B(r) + a;=, )dr
R 0 0

=31+ 3, (2.12)

2

s/2 s/2
f V(Bo(r) + ry + a;))dr — f V(Bos(r) + a;5)dr| pe=s(y)dy
0 0 !

2

s/2 s/2
f V(Bos(r) + ry + a;;)dr — f V(Bos(r) + a;5)dr| pe=s(y)dy
0 0 !

2
pe=(y)dy

2

s/2 s/2
f V(B(r) + ry + a;))dr — f V(B(r) + a,;5)dr p=(n)dy
0 0

2
p=(y)dy

. - . N d
where the second to last inequality is due to the integral substitution and { By ,(5)}sej0..) = {Bo:(t—5)}sef0.1
and the last inequality is due to Lemma 2.6.

For 3, using the symmetry of k(x, y) and the integral substitution, it is obtained that

s/2 s/2
3, =292 f f f E[k(Br1 +ry+a,, B, +ny+a;;
rR:Jo  Jo
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—k(B,, + iy +a>,B, +a>) —k(B,, +a., B, +ny+a.:

T, t’ r,s r,s?

+k(B,, +a;", B, +a; ]a’rldrng(y)dy

s/2
:2d/2+1fdf f nnﬁzydrldrzpf . (y)dy, (2.13)
R4 Jo 0

rzt

where we set

ﬂf«lzrfzy _E[k(Brl Trny+ ar| 2 Brz TRy+ arzt k(Brl Tny+ arl 1 B + afzzs
— k(B,, + a5, By, + 1oy + @) + k(B + a5, By, +a)| (2.14)

By r, < r; and the independence of Brownian increments and the integral substitutions, we obtain

Neres = [k(B,l — B, + B, +riy+a, B, +ny+a,
—k(B,, — B, + B, + riy +a;", B,, + a;")) = k(B,, = B,, + B, + a;", B, + ny + a;’,)
+k(B,, — B, + B, + a;*, B, + 4, ]

~ [ [ KGRI P 2= v+ a2 @) = pron oty =)
PG = ry = a) - pnG - a)|dxdy
ffy kGE+3,9)| pron G+ (2 = 1)y + @ = a5 = pryn(E+ 1y + @, — af,
— Pr-n(X =1y +a —ay )+ pron(X +a; —ar ]prz(y a;’)dxdy (2.15)

We write b, := (t S)” 2. To substitute (2.15) into (2.13), and by the absolute-value inequality and the
integral substltutlons about y, we get

s/2
Wﬂﬂfffﬂmwm

= Pr- rz(x+bstr2y+ar21 ar; s Prz(y—bsﬂ”zy—arz’ t)_prz(y_a o ﬁfdrldFZPI(y)dy

s/2
2““] [ f‘ffgmwyw

pr| "z(x+bSIr2y+ar2t_ar]s pr1 rz('x bSlr1y+arzs_ar1t)+prl Vz('x+arzs_ar13
- Pn (0 — a5 )dxdydridrypi(y)dy
=: 31 + 3p5. (216)

Pr1 rz(x+bst(72_rl)y+ar21 rl[

pr1 rz(x+bn(7’2—’”1))’+ar2, rlt

Notice that 8 € (0, 1). Thanks to (2.3) and (1.3), it holds that

ff k(x +y, Yl

— DPr- rz(x+ b Ay + arzt r1 s

sff@mnn
R2d
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1-p
y : —B(d+1)/2 , ~Bd+1)/2
AP = bgray — a) = pp(G— aS)|  dxdy(ry — ry) PV PO

| =byny—a +ayt Pl - byry — as,+ay . (2.17)

r,s n,s

On the one hand, by b,, = (53)'? and a}} - a;5 = %(x — 2)r, it is found that

-
| = bgry —a;", +a;” Pl = by,ray — a, +at P = (T)Brfrfly + by, (x - 2. (2.18)

ri,Ss r,s

On the other hand, notice the fact that pf'(x) = (2m)(!42g-4/2¢1-P/2, ,(x). Then, by the inequality
la + b < |alf + |bP(B € [0, 1]) and Lemma 2.2, we have

ff (ya(®) + 1)

prz(y bs 1y — Clrz z) prz(y a,,. ;)

1-8
Pri-n(X + by (ra —r)y +as; — ay’) = pr_n(X + bory + a3, — ay
1_

B
dxdy

f (Yh(x) + 1)(pr1 (x+bst(r2 - rl)y+arzz rl t) +pr1 (X+bstr2y+ar2t Clr] s )ﬁ
PG = bury = 0y + G- a2y

< C(ry = ) ((r = 1) + DA f a (Prasa-p@ = bory = @) + Prja-pG — af))dy
R
< C(ry = Y (1 = 1) + DA, (2.19)

where the last step is due to the integral substitutions abouty and ||p/||1ge) = 1.
To substitute (2.18) and (2.19) into (2.17), we get

- [ —
Ji < C<—ts>ﬁ(r1 — ) P((r1 = )+ DAy + by (x - 2. (2.20)
S
In addition, by the inequality |a + b|** < 2%2~' v 1(|a|*® + |b|*) (B € (0, 1)),
r1—3s
f ly + by, (x — 2)[*pi(y)dy < C f (W% + (—=Plx — d*)p1(y)dy
R R4 st
l’ —_—
< C((—ts)ﬁpc 1) 2.21)
S

Noticing that —a/2 — /2 > -1 (ie., B < 1 —a/2 < 2 — @), and by (2.20), (2.21), and the Fubini
theorem,

t—s 5/2
Susad =ty f f (1 = PP = 12+ AP drdr f by + bos(r = P 1 0)dy
< OO 4 B — 5 f by + by, (x = D py(y)dy
Rd

l —_
< Cs¥%(s2? + D P - s)ﬁ((—ts)'glx —Z# + 1. (2.22)
S

For 5 € (0, 1), by (1.3) and (2.4),

jlz = f k(x +y,y)l
R2‘[
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- prl—rz(} - bs,lrly + afz, a,,, t) + Pr- rz(x + arz s r1 s prz(y arg v)d—

S ff (lyh(x)|+ 1)pr1 rz(x+bsl(r2_rl)y+ar2t rl t) pr1 r2(x+bslr2y+ar2t arls

R2d

pr1 rz(x bSlr1y+ar25 r1 t)+prl ”z(x+arzs arls prz(y al‘z s)d—d—
< Plbg.ray + a, —a’l. (2.23)

n,s

(ri = )PP Plbg iy + a, -

r1s

Using the inequality |a + b}’ < |al + |bPP(B € [0, 1]) and Lemma 2.2,

f (lya()l + 1)

prl rz(x bstr1y+ar23 rl t)+p"1 rz(x+ar2s ar|s

X,Z

Pri- rz(x + bb G rl)y + arzt a,, t) Pri- rz(x + by 2y + Cl —a.

B
dx

< f (lya(ol + 1) Pritn G+ bory = r)y + il — @) + pp b (X + byry + af, - aty,

+pr' rz(x b ’r1y+ar2v r1 t)+pr1 (x+ar29 -ar )d)—c

r1,s

< C(ry = )P ((r; — )™ + 1). (2.24)

Using the Fubini theorem for (2.23), and substituting (2.24) and (2.18) into (2.23),

J12 f (l')’h(X)' + 1) pr1 rz(x + bs t(r2 - ”1))’ + a - ar| t pr1 rz(x + bs trZy + arzt arl s
_prl—rz(}_bS,lrly+af2,?s rl t) +pr1 Vz(x+ar2 s arl K] d_f pVQ(y rz N
(r1 — 1) PP b, Ty + am a;” Y|'6|bstr2y + am a;’
< C<T>ﬁ<rl =) P((r1 = 1) + DAALY + by u(x = ). (2.25)

Recalling that —a/2 — 8 > —1, and by (2.25), (2.21), and the similar computations to (2.22),
t—s s/2 a2
I < c<—>ﬁ (r1 — ) P((ry = 1) + DA Adrdr b 2 pi(y)dy
< CSZ-Of/Z(s“/2 + 1)fﬁ(t - s)ﬁ((—t)/ﬂx —Z%# +1). (2.26)
S

To substitute (2.22) and (2.26) into (2.16),

t -
3, < Cs7 (s 4+ Dt - s)ﬁ((—ts)ﬁ|x — 7P+ D). (2.27)
S
Notice that 3, is similar to 3. By a”*,, — a;",; = =*(x — 2)(r — s) and the similar computations
to (2.27), we obtain
3y < Cs* (s 4+ Dt - s)ﬂ((—)ﬁpc —7# +1). (2.28)
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At last, substituting (2.27) and (2.28) into (2.12), and by the relations that 2 — 8 — /2 > 0 (because
of e (0,1 —a/2)anda € (0,2Ad)), T >1,and s <t <T,
t —
I < Cs7P(s + 1) (s - s)ﬁ((—ts)/ﬂx — %+ 1)
s
< CTYPBPPR B — s (|lx — o + 1). (2.29)
So, we complete the proof. O

The proof of Theorem 1.1. Without loss of generality, we assume that ¢ > s. Firstly, by (2.1), we have

uy(t, x) — up(s, x) = f Eglexp{V.-(0)} — exp{V..(s))]pi(z = Duo(dz)

R4

f Eg exp{ V. o()}pi(z = X) = ps(z = 0)luo(d2). (2.30)

Then, by the inequality |a + b|" < 2" !(|a|* + |b|"), we obtain

n

Elug(t, x) — ug(s, )" < 2" 'E

f Eslexp{V..(1)} — exp{ V. .(s)}pi(z = x)uo(d2)
R¢

n

+2"E

f B exp( Ve ()pi(z = ) — py(z — 0)luo(d2)

R4

=1+ 1, (2.31)

In 7, by the elementary inequality (a + b)> < 2(a® + b?), we find that for x,z € R,

2

E|V..(0) - f/m(s)|2 = ]E' f V(B (r)dr - f V(B (r)dr
2

+2B| | V(BS(r)dr - f V(BS(r)dr| .
0 0

<2]E’f V(B (r))dr

(2.32)

Thanks to 8 < 1 — @/2 and @ > 0, it holds that 2 — a/2 — 28 > a/2 > 0. To combine (2.32) with
Propositions 5.2 and 5.3, and by the relations that 7 > 1 and s <7 < 7T,

A A 2
B|Vo(t) = V()| < CTlt = 5P 4 CTOPH 202 By — (= 2 + 1)

<CT*Plt - sP(x -2 + 1). (2.33)

In addition, by the inequality |a/ < ¢’ (8 € (0, 1)), we find that
d(lx — 2% + Dpi(z = Oluol(dz) < 7 piyi-p) * luol(x) + p * luo(x). (2.34)
R

Hence, by (2.33), (2.34), and T > 1, we find that

[ =
R4
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<CT? sup  p, = luol(x)|t — sP, (2.35)
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where the last step is due to 6 < s < ¢, too.
Using Proposition 5.1 and (2.35), we obtain

I, < C'0"(@2n— DI PT" {(Bityy(t, x))'"* + (Bity (s 1, )}

n/2
A sup prrlul) e — s (2.36)
re[6,T/(1-B)]

Second, from (2.5), we find that for 8 € (0, 1),

< f B expl Vec(lIpic = ) = pya = Vo)
Rd

< Cn(t—d/Z—l + S—d/Z—I)ﬁn|t_ slﬂn

' E[ fR ) Eg exp{ V. o()}pi(z = x) = ps(z - x)|1‘/3|uo|(dz)]

n

(2.37)

Then, by the inequalities that |a + bf® < |al’ + |bP(B € [0,1]) and |a + b|* < 2" '(Ja|" + |b|"), and
P P(x) = QmPAR(1 = By py g (),

B| f Bpexp(VeclIpiz = ) = iz = 0l o)
R4
< E[f Ep exp{f/x,z(s)}(ptl_ﬂ(z —x)+pl Pz - x))luol(dz)]
R4

< C"(zﬁd/Z + Sﬁd/z)"E[f Ep exp{\A/x,Z(s)}(pﬁ(Z - Xx)+ pﬁ(z - X))|M0|(dZ)]n
R4
< C"(P? + Sy Bity(s,1/(1 - ), x) + (s, s/(1 = B), x)]. (2.38)

where we recall that zy(¢, s, x) is defined in (2.7).
To substitute (2.38) into (2.37), and by the relationd < s <t < T,

I, < (PP 4 PRy g 2P B (s, 1/ (1 = B), x) + Bty (s, s/(1 = B), 0)|lt = s
< CrTPI R B (s, 1/ (1 - ), x) + Eity(s, s/(1 = B), )]t = s, (2.39)

To combine (2.31) with (2.36) and (2.39),

Elug(t, x) = ug(s, 0" < C"0"(2n = DI {(Bityy (1, x))'* + (Bityy(s. 1, 1))}

n/2 5
(- sup perluol) I — 5P
rel6,T/(1-p)]

+ CM TR B (s, 1/ (1 = B), x) + Big(s, /(1 = B), x) it = s,

Moreover, by Proposition 4.1 and the relations that 6 < 1 < 7,8 < 1 and 6 < egz, we can obtain that
foralln € N,

Elug(t, x) = ttg(s, 0" < C"0"e“" (2n = D)1 2T" exp {CO75 1 075
n/2

n
A sup prluol) It - s
re[6,T/(1-B)]
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4 O COPnr pBdn 2 5~(d/2+1)pn exp {Ceﬁ = n%}
n
sup  p, # luol(x)) It — s
re[6,T/(1-B)]

L5 sup pful(x)) Tt — s, (2.40)
re[6,T/(1-p)]

At last, by (1.6), (2.40), and the classic Kolmogorov continuity theorem, we find that for all 8 €
(0,1 — a@/2), there exists a temporal §—Hélder continuous modification of ug(z, x) on [0, T]. Because ¢
and T are any, the proof can be completed. O

The proof of Theorem 1.2. Assume that T > 1 and 0 < s <t < T. Let n be a positive integer.
(i) Through (2.4) and Lemma 2.4, it can be proved that

(exp {9 [)t V(Bf)dr} —exp {9 fos V(Bf)dr})uO(Bf)]
+ EB[ exp {9 LS V(Bf)dr}uo(Bf)] — EB[ exp {9 f: V(Bf)dr}uo(Bf)]

_ fR By exp s fo t VB dr) — exp o fo VB pie o)

+Eg[exp {9 fo x V(Bf)dr}uO(Bf)] —EB[exp {9 fo S V(Bf)dr}uo(Bf:)]. (2.41)

M(')(t, -x) - MH(S’ X) = EB

Next, by the similar computations to (2.31), we obtain
Elug(t, x) — ug(s, x)I"
! N
f Ep| exp {0 f V(Bg’f(r))dr} —exp {0 f V(Bg’f(r))dr}]p,(z — X)up(dz)
R¢ 0 ' 0 '

+2"1E EB[eXp {9 f s V(Bf)dr}uo(Bf)] - EB[exp {9 f S V(Bf)dr}uo(Bi‘)]
=D +D,. o 0 (2.42)

n

<2 g

n

For D, using the method of proof similar to Proposition 5.1, it not difficult to check that

Dy < 277'0(2n = D)2 {(Bity (1, x))'" + (Bity (s, 1, ))'*}

To associate the above (2.43) with Propositions 5.2 and 4.1,

2

t n/2
f V(Bgf(r))dr pt(z—x)luol(dz)) . (2.43)

N

Dy < C"O"((2n = ID2T* [(Bity(t, ) + (Bityy(s. 1, %))} | = 5|~ 4"
< €SP (20 = DINPT exp {COT 1 N (py ol ()"t — | (2.44)
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For D,, from the independence of Brownian increments and x-Holder continuity of uy, it is found that

n

D, =2""E

EB[ exp {9 fo V(Bf)dr}uo(B, — B, + B;f)] - EB[ exp {9 ﬁ V(Bf)dr}uo(Bf)]

f EB[ exp {9 f S V(Bf)dr}‘uo((t — )2y 4 BY) — uo(BY)
R 0

n

<2 lg

|pray

< celzuexp{o [ vaparl]( [ prpoas) a- sy

—a

< €SP exp (COTT R (e — 5) 2, (2.45)

where the last step is due to Proposition 4.1.
Notice that 0 < s < ¢ < T. To combine (2.42) with (2.44) and (2.45), it is found that for all x € R¢
and integer n > 1,

4,

Eluy(t, x) — ug(s, X)I* < C"eCOT exp{ceﬁ T in f"}((zn D12 =w/2n

(sup py = luol(0)) Tt — 5172, (2.46)
ref0.T}
where we have used the fact that k/2 <1 — a/4 fork € (0,1] and a € (0,2 A d).
So, by (2.46) and the Kolmogorov continuity theorem, we can prove the result.
(i1) By uy = C and the method similar to (2.41), it is obtained that

!
o(t, X) — tg(s, ) = C" f Eg| exp {9 f B“(r))dr} - exp{ f B“(r))dr}] iz = N)dz. (2.47)
R4
Moreover, using the computations similar to (2.44) and 0 < s <t < T, we find that for all x € R? and
integer n > 1,

—a

Elug(t, x) — ttg(s, 0" < C"e“ T (2n = DINPT exp {COT=n>5 e — 5|1/ (2.48)

Lastly, through (2.48) and the Kolmogorov continuity theorem, we can complete the proof. O
6. Conclusions

This work mainly studies the temporal Holder continuity for the Feynman-Kac formula of the
parabolic Anderson model under the rough initial condition p, * |ug|(x) < co. As a comparison, we
also consider the function-valued initial conditions uy, = C and u, € C*(R?) with x € (0, 1]. Howeyver,
many function-valued initial data have not been considered in this paper, which will be a future work.
Besides, our future work is also going to investigate the case of time-space generalized Gaussian field
and rough initial condition.
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