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Abstract: Optimization techniques can be used to find the optimal combination of inputs and 

parameters and help identify the most efficient solution. Aggregation operators (AOs) play a prominent 

role in discernment between two circulations of prospect and pull out anxieties from that insight. The 

most fundamental objective of this research is to extend the interaction AOs to the interval-valued 

Pythagorean fuzzy hypersoft set (IVPFHSS), the comprehensive system of the interval-valued 

Pythagorean fuzzy soft set (IVPFSS). The IVPFHSS adroitly contracts with defective and ambagious 

facts compared to the prevalent Pythagorean fuzzy soft set and interval-valued intuitionistic fuzzy 

hypersoft set (IVIFHSS). It is the dominant technique for enlarging imprecise information in decision-

making (DM). The most important intention of this exploration is to intend interactional operational 

laws for IVPFHSNs. We extend the AOs to interaction AOs under IVPFHSS setting such as interval-

valued Pythagorean fuzzy hypersoft interactive weighted average (IVPFHSIWA) and interval-valued 

Pythagorean fuzzy hypersoft interactive weighted geometric (IVPFHSIWG) operators. Also, we study 
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the significant properties of the proposed operators, such as Idempotency, Boundedness, and 

Homogeneity. Still, the prevalent multi-criteria group decision-making (MCGDM) approaches 

consistently carry irreconcilable consequences. Meanwhile, our proposed MCGDM model is 

deliberate to accommodate these shortcomings. By utilizing a developed mathematical model and 

optimization technique, Industry 5.0 can achieve digital green innovation, enabling the development 

of sustainable processes that significantly decrease environmental impact. The impacts show that the 

intentional model is more operative and consistent in conducting inaccurate data based on IVPFHSS. 

Keywords: hypersoft set; interval-valued Pythagorean fuzzy hypersoft set; IVPFHSIWA operator; 

IVPFHSIWG operator; MCGDM 

Mathematics Subject Classification: 03E72, 68T35, 90B50 

 

1. Introduction 

In recent years, there has been a growing interest in using fuzzy mathematical models and 

optimization techniques in digital green innovation for Industry 5.0. This is due to the increasing need 

for sustainable industry practices and the need to optimize processes to minimize environmental impact. 

The environmental impact of industry refers to the negative effects of industrial activities on the 

environment, including air and water pollution, deforestation, greenhouse gas emissions, and 

biodiversity loss. Industrial activities can have both direct and indirect impacts on the environment. 

Fuzzy mathematical models are a type of mathematical model that can handle uncertain or vague data. 

This is particularly useful in digital green innovation, where data may be incomplete or imprecise. 

Fuzzy logic can model complex relationships between inputs and outputs and help identify optimal 

solutions without a clear answer. Optimization techniques can be used to bargain the best possible 

solution to a problem. In the context of digital green innovation, this might involve optimizing 

processes to reduce energy consumption or minimize waste. Optimization techniques can be used to 

find the optimal combination of inputs and parameters and help identify the most efficient solution. 

Fuzzy mathematical models and optimization techniques offer a variety of applications in digital green 

innovation for Industry 5.0. One significant application is the optimization of energy-efficient 

buildings. Using these techniques, engineers and architects can develop more energy-efficient designs 

that reduce energy consumption and minimize environmental impact. In addition, these techniques can 

be used to identify the optimal combination of renewable energy sources for a particular location. 

Renewable energy sources such as solar, wind, and hydropower can provide clean and sustainable 

energy, but the optimal combination for a particular location depends on climate, geography, and 

available resources. Fuzzy mathematical models and optimization techniques can be used to identify 

the most effective and efficient combination of renewable energy sources for a specific location, 

reducing greenhouse gas emissions and minimizing environmental impact. Furthermore, optimization 

techniques can be used to improve supply chain efficiency and reduce the environmental impact of 

transportation and logistics. By optimizing transportation routes and modes, companies can reduce 

emissions and fuel consumption, resulting in a more sustainable supply chain. Optimization techniques 

can also identify the optimal time to maintain equipment and vehicles, reducing downtime and 

improving efficiency. 

Overall, fuzzy mathematical models and optimization techniques provide numerous opportunities 

for digital green innovation in Industry 5.0. By utilizing these techniques, businesses and industries 

can develop more sustainable processes, technologies, and supply chains with a reduced environmental 
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impact, helping to create a more sustainable future. In addition to fuzzy mathematical models and 

optimization techniques, another area of interest for digital green innovation in Industry 5.0 is Multiple 

Criteria Group Decision Making (MCGDM) mathematical models and optimization. MCGDM is a 

decision-making approach that is particularly useful when multiple criteria or objectives need to be 

considered. In digital green innovation, this might involve balancing economic, environmental, and 

social factors in decision-making processes. MCGDM can help identify optimal solutions that take 

into account multiple factors. Optimization techniques can be used to identify the best possible solution 

to a given problem. In the context of MCGDM, this might involve identifying the optimal trade-off 

between different criteria or objectives. Optimization techniques can help identify the most efficient 

solution that satisfies all criteria. MCGDM mathematical models and optimization techniques can be 

used to develop more sustainable practices in Industry 5.0. For example, these techniques can optimize 

supply chains to minimize the environmental impact or develop green technologies that balance 

economic and environmental factors. Most verdicts are reserved when the objectives and boundaries 

are ordinarily unstipulated or indistinct in realistic surroundings. The theory of fuzzy sets (FS), 

originated by Zadeh [1], provides a means of dealing with equivocal and tentative data in the DM 

process. Xiao [2] introduced a cost-aware, fault-tolerant and reliable strategy for operator development 

on fuzzy complex event processing systems based on the TOPSIS technique. Turksen [3] proposed an 

interval-valued FS (IVFS) with basic operations. Existing FS and IVFS cannot provide evidence about 

a substitute non-membership degree (NMD). However, the current FS and IVFS cannot handle 

situations where experts consider an NMD in the DM process. Atanassov [4] introduced the 

intuitionistic fuzzy set (IFS) to overawed this inadequacy. Wang and Liu [5] proposed several 

operations for IFS. Xiao [6] presented the distance measure for IFS and utilized it in pattern 

classification problems. Atanassov [7] extended IFS to an interval-valued IFS (IVIFS). Xiao [8] 

introduced the novel evidential fuzzy multi-criteria decision-making (MCDM) method, is proposed by 

integrating Dempster-Shafer theory with belief entropy. Despite these advancements, the existing IFS 

cannot handle inconsistent and conflicting data, as it assumes a linear relationship between membership 

degree (MD) and NMD. When the MD and NMD values of a team of experts exceed 1 (e.g., MD = 0.6 

and NMD = 0.7), the current IFS cannot effectively handle the situation as 0.6 + 0.7 ≥ 1. 

Over the past few decades, various AOs have been settled and widely studied in several extensions 

of FS and non-classical decision theory circles. These AOs’ well-established structures have originated 

their approach into frequent application fields such as economics, biology, education, knowledge-

based systems, and robotics. The utility of AOs in a field depends on how well the mathematical 

properties of AOs correspond to the fusion procedure of elementary facts. Some AOs have 

mathematical properties that can be deduced as behavioral parameters, i.e., their values stimulus the 

operator's behavior. Previous research on AOs and their applications has concentrated on the domain 

exemplification competency of the power of DM. In addition, AOs appearances are imperative in the 

performance of factors, which is essential for specialists, particularly when these interactive constraints 

are deputations of domain-specific facts that are openly or statistically tough to an extent. In this case, 

the behavioral parameters of these AOs become more than just another mathematical feature. Yager [9] 

introduced the Pythagorean fuzzy set (PFS) to address the limitations of existing fuzzy set theories, 

which could not handle inconsistent and uncertain data. The PFS corrects these errors by revising the 

basic condition κ + δ ≤ 1 to κ2 + δ2  ≤ 1. Khan et al. [10] introduced the dissimilarity measure and 

refined the VIKOR method for PFS. Rahman et al. [11] extended the PFS theory by proposing the 

Einstein-weighted geometric AOs, which were then used to develop a multi-attribute group decision-

making (MAGDM) technique. Huang et al. [12] protracted the MULTIMOORA technique for PFS 

based on distance measure and score function. Zhang and Xu [13] further expanded on the operational 
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rules of PFS and applied the TOPSIS to address MCDM problems. Lin et al. [14] developed the 

directional correlation coefficient measures for PFS and used their presented measures in medical 

diagnosis and cluster analysis. Wei and Lu [15] introduced the power aggregation operators for PFS 

and deliberated their essential properties, demonstrating their use in a decision-making system for 

multi-attribute decision-making (MADM). Akram et al. [16] clarify the application of the ELECTRE 

II technique for group decision-making in a complex Pythagorean fuzzy context. Xiao and Ding [17] 

established the divergence measure between PFS by compelling the advantage of the Jensen–Shannon 

divergence. They also developed a competent DM algorithm to resolve medical diagnoses. Wang and 

Li [18] investigated the interactions between Pythagorean fuzzy numbers (PFNs) and power 

Bonferroni mean operators. Lin et al. [19] presented the partitioned Bonferroni mean AOs for linguistic 

PFS with their essential properties. Khan et al. [20] developed the Archimedean AOs for T-spherical 

fuzzy sets and established a MADM model to determine DM complications. Akram et al. [21] 

developed the complex Pythagorean fuzzy N-soft VIKOR technique that can direct an excessive 

contract of linguistic inaccuracy and imprecision intrinsic in human valuations. Zhang [22] proposed 

a unique DM method based on similarity measures to address MCGDM obstacles in PFS scenarios. 

Riaz and Farid [23] protracted the hybrid AOs for picture fuzzy sets and established a DM technique 

to resolve MCDM problems. Lin et al. [24] proposed the partitioned Heronian mean AOs for picture 

fuzzy sets and developed a MADM model to resolve DM issues. Finally, Peng and Yang [25] extended 

the theory to include interval-valued Pythagorean fuzzy sets (IVPFS) and proposed a DM system based 

on their proposed method. Lin et al. [26] evaluated the Internet of Things platforms as an MCDM 

problem since it comprises numerous concerns. A novel incorporated MCDM technique is put forward 

for handling this problem. Rahman et al. [27] expanded weighted geometric AOs to interval-valued 

Pythagorean fuzzy sets (IVPFS) and developed a DM method based on these operators. Lin et al. 

[28] developed the weighted AOs for linguistic q-rung orthopair fuzzy sets and established a MADM 

technique based on their developed operators to solve DM issues. While these methods have a broad 

range of applications, there are some limitations to using them in parametric chemistry due to their 

inadequacy in dealing with uncertainties and vagueness. To address these issues, Molodtsov [29] 

introduced the concept of soft sets (SS) and their properties for handling chaos and ambiguity. Building 

on this idea, Maji et al. [30] proposed basic operations for SS and later established fuzzy soft sets by 

combining fuzzy and soft sets theories [31]. They also extended the concept to intuitionistic fuzzy soft 

sets (IFSS) [32], for which Arora and Garg [33] developed AOs and a DM technology based on these 

operators. Das [34] established a group DM technique for fuzzy parameterized intuitionistic multi-

fuzzy N-soft set. Additionally, Jiang et al. [35] presented interval-valued IFSS (IVIFSS). They 

discussed its essential properties, while Zulqarnain et al. [36] proposed a TOPSIS technique based on 

the correlation coefficient (CC) for IVIFSS to solve MADM problems. Peng et al. [37] extended the 

concept to PFSS by incorporating both PFS and SS, and Zulqarnain et al. [38] developed AOs for 

IVPFSS and presented a MAGDM approach for solving real-world problems. 

The theory of hypersoft sets (HSS), proposed by Smarandache [39], encompasses compound sub-

parameters in the parametric function 𝑓, which represents the cartesian product with 𝑛 features. HSS 

is considered the most suitable model for handling multiple sub-attributes of the parameters in 

association with SS and other established concepts. There are various HSS approaches with 

corresponding DM methods. The possibility IFHSS was introduced by Rahman et al. [40], and they 

established DM methods using similarity measures. Rahman et al. [41] demonstrated a DM 

methodology for neutrosophic HSS. Saeed et al. [42] utilized neutrosophic hypersoft mapping to 

diagnose the brain tumor. Zulqarnain et al. [43] protracted the AOs for IFHSS and extended the DM 

methodologies consuming their settled AOs. Zulqarnain et al. [44] extended IFHSS to PFHSS with 
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fundamental operations. Zulqarnain et al. [45] raised the AOs in the IVPFHSS setting and 

demonstrated an MCDM technique to resolve DM complications. The selection and assessment of 

suppliers is a crucial article of proficient movement. Variations in current management policies use 

suppliers’ evaluations dignified from various perspectives, comprising environmentally friendly and 

public desires. Consequently, this delinquent is called sustainable supplier selection (SSS) in the 

literature and is a reference delinquent for MCGDM. At the same time, multiple authorizations [46–49] 

designate the necessity for an MCGDM method for worker selection, concentrating on proper lexical 

deliberations for environmental facts and expert expectations. 

1.1. Motivation 

The IVPFHSS is a composite structure that combines the properties of both IVPFS and HSS. 

IVIFSS and IVPFSS are widely used systematic tools for handling known and uncertain information. 

The use of AOs in DM is crucial, as it enables the combination of information from multiple sources 

for a comprehensive evaluation. However, the current AOs for IVPFHSS are inadequate in dealing 

with imprecise and uncertain data in DM development. Additionally, the model proposes that the NMD 

in interval form is an independent NMD (MD). Therefore, these models are not effective in providing 

clear preferences for alternatives. To address this issue, incorporating IVPFHSNs over interaction AOs 

is an intriguing topic. We propose the interaction AOs for IVPFHSS, such as the IVPFHSIWA and 

IVPFHSIWG operators. These AOs can be compared to prevalent fusion extensions of FS. The models 

discussed above suggest that the overall MD (NMD) is determined by its compatible NMD (MD) 

interval values. Therefore, the outcome of the core replica is adverse, and the partiality of the 

alternative cannot be appropriately constituted. So, incorporating these interval-valued Pythagorean 

fuzzy hypersoft numbers (IVPFHSNs) with their interactions is an encouraging topic. The AOs defined 

in [45] are not abundant to check the data on better concepts and have a spongy ability to acquire 

precise outcomes. Such as U  = {𝔲1, 𝔲2}  be a set of two experts with weights 𝜔𝑖   = (0.6, 0.4)𝑇  and 

e1, e2 be the selected factors with their compatible sub-parameters, such as e1 = {e11, e12} and e2 =
{e21} . Where 𝔏′  be a 2-tuple cartesian product of the considered factors, can be indicated as 𝔏′ =

e1 × e2 = {e11, e12} × {e21} =  {(e11, e21), (e12, e21)} = {�̌�1, �̌�2}  with weights 𝜈𝑗  = (0.4, .0.6)𝑇 . Let 

ℑ  be an alternate, then preferences of experts can be précised as ℑ  = 

[
([0.7, 0.8], [0.0, 0.0]) ([0.2, 0.6], [0.3, 0.5])

([0.3, 0.6], [0.5, 0.7]) ([0.5, 0.7], [0.1, 0.6])
] longsighted the sub-parameters of the planned aspects 

in terms of IVPFHSNs. Then, we conquered the collected value by the IVPFHSWA [45] operator is 

⟨[0.8333, 0.9487], [0.0, 0.0]⟩. Similarly, we engaged the IVPFHSWG [45] operator and achieved a 

collected value ⟨[0.3584, 0.6505], [0.0, 0.0]⟩ . This shows that there is no effect on the collective 

consequence 𝛿�̌�𝑘 . As 𝛿�̌�𝑘  = 𝛿�̌�11  = [0.0, 0.0], 𝛿�̌�12  = [0.5, 0.7], 𝛿�̌�21 = [0.3, 0.5], and 𝛿�̌�22 =  [0.1, 0.6], 

which is arbitrary. An amended consolidating approach appeals to investigators to crack baffling and 

unsatisfactory details. Consequently, the significances of these AOs are unreliable, and no extra 

information for substitutes is specified. Hence, integrating these IVPFHSNs over AOs is a stimulating 

theme. The methodologies taken in [45] are unsatisfactory in scrutinizing the facts with a reflection on 

established theory and clear implications. Then, we originate the composed value using the 

IVPFHSWA and IVPFHSWG operators unable to deliver the proper evaluation considering the 

interaction. So, we claim that the developed interaction AOs for IVPFHSS is an enhanced classification 

technique that fascinates detectives to crack incomprehensible and inadequate specifics. 
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1.2. Significant contribution 

We implement a strategy for picking sustainable suppliers using IVPFHSS information to address 

these inadequacies. An enriched consolidating system fascinates researchers to defect inexplicable and 

scarce data to address these inadequacies. IVPFHSS is energetic in DM interpreting the consideration 

concerns by accumulating abundant foundations into a particular value. The existing AOs for 

IVPFHSS cannot manage the situation while the information of any sub-attribute is given in the form 

of intervals. It is a novel amalgam configuration to handle ambiguous complications through the DM 

process. Therefore, to instigate the present investigation of IVPFHSS, we will discuss extant 

interaction AOs founded on asymmetrical facts. The fundamental purposes of the extant exploration 

are specified as follows: 

(1) To capitalize on the advantages of incorporating multiple sub-attributes of parameters in the DM 

coordination, we expanded the interaction AOs of IVPFHSS. 

(2) IVPFHSS interaction AOs are known as elegant dominant AOs. In some cases, basic AOs function 

labeling does not respond to accurate determination of the DM procedure. For this, the prevailing 

AOs need to be modified. We will propose interactional operational laws for interval-valued 

Pythagorean fuzzy hypersoft numbers (IVPFHSNs) to reveal these barriers.  

(3) Based on the developed interactional operational laws, the IVPFHSIWA and IVPFHSIWG 

operators have been introduced with their desirable properties. 

(4) A new algorithm based on the planned operators has been established to demonstrate the MCGDM 

problems. 

(5) Supplier selection is a deferential aspect of thermal power plant equipment as it appreciates the 

actual surroundings for all features. Supplier selection is a strenuous but substantial phase in 

proficient development. The constructor’s proficiency, efficiency, and eccentricity will suffer due 

to the absence of a supplier. 

(6) A comparative study of the developed MCGDM model and prevalent methodologies is delivered 

to reflect the efficacy and supremacy of our protracted model. 

The organizational structure of this article assumes the following: The second part deals with 

some elementary notions that support the configuration of our development of the advanced study. 

Section 3 proposes some new algebraic operations for IVPFHSS considering the interaction. Also, 

IVPFHSIWA and IVPFHSIWG operators will be introduced with their basic characteristics in the same 

section. Section 4 presents the MCGDM method based on the proposed interaction AOs. A numerical 

example is discussed in the same section to verify the practicality of established supplier selection 

techniques in thermal equipment plants. In addition, a brief comparative analysis is performed to 

confirm the potential of the method developed in Section 5. 

2. Preliminaries 

This section comprises some fundamental definitions that will organize the subsequent work. 

Definition 2.1. [29] A soft set over U is a pair (Ω, 𝐴), where 𝐴 is a non-empty set of attributes, and Ω 

is a mapping from 𝐴 to the power set of U, denoted by 𝑃(𝑈). 
In other words, 

(Ω, 𝐴) = {Ω(𝑡) ∈ 𝒫(𝑈): 𝑡 ∈ 𝐴, Ω(𝑡) =  ∅ 𝑖𝑓 𝑡 ∉ 𝐴}. 

Definition 2.2. [25] Let 𝐴 be any subset of 𝑈, and let [𝑎, 𝑏] be an interval in the set of real numbers. 

An interval-valued Pythagorean fuzzy set 𝐴 over 𝑈 is defined as a mapping: 
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Ω: 𝐴 → [0, 1]. 

That assigns an MD and NMD to each element 𝑡 in 𝐴, such that the MD and NMD of an element 𝑡 in 

𝐴  is an interval [𝜅𝐴
𝑙 (𝑡), 𝜅𝐴

𝑢(𝑡)]  and [𝛿𝐴
𝑙 (𝑡), 𝛿𝐴

𝑢(𝑡)]  w.r.t. 𝑈 , where 𝜅𝐴
𝑙 (𝑡)  and 𝜅𝐴

𝑢(𝑡)  are the lower and 

upper bounds of the MD interval and 𝛿𝐴
𝑙 (𝑡) and 𝛿𝐴

𝑢(𝑡) are the lower and upper bounds of the NMD 

interval, respectively. Also, satisfied the 0 ≤ (𝜅𝐴
𝑢(𝑡))

2
+ (𝛿𝐴

𝑢(𝑡))
2
≤ 1. 

Definition 2.3. [38] The pair (Ω,𝑁) is called an IVPFSS over 𝑈 and is defined as follows: 

Ω: ℕ → ℘𝐾𝑈. 

Here, ℘𝐾𝑈  denotes the collection of interval-valued Pythagorean fuzzy subsets of the universe of 

discourse 𝑈. Also, it can be represented as: 

(Ω, ℕ) = {𝑥, ([𝜅𝐴
𝑙 (𝑡), 𝜅𝐴

𝑢(𝑡)], [𝛿𝐴
𝑙 (𝑡), 𝛿𝐴

𝑢(𝑡)])|𝑡 ∈ 𝐴}. 

Where, 𝑀𝐷 = [𝜅𝐴
𝑙 (𝑡), 𝜅𝐴

𝑢(𝑡)] , 𝑁𝑀𝐷 = [𝛿𝐴
𝑙 (𝑡), 𝛿𝐴

𝑢(𝑡)] ,  𝜅𝐴
𝑙 (𝑡), 𝜅𝐴

𝑢(𝑡), 𝛿𝐴
𝑙 (𝑡), 𝛿𝐴

𝑢(𝑡) ∈ [0, 1]  and 

fulfilled the consequent state 0 ≤ (𝜅𝐴
𝑢(𝑡))

2
+ (𝛿𝐴

𝑢(𝑡))
2
≤ 1 and 𝐴 ⊂ ℕ. 

The studies mentioned above cannot deal with the situation when any expert considers the sub-attribute 

of any deliberated parameter. Smarandache [39] proposed the hypersoft set to handle such 

complications. 

Definition 2.4. [39] Let U  be a universal set and 𝒫(U)  be a power set over U , and t  = {t1 , t2 , 

t3,..., tn},(n ≥ 1) and Ti designated the set of parameters and their corresponding multi-sub-parameters, 

such as Ti ∩ Tj = φ, where 𝑖 ≠ 𝑗 for each 𝑛 ≥ 1 and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Suppose T1 × T2 × T3× … × Tn 

= A⃛ = {d1h × d2k ×⋯× dnl} be an assortment of multi sub-attributes, where 1 ≤ h ≤ α, 1 ≤ k ≤ β, 

and 1 ≤  l  ≤  γ , and α , β , γ  ∈  N. Then the pair (ℱ, 𝑇1  ×  𝑇2  ×  𝑇3 × … × 𝑇𝑛) = (Ω, A⃛)  is known as 

HSS and is defined as follows: 

Ω: 𝑇1  ×  𝑇2  ×  𝑇3 × … ×  𝑇𝑛 = A⃛ → 𝒫(U). 

Also, it is defined as  

(Ω, A⃛) = {ď, ΩA⃛(ď): ď ∈ A⃛, ΩA⃛(ď)  ∈  𝒫(U)}. 

Definition 2.5. [45] Let U  be a universal set and 𝒫 (U ) be a power set over U,  and t  = {t1 , t2 , 

t3,..., tn},(n ≥ 1) and Ti denoted the set of attributes and their compatible multi-sub-attributes, such as 

Ti ∩ Tj = φ, where 𝑖 ≠ 𝑗 for each 𝑛 ≥ 1 and 𝑖, 𝑗 𝜖 {1,2,3 … 𝑛}. Suppose 𝑇1 × 𝑇2 × 𝑇3 ×⋯× 𝑇𝑛 = 𝐴 =

{𝑑1ℎ × 𝑑2𝑘 ×⋯× 𝑑𝑛𝑙} be an assortment of multi sub-parameters, where 1 ≤ ℎ ≤ 𝛼, 1 ≤ 𝑘 ≤ 𝛽, and 

1 ≤ 𝑙 ≤ 𝛾, and 𝛼, 𝛽, 𝛾 ∈ N. Then the pair (ℱ, 𝑇1  ×  𝑇2  ×  𝑇3 × … × 𝑇𝑛) = (Ω, A⃛) is called IVPFHSS, 

and its mapping can be defined as: 

Ω: 𝑇1  ×  𝑇2  ×  𝑇3 × … × 𝑇𝑛 = A⃛ → 𝐼𝑉𝑃𝐹𝐻𝑆𝑈. 

Also, it is defined as  

(Ω, 𝐴) = {(�̌�, Ω𝐴(�̌�)): �̌� ∈ 𝐴, Ω𝐴(�̌�)  ∈  𝐼𝑉𝑃𝐹𝐻𝑆
𝑈 ∈  [0, 1]} , where Ω𝐴(�̌�) =

{〈𝜁, 𝜅Ω(�̌�)(𝜁), 𝛿Ω(�̌�)(𝜁)〉 : 𝜁 ∈ 𝑈} , and 𝜅Ω(�̌�)(𝜁) = [𝜅Ω(�̌�)
𝑙 (𝜁), 𝜅Ω(�̌�)

𝑢 (𝜁)] , 𝛿Ω(�̌�)(𝜁) =

[𝛿Ω(�̌�)
𝑙 (𝜁), 𝛿Ω(�̌�)

𝑢 (𝜁)] , κΩ(ď)(ζ)  be the MD interval and δΩ(ď)(ζ)  be the NMD interval, such as 

𝜅Ω(�̌�)
𝑙 (𝜁), 𝜅Ω(�̌�)

𝑢 (𝜁), 𝛿Ω(�̌�)
𝑙 (𝜁), 𝛿Ω(�̌�)

𝑢 (𝜁) ∈ [0, 1] , and 0 ≤ (𝜅Ω(�̌�)
𝑢 (𝜁))

2

+ (𝛿Ω(�̌�)
𝑢 (𝜁))

2

≤ 1 . It can be 

written as ℱ = ( [𝜅Ω(�̌�)
𝑙 (𝜁), 𝜅Ω(�̌�)

𝑢 (𝜁)] , [𝛿Ω(�̌�)
𝑙 (𝜁), 𝛿Ω(�̌�)

𝑢 (𝜁)]). 
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The score and accuracy functions used to calculate the alternative rank for IVPFHSS can be defined 

as follows: 

If ℱ = ([𝜅Ω(�̌�)
𝑙 (𝜁), 𝜅Ω(�̌�)

𝑢 (𝜁)] , [𝛿Ω(�̌�)
𝑙 (𝜁), 𝛿Ω(�̌�)

𝑢 (𝜁)]) be an IVPFHSN. Then 

𝑆(ℱ) =
(𝜅

Ω(�̌�)
𝑙 (𝜁))

2
+(𝜅

Ω(�̌�)
𝑢 (𝜁))

2
−(𝛿

Ω(�̌�)
𝑙 (𝜁))

2
−(𝛿

Ω(�̌�)
𝑢 (𝜁))

2

2
.     (2.1) 

And 

𝐴(ℱ) =
(𝜅

Ω(�̌�)
𝑙 (𝜁))

2
+(𝜅

Ω(�̌�)
𝑢 (𝜁))

2
+(𝛿

Ω(�̌�)
𝑙 (𝜁))

2

+(𝛿
Ω(�̌�)
𝑢 (𝜁))

2

2
.     (2.2) 

Definition 2.6. [45] Let ℳďk
= ([𝜅�̌�𝑘

𝑙 , 𝜅�̌�𝑘
𝑢 ] , [𝛿�̌�𝑘

𝑙 , 𝛿�̌�𝑘
𝑢 ]), ℳď11

= ([𝜅�̌�11
𝑙 , 𝜅�̌�11

𝑢 ] , [𝛿�̌�11
𝑙 , 𝛿�̌�11

𝑢 ]), and 

ℳď12
= ([𝜅�̌�12

𝑙 , 𝜅�̌�12
𝑢 ] , [𝛿�̌�12

𝑙 , 𝛿�̌�12
𝑢 ]) be three IVPFHSNs and β > 0, we have 

(1) ℳď11
⊕ℳď12

=

([√κ
ď11

l 2
+ κ

ď12

l 2
− κ

ď11

l 2
κ
ď12

l 2
, √κ

ď11

u 2
+ κ

ď12

u 2
− κ

ď11

u 2
κ
ď12

u 2
] , [δ

ď11

l δ
ď12

l , δ
ď11

u δ
ď12

u ]) 

(2) ℳď11
⊗ℳď12

=

([κ
ď11

l κ
ď12

l , κ
ď11

u κ
ď12

u ] , [√δ
ď11

l 2
+ δ

ď12

l 2
− δ

ď11

l 2
δ
ď12

l 2
, √δ

ď11

u 2
+ δ

ď12

u 2
− δ

ď11

u 2
δ
ď12

u 2
]) 

(3) βℳďk
= ([√1 − (1 − κ

ďk

l 2
)
β

, √1 − (1 − κ
ďk

u 2
)
β

 ] , [δ
ďk

l β
, δ
ďk

u β
]) =

(√1 − (1 − [κ
ďk

l , κ
ďk

u ]
2
)
β

, [δ
ďk

l β
, δ
ďk

u β
] ) 

(4) ℳďk

β = ([κ
ďk

l β
, κ
ďk

u β
] , [√1 − (1 − δ

ďk

l 2
)
β

, √1 − (1 − δ
ďk

u 2
)
β

]) =

([κ
ďk

l β
, κ
ďk

u β
] , √1 − (1 − [δ

ďk

l , δ
ďk

u ]
2
)
β

). 

Zulqarnain et al. [45] proposed AOs for an array of IVPFHSNs denoted as ℳ𝑒𝑖𝑗
, where 𝜔𝑖 and 𝜈𝑗 

are weights assigned to professionals and attributes, respectively, subject to certain conditions: 𝜔𝑖 > 0 

and ∑ 𝜔𝑖
𝑛
𝑖=1 = 1; 𝜈𝑗 > 0 and ∑ 𝜈𝑗 = 1𝑚

𝑗=1 . 

IVPFHSWA(ℳď11
,ℳď12

, ……… ,ℳďnm
) = 

(√1 −∏ (∏ (1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n
i=1 )

νj
m
j=1 , ∏ (∏ ([δ

ďij

l , δ
ďij

u ])
ωin

i=1 )
νj

m
j=1 )  (2.3) 

IVPFHSWG(ℳď11
,ℳď12

, ……… ,ℳďnm
) = 

(∏ (∏ ([κ
ďij

l , κ
ďij

u ])
ωin

i=1 )
νj

m
j=1 , √1 − ∏ (∏ (1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

n
i=1 )

νj
m
j=1 )  (2.4) 
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Upon analyzing the IVPFHSWA and IVPFHSWG operators, it becomes apparent that they produce 

undesirable outcomes in certain cases. To report these concerns, we propose the interaction AOs for 

IVPFHSNs. 

3. Interaction aggregation operators for interval-valued Pythagorean fuzzy hypersoft sets 

This section will present interaction operational laws for IVPFHSNs and propose the 

IVPFHSIWA and IVPFHSIWG operators based on these laws. 

Definition 3.1. Let ℳ�̌�𝑘
= ([𝜅�̌�𝑘

𝑙 , 𝜅�̌�𝑘
𝑢 ] , [𝛿�̌�𝑘

𝑙 , 𝛿�̌�𝑘
𝑢 ]), ℳ�̌�11

= ([𝜅�̌�11
𝑙 , 𝜅�̌�11

𝑢 ] , [𝛿�̌�11
𝑙 , 𝛿�̌�11

𝑢 ]), and 

ℳ�̌�12
= ([𝜅�̌�12

𝑙 , 𝜅�̌�12
𝑢 ] , [𝛿�̌�12

𝑙 , 𝛿�̌�12
𝑢 ])  be three IVPFHSNs and β > 0 , and by algebraic norms, 

interactional operational laws for IVPFHSNs can be defined as: 

(1) ℳď11
⊕ℳď12

= 

(

 
 

[√κ
ď11

l 2
+ κ

ď12

l 2
− κ

ď11

l 2
κ
ď12

l 2
, √κ

ď11

u 2
+ κ

ď12

u 2
− κ

ď11

u 2
κ
ď12

u 2
] ,

[√δ
ď11

l 2
+ δ

ď12

l 2
− δ

ď11

l 2
δ
ď12

l 2
− κ

ď11

l 2
δ
ď12

l 2
− δ

ď11

l 2
κ
ď12

l 2
, √δ

ď11

u 2
+ δ

ď12

u 2
− δ

ď11

u 2
δ
ď12

u 2
− κ

ď11

u 2
δ
ď12

u 2
− δ

ď11

u 2
κ
ď12

u 2  
 ]
)

 
 

 

(2) ℳď11
⊗ℳď12

= 

(

 
 
[√κ

ď11

l 2
+ κ

ď12

l 2
− κ

ď11

l 2
κ
ď12

l 2
− κ

ď11

l 2
δ
ď12

l 2
− δ

ď11

l 2
κ
ď12

l 2
, √κ

ď11

u 2
+ κ

ď12

u 2
− κ

ď11

u 2
κ
ď12

u 2
− κ

ď11

u 2
δ
ď12

u 2
− δ

ď11

u 2
κ
ď12

u 2  
] ,

[√δ
ď11

l 2
+ δ

ď12

l 2
− δ

ď11

l 2
δ
ď12

l 2
, √δ

ď11

u 2
+ δ

ď12

u 2
− δ

ď11

u 2
δ
ď12

u 2
]

)

 
 

 

(3) βℳďk
= (√1− (1 − [κ

ďk

l , κ
ďk

u ]
2
)
β

, √(1 − [κ
ďk

l , κ
ďk

u ]
2
)
β

− (1 − ([κ
ďk

l , κ
ďk

u ]
2
+ [δ

ďk

l , δ
ďk

u ]
2
))

β

) 

(4) ℳďk
β = (√(1 − [δ

ďk

l , δ
ďk

u ]
2
)
β

− (1 − [([κ
ďk

l , κ
ďk

u ]
2
+ [δ

ďk

l , δ
ďk

u ]
2
)])

β

, √1 − (1 − [δ
ďk

l , δ
ďk

u ]
2
)
β

).  

We will present the average interactional aggregation operator with some important results and 

properties for IVPFHSS using the above-presented interactional operational laws for IVPFHSNs in 

the following. 

Definition 3.2. Let ℳďk
= ([κ

ďk

l , κ
ďk

u ] , [δ
ďk

l , δ
ďk

u ]) be a collection of IVPFHSNs, and ωi and νj be the 

weights for specialists and multi sub-attributes, disparately, with certain circumstances 𝜔𝑖 >
0,   ∑ 𝜔𝑖

𝑛
𝑖=1 = 1; 𝜈𝑗 > 0, ∑ 𝜈𝑗 = 1𝑚

𝑗=1 .  Then, the IVPFHSIWA operator is defined as 

IVPFHSIWA:Ψn ⟶Ψ  

IVPFHSIWA(ℳď11
,ℳď12

, ……… ,ℳďnm
) =⊕j=1

m νj (⊕i=1
n ωiℳďij

). 

Theorem 3.1. Let ℳďij
= ([κ

ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]) be a collection of IVPFHSNs, and the aggregated 

value is also an IVPFHSN, such as 

IVPFHSIWA(ℳď11
,ℳď12

, ……… ,ℳďnm
) =
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(

 
 
 √1 −∏ (∏ (1 − [κ

ďij

l , κ
ďij

u ]
2
)
ωi

n
i=1 )

νj
m
j=1 ,

√∏ (∏ (1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n
i=1 )

νj
m
j=1 −∏ (∏ (1 − ([κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi

n
i=1 )

νj

m
j=1

)

 
 
 

. 

𝜔𝑖 and 𝜈𝑗 be the weights for experts and parameters disparately, with assumed conditions 𝜔𝑖 >

0, ∑ 𝜔𝑖
𝑛
𝑖=1 = 1; 𝜈𝑗 > 0, ∑ 𝜈𝑗 = 1𝑚

𝑗=1 . 

Proof. We shall prove the IVPFHSIWA operator by employing the principle of mathematical induction: 

For n = 1, we get ω1 = 1. Then, we have 

IVPFHSIWA(ℳď11
,ℳď12

, ……… ,ℳď1m
) =⊕j=1

m νjℳď1j
=

 

(

 
 
 √1 −∏ (1 − [κ

ď1j

l , κ
ď1j

u ]
2
)
νj

m
j=1 ,

√∏ (1 − [κ
ď1j

l , κ
ď1j

u ]
2
)
νj

m
j=1 −∏ (1 − ([κ

ď1j

l , κ
ď1j

u ]
2

+ [δ
ď1j

l , δ
ď1j

u ]
2
))

νj
m
j=1

)

 
 
 

=

 

(

 
 
 √1 −∏ (∏ (1 − [κ

ďij

l , κ
ďij

u ]
2
)
ωi

1
i=1 )

νj
m
j=1 ,

√∏ (∏ (1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

1
i=1 )

νj
m
j=1 −∏ (∏ (1 − ([κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi

1
i=1 )

νj

m
j=1

)

 
 
 

. 

For m = 1, we get ν1 = 1. Then, we have 

IVPFHSIWA(ℳď11
,ℳď21

, ……… ,ℳďn1
) = ⊕i=1

n ωiℳďi1

= (√1−∏(1− [κ
ďi1

l , κ
ďi1

u ]
2
)
ωi

n

i=1

, √∏(1− [κ
ďi1

l , κ
ďi1

u ]
2
)
ωi

n

i=1

−∏(1− ([κ
ďi1

l , κ
ďi1

u ]
2
+ [δ

ďi1

l , δ
ďi1

u ]
2
))

ωi
n

i=1

) 

=

(

 
 
 √1 −∏ (∏ (1 − [κ

ďij

l , κ
ďij

u ]
2
)
ωi

n
i=1 )

νj
1
j=1 ,

√∏ (∏ (1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n
i=1 )

νj
1
j=1 −∏ (∏ (1 − ([κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi

n
i=1 )

νj

1
j=1

)

 
 
 

. 

This demonstrates that the overhead statement holds for 𝑛 = 1 and 𝑚 = 1. Suppose it also holds for 

m = α1 + 1, n = α2 and m = α1, n = α2 + 1, such as 
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⊕j=1
α1+1 νj (⊕i=1

α2 ωiℳďij
)

=

(

 
 
 
 
 √1 − ∏ (∏(1 − [κ

ďij

l , κ
ďij

u ]
2
)
ωi

α2

i=1

)

νjα1+1

j=1

,

√∏ (∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

α2

i=1

)

νjα1+1

j=1

− ∏ (∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
α2

i=1

)

νjα1+1

j=1 )

 
 
 
 
 

 

⊕j=1
α1 νj (⊕i=1

α2+1 ωiℳďij
)

=

(

 
 
 
 
 √1 −∏(∏ (1 − [κ

ďij

l , κ
ďij

u ]
2
)
ωi

α2+1

i=1

)

νjα1

j=1

,

√∏(∏ (1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

α2+1

i=1

)

νjα1

j=1

−∏(∏ (1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
α2+1

i=1

)

νjα1

j=1 )

 
 
 
 
 

. 

For m = α1 + 1 and n = α2 + 1, we have 

⊕j=1
α1+1 νj (⊕i=1

α2+1 ωiℳďij
) = ⊕j=1

α1+1 νj (⊕i=1
α2 ωiℳďij

⊕ωα2+1ℳď(α2+1)j
) 

=⊕j=1
α1+1⊕i=1

α2 νjωiℳďij
⊕j=1

α1+1 νjωα2+1ℳď(α2+1)j
 

=

(

 
 
 
 
 
 
 
 
 
 √1− ∏ (∏(1− [κ

ďij

l , κ
ďij

u ]
2
)
ωi

α2

i=1

)

νjα1+1

j=1

⨁√1− ∏ ((1 − [𝜅
�̌�(𝛼2+1)𝑗

𝑙 , 𝜅
�̌�(𝛼2+1)𝑗

𝑢 ]
2
)
ωα2+1

)
νj

α1+1

j=1

,

√∏ (∏(1− [κ
ďij

l , κ
ďij

u ]
2
)
ωi

α2

i=1

)

νjα1+1

j=1

− ∏ (∏(1− ([κ
ďij

l , κ
ďij

u ]
2
+ [δ

ďij

l , δ
ďij

u ]
2
))

ωi
α2

i=1

)

νjα1+1

j=1

⨁

√∏ ((1 − [κ
ď(α2+1)j

l , κ
ď(α2+1)j

u ]
2
)
ωα2+1

)
νj

−

α1+1

j=1

∏((1 − ([κ
ď(α2+1)j

l , κ
ď(α2+1)j

u ]
2
+ [δ

ď(α2+1)j

l , δ
ď(α2+1)j

u ]
2
)
ωα2+1

)
νj

α1+1

j=1 )

 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 √1 − ∏ (∏(1 − [κ

ďij

l , κ
ďij

u ]
2
)
ωi

α2+1

i=1

)

νjα1+1

j=1

,

√∏ (∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

α2+1

i=1

)

νjα1+1

j=1

− ∏ (∏ (1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
α2+1

i=1

)

νjα1+1

j=1 )

 
 
 
 
 

. 

Therefore, it holds for m = α1 + 1 and n = α2 + 1. So, we can say that it holds ∀ m, n. 
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Example 3.1. Let ℛ = {ℛ1, ℛ2, ℛ3, ℛ4}  be a team of experts with the assumed weights ωi =
(0.1, 0.2, 0.4, 0.3)T . The team of specialists designates the good looks of a community under 

contemplated features A = {e1 = Parkland, e2 = safety arrangement} with their compatible sub-

parameters, Parkland = e1  = {e11 = with grass, e12 = without grass}Safety arrangement = e2  = 

{e21 = guards, e22 =  cameras}. Let A = e1 × e2 be a set of sub-attributes 

A = e1 × e2 = {e11, e12} × {e21, e22} = {(e11, e21), (e11, e22), (e12, e21), (e12, e22)}. 

A = {ď1, ď2, ď3, ď4} be a collection of multi sub-parameters with their weights νj = (0.3, 0.1, 0.2, 0.4)T. 

The assessment standards for each substitute in terms of IVPFHSN (ℳ, A) =

([κ
ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]) 3×4 given as:  

(ℳ,A)

= [

([0.4, 0.5], [0.2, 0.5]) ([0.5, 0.6], [0.7, 0.8]) ([0.4, 0.6], [0.2, 0.5]) ([0.2, 0.4], [0.2, 0.6])

([0.2, 0.7], [0.2, 0.6]) ([0.4, 0.5], [0.1, 0.6]) ([0.2, 0.3], [0.4, 0.8]) ([0.2, 0.5], [0.4, 0.7])

([0.3, 0.5], [0.1, 0.4]) ([0.2, 0.7], [0.4, 0.6]) ([0.4, 0.7], [0.3, 0.7]) ([0.5, 0.7], [0.2, 0.4])
([0.4, 0.6], [0.1, 0.7]) ([0.3, 0.7], [0.4, 0.5]) ([0.3, 0.6], [0.3, 0.5]) ([0.3, 0.6], [0.3, 0.5])

] 

By using the above theorem, we have  

IVPFHSIWA (ℳď11
,ℳď12

, ……… ,ℳď34
)

=

(

 
 
 
 
 √1 −∏(∏(1 − [κ

ďij

l , κ
ďij

u ]
2
)
ωi

4

i=1

)

νj4

j=1

,

√∏(∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

4

i=1

)

νj4

j=1

−∏(∏(1− ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
4

i=1

)

νj4

j=1 )

 
 
 
 
 

 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  

1 −

(

 
 {
[0.75, 0.84]0.1[0.51,0.96]0.2

[0.75, 0.91]0.4[0.64, 0.84]0.3
}
0.3

{
[0.64,0.75]0.1[0.75, 0.84]0.2

[0.51, 0.96]0.4[0.51, 0.91]0.3
}
0.1

{
[0.64, 0.84]0.1[0.91, 0.96]0.2

[0.51, 0.84]0.4[0.64, 0.91]0.3
}
0.2

{
[ 0.84,0.96]0.1[0.75,0.96]0.2

[0.51,0.75]0.4[0.64, 0.91]0.3
}
0.4

)

 
 
,

√
  
  
  
  
  
  
  
  
  
  
 

(

 
 {
[0.75, 0.84]0.1[0.51,0.96]0.2

[0.75, 0.91]0.4[0.64, 0.84]0.3
}
0.3

{
[0.64,0.75]0.1[0.75, 0.84]0.2

[0.51, 0.96]0.4[0.51, 0.91]0.3
}
0.1

{
[0.64, 0.84]0.1[0.91, 0.96]0.2

[0.51, 0.84]0.4[0.64, 0.91]0.3
}
0.2

{
[ 0.84,0.96]0.1[0.75,0.96]0.2

[0.51,0.75]0.4[0.64, 0.91]0.3
}
0.4

)

 
 
−

(

 
 
{
(1 − [0.2,0.5])0.1(1 − [0.08,0.85])0.2

(1 − [0.1, 0.41])0.4(1 − [0.25, 0.85])0.3
}
0.3

{
(1 − [0.74,1])0.1(1 − [0.17,0.61])0.2

(1 − [0.2, 0.85])0.4(1 − [0.25, 0.74])0.3
}
0.1

{
(1 − [0.2,0.61])0.1(1 − [0.2,0.73])0.2

(1 − [0.25, 0.98])0.4(1 − [0.18, 0.61])0.3
}
0.2

{
(1 − [ 0.08,0.52])0.1(1 − [0.2,0.74])0.2

(1 − [0.29,0.65])0.4(1 − [0.18, 0.61])0.3
}
0.4

)

 
 

)
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=

(

 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
 

1 −

(

 
 {
[0.9716, 0.9827][0.8740, 0.9919]
[0.913, 0.9630][0.8747, 0.9490]

}
0.3

{
[0.9564, 0.9716][0.9441, 0.9657]
[0.7639, 0.9838][0.8171, 0.9721]

}
0.1

{
[0.9564, 0.9827][0.9813, 0.9919]
[0.7639, 0.9326][0.8747, 0.9721]

}
0.2

{
[0.9827, 0.9959][0.9441, 0.9919]
[0.7639, 0.8913][0.8747, 0.9721]

}
0.4

)

 
 
,

√
  
  
  
  
  
  
  
  
  
  
 

(

 
 {
[0.9716, 0.9827][0.8740, 0.9919]
[0.8670, 0.9630][0.8747, 0.9490]

}
0.3

{
[0.9564, 0.9716][0.9441, 0.9657]
[0.7639, 0.9838][0.8187, 0.9721]

}
0.1

{
[0.9564, 0.9827][0.9813, 0.9919]
[0.7639, 0.9326][0.8747, 0.9721]

}
0.2

{
[0.9827, 0.9959][0.9441, 0.9919]
[0.7639, 0.8913][0.8747, 0.9721]

}
0.4

)

 
 
−

(

 
 {
[0.9330, 0.9779][0.6843, 0.9835]
[0.8097, 0.9587][0.5660, 0.9173]

}
0.3

{
[0, 0.8740][0.8283, 0.9634]

[0.4682, 0.9146][0.6676, 0.9173]
}
0.1

{
[0.9101, 0.9779][0.7696, 0.9564]
[0.2091, 0.8913][0.7539, 0.9422]

}
0.2

{
[0.9292, 0.9917][0.7638, 0.9564]
[0.6571, 0.8720][0.8539, 0.9422]

}
0.4

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

= ([0.3523, 0.6102], [0.7923, 0.2895]). 

3.1. Properties of IVPFHSIWA operator 

3.1.1. (Idempotency) If ℳďij
= ℳďk

= ([𝜅�̌�𝑖𝑗
𝑙 , 𝜅�̌�𝑖𝑗

𝑢 ] , [𝛿�̌�𝑖𝑗
𝑙 , 𝛿�̌�𝑖𝑗

𝑢 ]) ∀ 𝑖, 𝑗, then, 

IVPFHSIWA (ℳď11
,ℳď12

, ……… ,ℳďnm
) = ℳďk

. 

Proof. As we know that all ℳďij
=ℳďk

= ([κ
ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]). Then, we have 

IVPFHSIWA (ℳď11
,ℳď12

, ……… ,ℳďnm
)

=

(

 
 
 
 
 √1 −∏(∏(1 − [κ

ďij

l , κ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

,

√∏(∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n

i=1

)

νj

−

m

j=1

∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
n

i=1

)

νjm

j=1 )

 
 
 
 
 

 

=

(

 
 
 
 √1 − ((1 − [κ

ďij

l , κ
ďij

u ]
2
)
∑ ωi
n
i=1

)

∑ νj
m
j=1

,

√((1 − [κ
ďij

l , κ
ďij

u ]
2
)
∑ ωi
n
i=1

)

∑ νj
m
j=1

− ((1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

∑ ωi
n
i=1

)

∑ νj
m
j=1

)

 
 
 
 

. 

As ∑ νj = 1m
j=1  and ∑ ωi

n
i=1 = 1, then 

= (√1 − (1 − [κ
ďij

l , κ
ďij

u ]
2
) ,√1 − [κ

ďij

l , κ
ďij

u ]
2

− (1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))) 
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= ([κ
ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]) 

= ℳďk
. 

3.1.2. (Boundedness) Let ℳďij
 be a collection of IVPFHSNs where ℳ

ďij

− =

(
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]} ,
max
j  
max
i
{[δ

ďij

l , δ
ďij

u ]})  and ℳ
ďij

+ =

(
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]} ,
min
j
 
min
i
{[δ

ďij

l , δ
ďij

u ]}).  

Then  

ℳ
ďij

− ≤ IVPFHSIWA (ℳď11
,ℳď12

, ……… ,ℳďnm
) ≤ ℳ

ďij

+ . 

Proof. As we know that ℳďij
= ⟨[κ

ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]⟩ be an IVPFHSN, then 

min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

} ≤ [κ
ďij

l , κ
ďij

u ]
2

≤
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

} 

⇒ 1 −
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

} ≤ 1 − [κ
ďij

l , κ
ďij

u ]
2

≤ 1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

} 

⇔ (1 −
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

})
ωi

≤ (1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

≤ (1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

})
ωi

 

⇔ (1 −
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

})
∑ ωi
n
i=1

≤∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n

i=1

≤ (1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

})
∑ ωi
n
i=1

 

⇔ (1 −
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

})
∑ νj
n
j=1

≤∏(∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

≤ (1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

})
∑ νj
n
j=1

 

⇔ 1−
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

} ≤∏(∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

≤ 1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

} 

⇔
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

} ≤ 1 − ∏ (∏ (1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n
i=1 )

νj
m
j=1 ≤

max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

}. 

 (3.1) 

⇔
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]} ≤ √1 −∏ (∏ (1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n
i=1 )

νj
m
j=1 ≤

max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]}. 

                    (3.2) 

Similarly, 
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min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

} ≤ [κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

≤
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

} 

⇒ 1 −
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

} ≤ 1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δij
u]
2
)

≤ 1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

} 

⇔ (1 −
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

})
ωi

≤ (1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi

≤ (1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

})
ωi

 

⇔ (1 −
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

})
∑ ωi
n
i=1

≤∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
n

i=1

≤ (1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

})
∑ ωi
n
i=1

 

⇔ (1 −
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

})
∑ νj
n
j=1

≤∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
n

i=1

)

νjm

j=1

≤ (1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

})
∑ νj
n
j=1

 

⇔ 1−
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

} ≤∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
n

i=1

)

νjm

j=1

≤ 1 −
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

} 

⇔
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

} ≤ 1 − ∏ (∏ (1 − ([κ
ďij

l , κ
ďij

u ]
2

+n
i=1

m
j=1

[δ
ďij

l , δ
ďij

u ]
2
))

ωi

)

νj

≤
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2

}    (3.3) 

Subtracting inequality (3.3) from (3.1). 
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⇔ 
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]
2

}

≤∏(∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

−∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
)))

ωi
n

i=1

)

νjm

j=1

≤      
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]
2

} 

⇔
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]} ≤ 

√∏(∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n

i=1

)

νj

−

m

j=1

∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
n

i=1

)

νjm

j=1

 

≤
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]}         (3.4) 

Let IVPFHSIWA (ℳď11
,ℳď12

, ……… ,ℳďnm
) = ⟨[κ

ďk

l , κ
ďk

u ] , [δ
ďk

l , δ
ďk

u ]⟩ = ℳďk
, from(3.2) and (3.4): 

min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]} ≤ ℳďk
≤
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]}  and 
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]} ≤ ℳďk
≤

max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]} correspondingly. 

Using Eq (2.1). 

S(ℳďk
) =

(κ
ďk

l )
2

+ (κ
ďk

u )
2

− (δ
ďk

l )
2

− (δ
ďk

u )
2

2
≤
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]} −
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]} 

= S (ℳ
ďk

− ) 

S(ℳďk
) =

(κ
ďk

l )
2

+(κ
ďk

u )
2

−(δ
ďk

l )
2

−(δ
ďk

u )
2

2
≥
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]} −
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]} = S (ℳ
ďk

+ ). 

Then, by order relation between two IVPFHSNs, we have 

ℳ
ďij

− ≤ IVPFHSIWA (ℳď11
,ℳď12

, ……… ,ℳďnm
) ≤ ℳ

ďij

+ . 

3.1.3. (Homogeneity) Prove that IVPFHSIWA (βℳď11
, βℳď12

, ……… , βℳďnm
) =

β IVPFHSIWA (ℳď11
,ℳď12

, ……… ,ℳďnm
) for any β > 0. 

Proof. Let ℳďij
 be an IVPFHSN and β > 0, then  

βℳďij
= 

((√1 − (1 − [κ
ďij

l , κ
ďij

u ]
2
)
β

, √(1 − [κ
ďij

l , κ
ďij

u ]2)
β

− [1 − ([κ
ďij

l , κ
ďij

u ]2 + [δ
ďij

l , δ
ďij

u ]2)
β

 )). 

So, 
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βℳď11
, βℳď12

, ……… , βℳďnm
 

=

(

 
 
 
 
 √1 −∏(∏(1 − [κ

ďij

l , κ
ďij

u ]
2
)
βωi

n

i=1

)

νjm

j=1

,

√∏(∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
βωi

n

i=1

)

νj

−

m

j=1

∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

βωi
n

i=1

)

νjm

j=1 )

 
 
 
 
 

 

=

(

 
 
 
 
 √1 − (∏(∏(1 − [κ

ďij

l , κ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

)

β

,

√(∏(∏(1 − [κ
ďij

l , κ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

)

β

− (∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
n

i=1

)

νjm

j=1

)

β

)

 
 
 
 
 

 

= β IVPFHSIWA (ℳď11
,ℳď12

, ……… ,ℳďnm
). 

Also, the geometric interactional aggregation operator with some important results and properties 

for IVPFHSS using the interactional operational laws for IVPFHSNs is given as follows. 

Definition 3.3. Let ℳďk
= ([κ

ďk

l , κ
ďk

u ] , [δ
ďk

l , δ
ďk

u ]) be a collection of IVPFHSNs, and ωi and νj be the 

weights for specialists and multi sub-attributes, disparately, with certain circumstances ωi >
0,   ∑ ωi

n
i=1 = 1; νj > 0, ∑ νj = 1m

j=1 . Then, the IVPFHSIWA operator is defined as IVPFHSIWG: 

Ψn ⟶Ψ  

IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
) = ⊗j=1

m (⊗i=1
n (ℳďij

)
ωi

)
νj

. 

Theorem 3.2. Let ℳďij
= ([κ

ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]) is a set of IVPFHSNs, and the resulting value after 

aggregation is also an IVPFHSN. 

IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
) 

=

(

 
 
 √∏ (∏ (1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

n
i=1 )

νj
m
j=1 −∏ (∏ (1 − ([κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi

n
i=1 )

νj

m
j=1 ,

√1 − ∏ (∏ (1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

n
i=1 )

νj
m
j=1

)

 
 
 

. 

𝜔𝑖  and 𝜈𝑗  be the weights for experts and attributes disparately, with assumed conditions 𝜔𝑖 > 0,
∑ 𝜔𝑖
𝑛
𝑖=1 = 1; 𝜈𝑗 > 0, ∑ 𝜈𝑗 = 1𝑚

𝑗=1 . 

Proof. The IVPFHSIWG operator can be demonstrated through the mathematical induction principle 

outlined below. 

For n = 1, we get ω1 = 1. Then, we have  
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IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳď1m
) =⊗j=1

m (ℳď1j
)
νj

 

IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
) 

= 

(

 
 
 
 
 √∏(1 − [δ

ď1j

l , δ
ď1j

u ]
2
)
νj

m

j=1

−∏(1 − ([κ
ď1j

l , κ
ď1j

u ]
2

+ [δ
ď1j

l , δ
ď1j

u ]
2
))

νjm

j=1

,

√1 −∏(1 − [δ
ď1j

l , δ
ď1j

u ]
2
)
νj

m

j=1 )

 
 
 
 
 

 

=

(

 
 
 √∏ (∏ (1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

1
i=1 )

νj
m
j=1 −∏ (∏ (1 − ([κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi

1
i=1 )

νj

m
j=1 ,

√1 −∏ (∏ (1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

1
i=1 )

νj
m
j=1

)

 
 
 

. 

For m = 1, we get ν1 = 1. Then, we have  

IVPFHSIWG(ℳď11
,ℳď21

, ……… ,ℳďn1
) =⊗i=1

n (ℳďi1
)
ωi

 

=

(

 
 
 
 
 √∏(1 − [δ

ďi1

l , δ
ďi1

u ]
2
)
ωi

n

i=1

−∏(1 − ([κ
ďi1

l , κ
ďi1

u ]
2

+ [δ
ďi1

l , δ
ďi1

u ]
2
))

ωi
n

i=1

,

√1 −∏(1 − [δ
ďi1

l , δ
ďi1

u ]
2
)
ωi

n

i=1 )

 
 
 
 
 

 

=

(

 
 
 √∏ (∏ (1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

n
i=1 )

νj
1
j=1 −∏ (∏ (1 − ([κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi

n
i=1 )

νj

1
j=1 ,

√1 − ∏ (∏ (1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

n
i=1 )

νj
1
j=1

)

 
 
 

. 

The preceding theorem has been demonstrated to hold for the cases where n = 1 and m = 1. 

To demonstrate that it also holds true for m = α1 + 1, n = α2 and m = α1, n = α2 + 1, the following 

is considered. 

⊗j=1
α1+1 (⊗i=1

α2 (ℳďij
)
ωi

)
νj
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=

(

 
 
 
 
 √∏ (∏(1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

α2

i=1

)

νjα1+1

j=1

− ∏ (∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
α2

i=1

)

νjα1+1

j=1

,

√1 − ∏ (∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

α2

i=1

)

νjα1+1

j=1 )

 
 
 
 
 

 

⊗j=1
α1 (⊗i=1

α2+1 (ℳďij
)
ωi

)
νj

 

=

(

 
 
 
 
 √∏(∏ (1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

α2+1

i=1

)

νjα1

j=1

−∏(∏ (1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
α2+1

i=1

)

νjα1

j=1

,

√1 −∏(∏ (1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

α2+1

i=1

)

νjα1

j=1 )

 
 
 
 
 

. 

For m = α1 + 1 and n = α2 + 1, we have 

⊗j=1
α1+1 (⊗i=1

α2+1 (ℳďij
)
ωi

)
νj
= ⊗j=1

α1+1 ((⊗i=1
α2 (ℳďij

)
ωi

⊗ (ℳď(α2+1)j
)
ωα2+1

))

νj

 

= ⊗j=1
α1+1 (⊗i=1

α2 (ℳďij
)
ωi

)
νj
⊗j=1

α1+1 (ℳď(α2+1)j
)
νjωα2+1

 

= 

(

 
 
 
 
 
 
 √∏ (∏ (1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

α2
i=1 )

νj
α1+1
j=1 −∏ (∏ (1 − ([κ

ďij

l , κ
ďij

u ]
2
+ [δ

ďij

l , δ
ďij

u ]
2
))

ωi
α2
i=1 )

νj
α1+1
j=1 ⊗

√∏ ((1 − [δ
ď(α2+1)j

l , δ
ď(α2+1)j

u ]
2
)
ωα2+1

)
νj

−
α1+1
j=1

∏ ((1 − ([κ
ď(α2+1)j

l , κ
ď(α2+1)j

u ]
2
+ [δ

ď(α2+1)j

l , δ
ď(α2+1)j

u ]
2
))

ωα2+1

)

νj
α1+1
j=1

,

√1 − ∏ (∏ (1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

α2
i=1 )

νj
α1+1
j=1 ⊗√1−∏ ((1 − [δ

ď(α2+1)j

l , δ
ď(α2+1)j

u ]
2
)
ωα2+1

)
νj

α1+1
j=1

)

 
 
 
 
 
 
 

 

=

(

 
 
 
 
 √∏ (∏ (1− [δ

ďij

l , δ
ďij

u ]
2
)
ωi

α2+1 

i=1

)

νjα1+1 

j=1

− ∏ (∏ (1− ([κ
ďij

l , κ
ďij

u ]
2
+ [δ

ďij

l , δ
ďij

u ]
2
))

ωi
α2+1

i=1

)

νjα1+1

j=1

,

√1 − ∏ (∏ (1− [δ
ďij

l , δ
ďij

u ]
2
)
ωi

α2+1

i=1

)

νjα1+1

j=1 )

 
 
 
 
 

. 

It holds for m = α1 + 1 and n = α2 + 1. So, it also holds ∀ 𝑚, 𝑛. 
Example 3.2. Let ℛ = {ℛ1, ℛ2, ℛ3, ℛ4}  be a team of experts with the assumed weights ωi =
(0.1, 0.2, 0.4, 0.3)T . The team of specialists designates the good looks of a community under 

contemplated features A = {e1 = Parkland, e2 = safety arrangement} with their compatible sub-
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parameters, Parkland = e1  = {e11 = with grass, e12 = without grass}Safety arrangement = e2  = 

{e21 = guards, e22 =  cameras}. Let A = e1 × e2 be a set of sub-attributes 

A = e1 × e2 = {e11, e12} × {e21, e22} = {(e11, e21), (e11, e22), (e12, e21), (e12, e22)} 

A = {ď1, ď2, ď3, ď4} be a collection of multi sub-parameters with their weights νj = (0.3, 0.1, 0.2, 0.4)T. 

The assessment standards for each substitute in terms of IVPFHSN (ℳ, A) =

([κ
ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]) 3×4 given as: 

(ℳ,A)

= [

([0.3, 0.8], [0.4, 0.5]) ([0.4, 0.6], [0.3, 0.7]) ([0.5, 0.8], [0.5, 0.6]) ([0.4, 0.9], [0.3, 0.7])
([0.1, 0.5], [0.2, 0.3]) ([0.3, 0.8], [0.5, 0.7]) ([0.2, 0.4], [0.2, 0.3]) ([0.3, 0.8], [0.6, 0.7])
([0.2, 0.9], [0.2, 0.3]) ([0.5, 0.7], [0.2, 0.6]) ([0.2, 0.4], [0.2, 0.8]) ([0.3, 0.8], [0.5, 0.8])

] 

By using the above theorem, we have  

IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
)

=

(

 
 
 
 
 √∏(∏(1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

3

i=1

)

νj4

j=1

−∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
3

i=1

)

νj4

j=1

,

√1 −∏(∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

3

i=1

)

νj4

j=1 )

 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
  
 

(

 
 {
[0.75, 0.96]0.1[0.64,0.96]0.2

[0.84, 0.99]0.4[0.51, 0.91]0.3
}
0.3

{
[0.36,0.51]0.1[0.64, 0.99]0.2

[0.64, 0.84]0.4[0.75, 0.84]0.3
}
0.1

{
[0.75, 0.96]0.1[0.36, 0.84]0.2

[0.51, 0.91]0.4[0.75, 0.91]0.3
}
0.2

{
[ 0.64,0.96]0.1[0.51,0.84]0.2

[0.84,0.96]0.4[0.75, 0.91]0.3
}
0.4

)

 
 
−

(

 
 
{
(1 − [0.2,0.5])0.1(1 − [0.08,0.85])0.2

(1 − [0.1, 0.41])0.4(1 − [0.25, 0.85])0.3
}
0.3

{
(1 − [0.74,1])0.1(1 − [0.17,0.61])0.2

(1 − [0.2, 0.85])0.4(1 − [0.25, 0.74])0.3
}
0.1

{
(1 − [0.2,0.61])0.1(1 − [0.2,0.73])0.2

(1 − [0.25, 0.98])0.4(1 − [0.18, 0.61])0.3
}
0.2

{
(1 − [ 0.08,0.52])0.1(1 − [0.2,0.74])0.2

(1 − [0.29,0.65])0.4(1 − [0.18, 0.61])0.3
}
0.4

)

 
 
,

√
  
  
  
  
  

1 −

(

 
 {
[0.75, 0.96]0.1[0.64,0.96]0.2

[0.84, 0.99]0.4[0.51, 0.91]0.3
}
0.3

{
[0.36,0.51]0.1[0.64, 0.99]0.2

[0.64, 0.84]0.4[0.75, 0.84]0.3
}
0.1

{
[0.75, 0.96]0.1[0.36, 0.84]0.2

[0.51, 0.91]0.4[0.75, 0.91]0.3
}
0.2

{
[ 0.64,0.96]0.1[0.51,0.84]0.2

[0.84,0.96]0.4[0.75, 0.91]0.3
}
0.4

)

 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

=

(

 
 
 
 
 
√

(
[0.6772, 0.9564]0.3[0.6337,0.8258]0.1

[0.5550, 0.9004]0.2[0.7151, 0.9198]0.4
) −

(
[0.2926,0.8458]0.3[0,0.7064]0.1

[0.1104,0.7854]0.2[0.3516,0.7793]0.4
) ,

√1 − (
[0.6772, 0.9564]0.3[0.6337,0.8258]0.1

[0.5550, 0.9004]0.2[0.7151, 0.9198]0.4
)
)
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= ([0.8128, 0.3530], [0.2886, 0.5825]). 

Now, we will debate the anticipated properties for the IVPFHSIWG operator. 

3.2. Properties of IVPFHSIWG operator 

3.2.1. (Idempotency) If ℳďij
= ℳďk

= ([κ
ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]) ∀ i, j, then, 

IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
) = ℳďk

. 

Proof. As we know that all ℳďij
=ℳďk

= ([κ
ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]), then, we have 

IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
) 

=

(

 
 
 
 
 √∏(∏(1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

−∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
n

i=1

)

νjm

j=1

,

√1 −∏(∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1 )

 
 
 
 
 

 

=

(

 
 
 
 √((1 − [δ

ďij

l , δ
ďij

u ]
2
)
∑ ωi
n
i=1

)

∑ νj
m
j=1

− ((1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

∑ ωi
n
i=1

)

∑ νj
m
j=1

,

√1 − ((1 − [δ
ďij

l , δ
ďij

u ]
2
)
∑ ωi
n
i=1

)

∑ νj
m
j=1

)

 
 
 
 

. 

As ∑ 𝜈𝑗 = 1𝑚
𝑗=1  and ∑ 𝜔𝑖

𝑛
𝑖=1 = 1, then we have 

= (√(1 − [δ
ďij

l , δ
ďij

u ]
2
) − (1 − ([κ

ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
)) ,√1 − (1 − [δ

ďij

l , δ
ďij

u ]
2
)) 

= ([κ
ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]) 

=ℳďk
. 

3.2.2. (Boundedness) Let ℳďij
 be a collection of IVPFHSNs where ℳ

ďij

− =

(
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]} ,
max
j  
max
i
{[δ

ďij

l , δ
ďij

u ]})  and ℳ
ďij

+ =

(
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]} ,
min
j
 
min
i
{[δ

ďij

l , δ
ďij

u ]}), then  

ℳ
ďij

− ≤ IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
) ≤ ℳ

ďij

+ . 

Proof. As we know that ℳďij
= ([κ

ďij

l , κ
ďij

u ] , [δ
ďij

l , δ
ďij

u ]) be an IVPFHSN, then 
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min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]
2

} ≤ [δ
ďij

l , δ
ďij

u ]
2

≤
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]
2

} 

⇒ 1 −
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]
2

} ≤ 1 − [δ
ďij

l , δ
ďij

u ]
2

≤ 1 −
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]
2

} 

⇔ (1 −
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]
2

})
ωi

≤ (1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

≤ (1 −
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]
2

})
ωi

 

⇔ (1 −
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]
2

})
∑ ωi
n
i=1

≤∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

n

i=1

≤ (1 −
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]
2

})
∑ ωi
n
i=1

 

⇔ (1 −
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]
2

})
∑ νj
n
j=1

≤∏(∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

≤ (1 −
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]
2

})
∑ νj
n
j=1

 

⇔ 1−
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]
2

} ≤∏(∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

≤ 1 −
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]
2

} 

⇔
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]
2

} ≤ 1 −∏(∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

≤
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]
2

} 

⇔
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]} ≤ √1 −∏(∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

≤
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]} 

                  (3.5) 

Similarly, we can prove that 

min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]} ≤ 

√∏(∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
ωi

n

i=1

)

νjm

j=1

−∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

ωi
n

i=1

)

νjm

j=1

≤ 

max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]}.          (3.6) 

Let IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
) = ⟨[κ

ďk

l , κ
ďk

u ] , [δ
ďk

l , δ
ďk

u ]⟩ = ℳďk
, then (3.5) and (3.6) 

can be arranged as follows: 
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min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]} ≤ ℳďk
≤
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]}  and 
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]} ≤ ℳďk
≤

max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]} respectively. 

Using Eq (2.1). 

S(ℳďk
) =

(κ
ďk

l )
2

+(κ
ďk

u )
2

−(δ
ďk

l )
2

−(δ
ďk

u )
2

2
≤
max
j  
max
i
 {[κ

ďij

l , κ
ďij

u ]} −
min
j
 
min
i
 {[δ

ďij

l , δ
ďij

u ]} =

S(ℳ
ďij

− ) 

S(ℳďk
) =

(κ
ďk

l )
2

+(κ
ďk

u )
2

−(δ
ďk

l )
2

−(δ
ďk

u )
2

2
≥
min
j
 
min
i
 {[κ

ďij

l , κ
ďij

u ]} −
max
j  
max
i
 {[δ

ďij

l , δ
ďij

u ]} = 

S (ℳ
ďij

+ ). 

Then, by order relation between two IVPFHSNs, we have 

ℳ
ďij

− ≤ IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
) ≤ ℳ

ďij

+ . 

3.2.3. (Homogeneity) Prove that IVPFHSIWG (βℳď11
, βℳď12

, ……… , βℳďnm
) =

β IVPFHSIWG (ℳď11
,ℳď12

, ……… ,ℳďnm
) β > 0. 

Proof. Let ℳďij
 be an IVPFHSN and β > 0, then  

βℳďij
= (√1 − (1 − [κ

ďij

l , κ
ďij

u ]
2
)
β

, √(1 − [κ
ďij

l , κ
ďij

u ]2)
β

− [1 − ([κ
ďij

l , κ
ďij

u ]2 + [δ
ďij

l , δ
ďij

u ]2)
β

 ). 

So, 

IVPFHSIWG (βℳď11
, βℳď12

, ……… , βℳďnm
) 

=

(

 
 
 
 
 √∏(∏(1 − [δ

ďij

l , δ
ďij

u ]
2
)
βωi

n

i=1

)

νjm

j=1

−∏(∏(1 − ([κ
ďij

l , κ
ďij

u ]
2

+ [δ
ďij

l , δ
ďij

u ]
2
))

βωi
n

i=1

)

νjm

j=1

,

√1 −∏(∏(1 − [δ
ďij

l , δ
ďij

u ]
2
)
βωi

n

i=1

)

νjm

j=1 )

 
 
 
 
 

 

=

(

 
 
 
 
 √(∏(∏(1 − [δ

ďij

l , δ
ďij

u ]
2
)
ωi

n
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4. The proposed MCGDM approach based on our developed operators 

To verify the effectiveness of the proposed interaction AOs, a DM technique has been proposed 

to solve the MCGDM problems. Additionally, a statistical analysis will be conducted to demonstrate 

the practicality of the proposed methodology. 

4.1. Proposed MCGDM approach 

Suppose we have a set of 𝑠 alternatives ℑ = {ℑ1, ℑ2, ℑ3, … , ℑs } and a set of 𝑟 decision-makers 

𝒰 = {𝒰1 , 𝒰2 , 𝒰3, … ,𝒰r} . The specialists' weights are denoted by ωi = (ω1 , ω2 , ω3 , … , ωn)
T , 

where ωi > 0 ,  ∑ ωi = 1n
i=1  . Let 𝔏 = {𝑒1 , 𝑒2 , 𝑒3, … , 𝑒𝑚}  be a set of parameters, and 𝔏′ = {(e1ρ ×

e2ρ ×…× emρ) ∀ ρ ∈ {1, 2, … , t} }  be a set of multi sub-attributes with weights 𝜈 =

(𝜈1 , 𝜈2 , 𝜈3 , … , 𝜈𝑛)
𝑇, where 𝜈𝑖 > 0, ∑ 𝜈𝑖 = 1𝑛

𝑖=1 , known as 𝔏′ = {ď∂: ∂ ∈ {1, 2, … ,m}}. The team of 

experts {𝜅𝑖: 𝑖 =  1, 2, … , 𝑛}  evaluate the substitutes {ℌ(z): z =  1, 2, … , s}  under the selected sub-

attributes {�̌�𝜕: 𝜕 =  1, 2, … , 𝑘}  as IVPFHSNs. We denote this as (ℑ
�̌�𝑖𝑘

(𝑧)
)
𝑛×𝑚

=

([𝜅�̌�𝑖𝑘
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 , where 0 ≤ 𝜅�̌�𝑖𝑘
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ďik

u )
2

+ (δ
ďik

u )
2

≤ 1  ∀ 

𝑖, 𝑘. and 0 ≤ 𝜅�̌�𝑖𝑘
𝑙 , 𝜅�̌�𝑖𝑘

𝑢 , 𝛿�̌�𝑖𝑘
𝑙 , 𝛿�̌�𝑖𝑘

𝑢 ≤ 1 ∀ 𝑖, 𝑘. The decision-makers deliver their judgments in the form 

of IVPFHSNs 𝛩𝑘 for each substitute. The stepwise algorithm involves established operators given as 

follows: 

Step 1. According to the expert's opinion, obtain a decision matrix in IVPFHSNs for each alternative. 
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ď1m

l , κ
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ď2m

l , δ
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ďnm

u ])]
 
 
 
 
 

. 

Step 2. Use normalization rules to convert cost-type characteristics into benefit types and establish 

normalization decision metrics. 

ℳďik
= {

ℳ
ďij

c = ([δ
ďik

l , δ
ďik

u ] , [κ
ďik

l , κ
ďik

u ])
n×m

    cost type parameter

ℳďij
= ([κ

ďik

l , κ
ďik

u ] , [δ
ďik

l , δ
ďik

u ])
n×m

  benefit type parameter
. 

Step 3. Calculate the aggregated values for each alternative via developed IVPFHSIWA and 

IVPFHSIWG. 

Step 4. Compute the score values for each alternative. 

Step 5. Examine the ranking of the alternatives. 

4.2. Sustainable thermal power equipment supplier selection and their environmental impacts 

Sustainable thermal power equipment supplier selection can significantly impact the 

environmental performance of thermal power plants. By working with suppliers who prioritize 
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sustainability, power plant operators can reduce the environmental impact of their operations and 

create a more sustainable supply chain. The following are some environmental impacts of sustainable 

thermal power equipment supplier selection:  

❖ Energy efficiency: Sustainable thermal power equipment suppliers can provide equipment that is 

designed to be more energy-efficient. This can help reduce the energy needed to operate the power 

plant, reducing greenhouse gas emissions and lowering the plant's environmental impact. 

❖ Emissions reduction: Sustainable thermal power equipment suppliers can provide equipment 

designed to emit lower levels of greenhouse gases and other pollutants. This might involve using 

cleaner fuels, improved combustion systems, or advanced emission control technologies. 

❖ Waste reduction and management: Sustainable thermal power equipment suppliers can provide 

equipment designed to generate less waste or recycle or reuse waste generated by the power plant. 

This can help to reduce the environmental impact of the plant's waste management practices. 

❖ Water usage reduction: Sustainable thermal power equipment suppliers can provide equipment 

designed to minimize the water needed for cooling. This might involve using closed-loop cooling 

systems, water-efficient equipment designs, or water-saving technologies. 

❖ Social and environmental responsibility: Sustainable thermal power equipment suppliers can 

demonstrate social and environmental commitment. This might involve implementing sustainable 

business practices, ethical sourcing, and responsible waste management. 

Sustainable thermal power equipment supplier selection is critical to creating a more sustainable 

thermal power industry. By considering factors such as energy efficiency, emissions reduction, waste 

reduction and management, water usage reduction, and social and environmental responsibility, power 

plant operators can select suppliers who prioritize sustainability and reduce the environmental impact 

of their operations. It benefits the environment and helps improve the power plant’s efficiency, 

sustainability, and reputation. 

The question of sustainable supplier selection (SSS) is both logical and authentic. Key issues 

include top supplier supply chain mobility, large-scale, low-cost production, and initiative. The 

inclusion of environmentally friendly prototypes and other sustainable and modern structures in the 

SSS development indicates that proper SSS is multifaceted and multifaceted. SSS refers to various 

beneficial achievements to the atmosphere or the people and is frequently mentioned in the literature 

as “sustainable supplier selection”. This is a complicated, multidimensional topic with unpredictable 

morals, and the assessment procedure desires to consider many observations. From these facts, vendor 

assortment is frequently referred to as an “orientation” subject in the works, where multidisciplinary 

DM approaches are broadly used. With Pakistan’s improvement and opening up, numerous power 

plant tasks have been constructed to see the mandate for electricity for community and commercial 

growth. To come across the prerequisite of this construction, a structure of community proposals and 

tenders has been used since 1985 to purchase thermal power generation apparatus. The assortment of 

thermal power equipment (TPE) suppliers is a significant part of the trying and order administration 

of thermal power apparatus. It is also a primary state for thermal power plants (TPP) steady and 

continuing growth. Figure 1 displays the portion of the energy produced from dissimilar cradles. With 

the massive escalation in the usage of fossil fuels and growing environment trash, the expressions 

“green growth” and “sustainable development” have grown into leading in the universal dissertation.  
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Figure 1. Share in electricity generation. 

The water is mainly intense in a TPP; the hot water produces condensation, the steam turbine is 

exchanged, and the generator is activated. The high temperature and pressure condensation are liable 

for the spin of the turbine and then transmitted to the generator to produce electricity. The condenser 

summarizes the suspension through the organization cycle and returns it to a formerly warm point. 

TPP is separated into two classifications permitting their fuel: fossil fuel (FF) power plants and 

biomass fuel power plants. Fossil fuel TPP produces energy by sweltering FF, such as coal, natural 

gas, or oil. They are manufactured on balance and can precede indeterminately. The power plant 

practices steam turbines, while natural gas-fired services use gas turbines. Numerous biomass power 

generation amenities burn the surplus of firewood, farming, or structure wood. Biomass fuel is openly 

used in burning power plant reservoirs to deliver energy for comparable kinds of FF steam generators. 

According to a prime mover, TPP is separated into steam, gas, and combined cycle power plants. 

The vibrant density produced by the growing steam enterprises at the turbine edges of the steam 

power plant. Practically all non-hydroelectric power plants use this technique. Around 80% of the 

sphere's energy is produced done steam turbines. A gas turbine power plant contains three leading 

portions: compressor, combustion system, and turbine: mutual cycle power plants use gas and steam 

machines to produce energy. The new gas turbine heat is focused on the adjacent steam turbine, which 

creates extra energy. Most of Pakistan's energy originates from TPP, which uses possessions such as 

oil, gas, and coal. Selected are mutual cycles, although others are steam and gas turbines. There are 49 

thermal power plants in Punjab, Sindh, and Balochistan. Thermal power interpretations for 61% of 

Pakistan's energy. Pakistan can install 16,599 MW of energy. Guddu has an ability of 2402 MW, TPS 

Muzaffargarh has a capability of 1350 MW, Kot Addu has a power of 1638 MW, and Hubco 

Balochistan has an aptitude of 1200 MW. Accomplished in 1960 with a volume of 195 MW, NGPS 

Multan is the oldest. Pakistan has finalized three biomass-driven power generation amenities with a 

whole ability of 67 MW [52]. The nominal power of several thermal power places is exposed in Figure 2. 

Thermal power is the crucial cradle of energy in Pakistan, and the choice of green suppliers of TPE is 

serious for the charming and long-term improvement of TPP. Therefore, choosing the right green 

supplier of TPE with green fabrication attentiveness in an atmosphere of energy maintenance and 
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discharge bargain and indorsing sustainable growth is of extreme prominence for the long-term 

development of the corporation and the usefulness of Pakistan's power business. What are the 

elementary ideologies of SCM? In 1997, Anderson et al. [53] circulated an article titled “Seven 

Principles of Supply Chain Management”. SCM was a comparatively novel thought then, but this 

article makes an exceptional contract of assigning the basics of SCM in one curved. After over 20 

years, the exertion was acknowledged as “classic” research and republished in 2010. The script has 

acknowledged over 300 certifications in academic works and trade journals. 

 

Figure 2. Nominal power of different thermal power stations [52]. 

The study of SSS can be separated into expressive and methodical models. Descriptive study 

aspects at the significant parameters of supplier valuation and assortment. Selecting an ecological 

supplier is an imperative MCDM delinquent [54]. The MCDM approach categorizes probable 

substitutes and chooses the finest replacement using an explicit method built on proven DM facts 

derived from different factors. This assessment is gradually becoming an exciting subject in science, 

systems science, and management science. Selecting a supplier is MCGDM anxiety that needs several 

deliberate features comprising cost, delivery time, ecological influence, etc. Enlightening a 

corporation's ecological influence must be a significant feature of its organization configuration and 

corporate intentions in mandate to be prosperous. Dickson [55] acknowledged 23 features contractors 

consider it connected to problems in choosing dissimilar suppliers. They initiated that the most 

meaningful metrics were time, efficacy, budget, and distribution. Wind et al. [56] discussed numerous 

facets elaborate in the enactment assessment of other suppliers. Ho et al. [57] introduced multi-

criterion selection criteria of international journals from 2000 to 2008, revised all skills and committed 

that the maximum mutual geographies used to extend supplier productivity were delivery, worth, 

budget, etc. Weber et al. [58] studied 74 magazines on SSS in investigational study models and 

acknowledged numerous approaches that have appeared in the investigation over the past 25 years. 

They determined that record approaches are linear weighting, regression models, and some 
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optimization algorithms. A modern summary of the supplier employment and assortment procedure 

can originate here. Amid et al. [59] studied vague parameters in the supplier assessment hypothesis. 

Jolai et al. [60] proposed a fuzzy MCDM technique to obtain cumulative scores from various dealers 

and then planned the best proper mechanism employing subordinate impartial development methods. 

Sevkli et al. [61] confirmed the weight of their fuzzy linear program design by an investigational 

arrangement technique for dealer assortment. Environmental contests are more applicable in industrial 

zones due to environmental variation and global warming [62]. In recent epochs, green supply chain 

management study has expected more and more consideration to diminish air contamination, educate 

sentience and protect the atmosphere [63]. Classifying and choosing related low-carbon suppliers is 

necessary to generate a sustainable supply chain and consequential conservational interferences. 

As mentioned earlier, the MCDM delinquent denotes a supplier assessment procedure since, at 

the DM phase, rigor and several factors need to be investigated and certified [64]. The MCDM method 

has been used to assess and achieve low-carbon suppliers but also undertakes that feature information 

is convincing and precise [65]. Luckily, fast financial development and an energetic corporate 

environment mark it challenging for decision-makers to deliver consistent exploration or a priori facts 

that contain conflicts of social perceptive. Tong and Wang [66] recently used encouragement IF 

operators to resolve the problem of selecting a low-carbon supplier. The parable that greenery will lead 

to lower sales and sophisticated operating costs is over. Many companies now feel the need to combine 

their customers' environmental protection strategies with their SSCM and will not be able to fulfill the 

desire to convert to current income. In a healthy environment, there is a link between sustainability 

and economic incentives for the growth of different companies. The business development concept 

inspires SSCM and has identified areas where work can be changed to increase profits. Green logistics 

can sustain much lower production, such as CO2 and CO. Consumption, including non-fossil energy, 

reduces smog, affecting our environment and stimulating respiration. Due to rapid growth, many fossil 

fuels are destroying the environment. For marine life, for example, air travel also affects the mix due 

to the use of diesel. The literature looks for aspects that identify sustainable suppliers for TPE 

compatible with altered researchers.  

Supplier selection is a critical process in thermal power equipment, as the choice of supplier can 

significantly impact the power plant’s environmental performance and efficiency. The following are 

some important factors to consider when selecting a supplier for thermal power equipment:  

❖ Reliability and quality: The reliability and quality of the supplier's equipment are crucial factors to 

consider. Power plant operators should look for suppliers with a proven track record of providing 

reliable, high-quality equipment that meets the plant's specifications and requirements. 

❖ Cost-effectiveness: The cost-effectiveness of the supplier's equipment is an important 

consideration. Power plant operators should look for suppliers that offer competitive pricing 

without compromising on the quality and performance of the equipment. 

❖ Technical expertise: The supplier's technical expertise is an important factor to consider. Power 

plant operators should look for suppliers that have a deep understanding of the equipment and the 

specific needs of the power plant and can provide expert advice and support throughout the 

equipment's life cycle. 

❖ Environmental performance: The environmental performance of the supplier's equipment is a 

crucial consideration. Power plant operators should look for suppliers that prioritize sustainability, 

offer energy-efficient equipment, low emissions, and minimize waste and water usage. 

❖ Customer service and support: The supplier’s customer service and support level is an important 

factors to consider. Power plant operators should look for suppliers that offer comprehensive 
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support services, including maintenance, repair, and replacement services, to certify the reliable 

and efficient procedure of the equipment. 

❖ Supply chain sustainability: The sustainability of the supplier's supply chain is an important 

consideration. Power plant operators should look for suppliers that prioritize ethical and sustainable 

sourcing practices and have transparent supply chains that minimize environmental impacts. 

❖ Performance: The performance of supplier selection in the thermal equipment plant industry can 

have a significant impact on the environmental and financial performance of the power plant. 

Choosing the right suppliers can help power plant operators to reduce their environmental impact, 

improve efficiency, and reduce operating costs. On the other hand, choosing the wrong suppliers can 

lead to equipment failures, environmental violations, and other costly and time-consuming problems. 

❖ Equipment efficiency: The efficiency of thermal power equipment is typically measured using the 

heat rate, the fuel required to generate a unit of electricity. A lower heat rate indicates higher 

efficiency, as less fuel is required to produce the same amount of electricity. The efficiency of 

thermal power equipment can be improved through various means, including upgrading existing 

equipment, optimizing operations, and operating thermal power equipment at its optimal 

performance level can help improve efficiency. This can include reducing excess air in the 

combustion process, maintaining proper fuel-to-air ratios, optimizing steam pressure and 

temperature and using cleaner fuels, implementing energy recovery systems, and incorporating 

advanced technologies. 

❖ Quality: Quality can be an important factor in selecting suppliers for thermal power equipment. 

High-quality equipment can help to ensure the efficient and reliable operation of the power plant, 

while low-quality equipment can lead to equipment failures, downtime, and costly repairs. When 

selecting suppliers for thermal power equipment, they must consider the quality of the equipment 

they offer and their quality management systems and processes. Suppliers with a proven track 

record of providing high-quality equipment and certifications, such as ISO 9001 or other quality 

standards, can help ensure that the equipment meets the required quality standards. In addition, it 

is important to consider the supplier's quality control processes and testing procedures. Suppliers 

that conduct thorough testing of their equipment and have robust quality control processes in place 

can help to ensure that the equipment is of high quality and meets the required performance 

standards. Overall, selecting suppliers prioritizing quality can help ensure the efficient and reliable 

operation of thermal power equipment, minimize equipment failures and downtime, and reduce 

the risk of costly repairs. 

In summary, selecting the right supplier for thermal power equipment involves considering 

factors such as reliability and quality, cost-effectiveness, technical expertise, environmental 

performance, customer service and support, supply chain sustainability, performance, equipment 

efficiency, and quality. By prioritizing these factors, power plant operators can ensure that they choose 

a supplier that can provide high-quality, reliable, and environmentally-friendly equipment that meets 

the plant’s specific needs. In this article, Table 1 presents ranking values for sustainable suppliers. 

Zeng et al. [67] established PF-confident AOs to address low-carbon supplier choices. As shown in 

the introduction, the easing of IVPFHSS MD and NMD boundaries consents for broader possibility, 

constructing IVPFHSS superior to IVIFS, IVPFS, IVIFSS, IVPFSS, and IVIFHSS in the description 

of unpredictable and confusing facts. In the context of IVPFHSS, it is essential and suitable to 

systematically examine the substance of an assortment of suppliers of TPE. 
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Table 1. Criteria for the assortment of the suitable supplier in TPE. 

 Criteria Sub-criteria 

𝐝𝟏 Performance Actual production time, scheduled time 

𝐝𝟐 Equipment efficiency 75% < OEE < 85% (acceptable), 85% < OEE < 95% (good). 

𝐝𝟑 Quality Good 

Suppose ℑ1, ℑ2, ℑ3 and ℑ4 be a collection of alternatives. The characteristic of supplier selection 

is listed as follows: 𝔏 = {d1 =  Performance, d2 = Equipment efficiency, d3 = Quality} . The 

conforming sub-attributes of the deliberated parameters, Performance  = d1  = {d11  =
 Actual production time, d12  =  scheduled time} , Equipment efficiency = d2  = {d21 = 75% <
 OEE <  85% (acceptable), d22 = 85% <  OEE <  95% (good)}, Quality = d3  = {d31 = Good}. 
Let 𝔏′ = d1 × d2 × d3 be a set of sub-attributes. 𝔏′ = d1 × d2 × d3 = {d11, d12} × {d21, d22} × {d31} 

= {
(d11, d21, d31), (d11, d21, d32),
(d12, d21, d31), (d12, d21, d32)

}, 𝔏′  = {ď1, ď2, ď3, ď4} be a set of all sub-attributes with weights 

(0.3, 0.1, 0.2, 0.4)T. Let {𝒰1 , 𝒰2 , 𝒰3, 𝒰4} be a team of specialists with weights (0.1, 0.2, 0.4, 0.3)T. 

To assess the finest substitute, specialists make available their predilections in IVPFHSNs. The 

flowchart of the proposed model is presented in Figure 3. 

 

Figure 3. Flowchart of proposed MCGDM model. 
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4.3. By IVPFHSIWA operator 

Step 1. The decision-makers opinion on IVPFHSNs is given in Tables 2–5. 

Table 2. Decision matrix for ℑ1 in the form of IVPFHSN. 

 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 

𝓤𝟏 ([0.4, 0.5], [0.2, 0.5]) ([0.7, 0.8], [0.5, 0.6]) ([0.4, 0.6], [0.2, 0.5]) ([0.2, 0.4], [0.2, 0.6]) 
𝓤𝟐 ([0.2, 0.7], [0.2, 0.6]) ([0.1, 0.6], [0.4, 0.5]) ([0.2, 0.3], [0.4, 0.8]) ([0.2, 0.5], [0.4, 0.7]) 
𝓤𝟑 ([0.3, 0.5], [0.1, 0.4]) ([0.4, 0.6], [0.2, 0.7]) ([0.4, 0.7], [0.3, 0.7]) ([0.5, 0.7], [0.2, 0.4]) 
𝓤𝟒 ([0.4, 0.6], [0.3, 0.7]) ([0.4, 0.5], [0.3, 0.7]) ([0.3, 0.6], [0.3, 0.5]) ([0.3, 0.6], [0.3, 0.5]) 

Table 3. Decision matrix for ℑ2 in the form of IVPFHSN. 

 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 

𝓤𝟏 ([0.3, 0.6], [0.5, 0.6]) ([0.2, 0.7], [0.5, 0.7]) ([0.2, 0.7], [0.4, 0.5]) ([0.6, 0.7], [0.5, 0.8]) 
𝓤𝟐 ([0.3, 0.5], [0.5, 0.8]) ([0.1, 0.4], [0.4, 0.5]) ([0.1, 0.5], [0.3, 0.7]) ([0.4, 0.5], [0.3, 0.6]) 
𝓤𝟑 ([0.2, 0.6], [0.1, 0.4]) ([0.1, 0.2], [0.2, 0.9]) ([0.4, 0.7], [0.3, 0.7]) ([0.5, 0.8], [0.2, 0.6]) 
𝓤𝟒 ([0.2, 0.3], [0.3, 0.8]) ([0.3, 0.5], [0.2, 0.8]) ([0.3, 0.7], [0.2, 0.6]) ([0.1, 0.7], [0.3, 0.6]) 

Table 4. Decision matrix for ℑ3 in the form of IVPFHSN. 

 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 

𝓤𝟏 ([0.3, 0.4], [0.2, 0.7]) ([0.3, 0.4], [0.4, 0.6]) ([0.5, 0.6], [0.4, 0.5]) ([0.3, 0.4], [0.3, 0.6]) 
𝓤𝟐 ([0.4, 0.6], [0.3, 0.7]) ([0.3, 0.5], [0.2, 0.3]) ([0.3, 0.5], [0.5, 0.8]) ([0.2, 0.6], [0.2, 0.4]) 

𝓤𝟑 ([0.2, 0.4], [0.3, 0.4]) ([0.3, 0.5], [0.3, 0.7]) ([0.3, 0.7], [0.3, 0.8]) ([0.1, 0.3], [0.5, 0.6]) 
𝓤𝟒 ([0.3, 0.7], [0.3, 0.7]) ([0.3, 0.5], [0.2, 0.4]) ([0.2, 0.5], [0.3, 0.6]) ([0.3, 0.4], [0.3, 0.7]) 

Table 5. Decision matrix for ℑ4 in the form of IVPFHSN. 

 �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 

𝓤𝟏 ([0.3, 0.5], [0.2, 0.6]) ([0.2, 0.6], [0.4, 0.7]) ([0.2, 0.5], [0.3, 0.6]) ([0.5, 0.7], [0.6, 0.8]) 
𝓤𝟐 ([0.2, 0.7], [0.3, 0.8]) ([0.1, 0.5], [0.4, 0.7]) ([0.5, 0.7], [0.4, 0.5]) ([0.2, 0.5], [0.3, 0.4]) 
𝓤𝟑 ([0.2, 0.5], [0.1, 0.6]) ([0.2, 0.5], [0.1, 0.5]) ([0.2, 0.4], [0.2, 0.7]) ([0.3, 0.5], [0.1, 0.5]) 
𝓤𝟒 ([0.2, 0.4], [0.5, 0.8]) ([0.2, 0.5], [0.5, 0.8]) ([0.2, 0.7], [0.3, 0.6]) ([0.2, 0.5], [0.4, 0.5]) 

Step 2. Use the normalization rule to convert the cost type parameters to benefit type parameters and 

obtain the normalized Pythagorean fuzzy hypersoft decision matrices in Tables 6–9. 

Table 6. Normalized IVPFHS decision matrix for ℑ1. 

 𝐞𝟏 𝐞𝟐 𝐞𝟑 𝐞𝟒 

𝐱𝟏 ([. 4, .5], [. 2, .5]) ([. 5, .6], [. 7, .8]) ([. 4, .6], [. 2, .5]) ([. 2, .4], [. 2, .6]) 
𝐱𝟐 ([. 2, .7], [. 2, .6]) ([. 4, .5], [. 1, .6]) ([. 2, .3], [. 4, .8]) ([. 2, .5], [. 4, .7]) 
𝐱𝟑 ([. 3, .5], [. 1, .4]) ([. 2, .7], [. 4, .6]) ([. 4, .7], [. 3, .7]) ([. 5, .7], [. 2, .4]) 
𝐱𝟒 ([. 4, .6], [. 3, .7]) ([. 3, .7], [. 4, .5]) ([. 3, .6], [. 3, .5]) ([. 3, .6], [. 3, .5]) 
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Table 7. Normalized IVPFHS decision matrix for ℑ2. 

 𝐞𝟏 𝐞𝟐 𝐞𝟑 𝐞𝟒 

𝐱𝟏 ([. 3, .6], [. 5, .6]) ([. 5, .7], [. 2, .7]) ([. 2, .7], [. 4, .5]) ([. 6, .7], [. 5, .8]) 
𝐱𝟐 ([. 3, .5], [. 5, .8]) ([. 4, .5], [. 1, .4]) ([. 1, .5], [. 3, .7]) ([. 4, .5], [. 3, .6]) 
𝐱𝟑 ([. 2, .6], [. 1, .4]) ([. 2, .9], [. 1, .2]) ([. 4, .7], [. 3, .7]) ([. 5, .8], [. 2, .6]) 
𝐱𝟒 ([. 2, .3], [. 3, .8]) ([. 2, .8], [. 3, .5]) ([. 3, .7], [. 2, .6]) ([. 1, .7], [. 3, .6]) 

Table 8. Normalized IVPFHS decision matrix for ℑ3. 

 𝐞𝟏 𝐞𝟐 𝐞𝟑 𝐞𝟒 

𝐱𝟏 ([. 3, .4], [. 2, .7]) ([. 4, .6], [. 3, .4]) ([. 5, .6], [. 4, .5]) ([. 3, .4], [. 3, .6]) 
𝐱𝟐 ([. 4, .6], [. 3, .7]) ([. 2, .3], [. 3, .5]) ([. 3, .5], [. 5, .8]) ([. 2, .6], [. 2, .4]) 

𝐱𝟑 ([. 2, .4], [. 3, .4]) ([. 3, .7], [. 3, .5]) ([. 3, .7], [. 3, .8]) ([. 1, .3], [. 5, .6]) 
𝐱𝟒 ([. 3, .7], [. 3, .7]) ([. 2, .4], [. 3, .5]) ([. 2, .5], [. 3, .6]) ([. 3, .4], [. 3, .7]) 

Table 9. Normalized IVPFHS decision matrix for ℑ4. 

 𝐞𝟏 𝐞𝟐 𝐞𝟑 𝐞𝟒 

𝐱𝟏 ([. 3, .5], [. 2, .6]) ([. 4, .7], [. 2, .6]) ([. 2, .5], [. 3, .6]) ([. 5, .7], [. 6, .8]) 
𝐱𝟐 ([. 2, .7], [. 3, .8]) ([. 4, .7], [. 1, .5]) ([. 5, .7], [. 4, .5]) ([. 2, .5], [. 3, .4]) 
𝐱𝟑 ([. 2, .5], [. 1, .6]) ([. 1, .5], [. 2, .5]) ([. 2, .4], [. 2, .7]) ([. 3, .5], [. 1, .5]) 
𝐱𝟒 ([. 2, .4], [. 5, .8]) ([. 5, .8], [. 2, .6]) ([. 2, .7], [. 3, .6]) ([. 2, .5], [. 4, .5]) 

Step 3. Communicate the planned IVPFHSIWA operator to the attained information. We will attain 

the opinion of the decision-makers such as: Θ1 = ([0.3523, 0.6102], [0.7923, 0.2895]) , Θ2 =
([0.3442, 0.6781], [0.7350, 0.3050]) , Θ3 = ([0.2665, 0.5249], [0.8512,0.3470]) , Θ4 =
([0.3018, 0.5618], [0.8273,0.2851]). 

Step 4. Use the score function S =
(κ

ďij

l )

2

+(κ
ďij

u )

2

−(δ
ďij

l )

2

−(δ
ďij

u )

2

2
 for the IVPFHSS to estimate the score 

values for all alternatives. S(Θ1) = −0.1028 , S(Θ2) = −0.0275 , S(Θ3) = −0.2492 , and S(Θ4) =
−0.1795. 

Step 5. Alternatives ranking; S(Θ2)  >  S(Θ1)  >  S(Θ4)  >  S(Θ3) . Which displays that ℑ2  is the 

finest alternate. So,  ℑ2  >  ℑ1  >  ℑ4 > ℑ3 . 

4.4. By IVPFHSIWG operator 

Step 1. Obtain IVPFHS decision matrices (Tables 2–5). 

Step 2. Normalize the IVPFHS decision matrices (Tables 6–9). 

Step 3. Communicate the planned IVPFHSIWG operator to the taught information. We will acquire 

the opinion of the decision-makers, such as: Θ1 = ([0.8128, 0.3530], [0.2886, 0.5825]) , Θ2 =
([0.7909, 0.3494], [0.2990, 0.6119]) , Θ3 = ([0.7670, 0.2709], [0.3476, 0.6416]) , Θ4 =
([0.8049, 0.2830], [0.3038, 0.5935]). 

Step 4. Use the score function S =
(κ

ďij

l )

2

+(κ
ďij

u )

2

−(δ
ďij

l )

2

−(δ
ďij

u )

2

2
 IVPFHSS to compute the score values 

for all substitutes, such as S(Θ1) = 0.1419, S(Θ2) = 0.1813, S(Θ3) = 0.0646, and S(Θ4) = 0.1417. 
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Step 5. Alternatives ranking; S(Θ2) > S(Θ1) > S(Θ4)  >  S(Θ3). Which displays that ℑ2 is the best 

substitute. So, ℑ2  >  ℑ1  >  ℑ4 > ℑ3.  

5. Comparative studies 

To authenticate the proposed scheme's efficacy, an assessment of the projected model and 

prevalent approaches is scheduled in the consequent section. 

5.1. Supremacy of the planned method 

The scheduled approach is both effective and persuasive. A novel MCGDM model based on 

IVPFHSIWA and IVPFHSIWG operators is developed in the IVPFHSS framework. Our proposed 

model is more sophisticated than existing methods and can significantly improve MCGDM problems. 

The developed model is versatile and adaptable, allowing it to handle inconsistencies, obligations, and 

changing outputs. Different models have distinct classification methods, and the proposed technique 

can adjust rankings and probabilities directly. Systematic studies and evaluations determined that the 

current method's consequences are more reliable than prevailing techniques. The emergence of several 

hybrid structures of FS, including IVFS, IVIFS, IVPFS, IVIFSS, IVIFHSS, and IVPFSS, is attributed 

to the promising settings of IVPFHSS. It is easier to integrate incomplete and uncertain data in the DM 

process and present the constituent information more logically. False and misleading data are often 

mixed in the DM process. Therefore, our proposed methodology is expected to be more effective, 

significant, advanced, and refined than many hybrid FS configurations. A feature analysis comparing the 

proposed approach and some prevailing models is presented in Table 10. 

Table 10. Feature analysis of different models with a planned model. 

 
Fuzzy 

information 

Aggregated 

attributes 

information 

Aggregated 

information in 

intervals form 

Interaction 

aggregated 

information 

IVFS [3] √ × √ × 

IVIFWA [50] √ × √ × 

IVIFWG [51] √ × √ × 

IVPFWA [25] √ × √ × 

IVPFWG [27] √ × √ × 

IFSWA [33] √ √ × × 

IFSWG [33] √ √ × × 

IVIFSWA [36] √ √ √ × 

IVIFSWG [36] √ √ √ × 

IFHSWA [43] √ √ × × 

IFHSWG [43] √ √ × × 

IVPFSWA [38] √ √ √ × 

IVPFSWG [38] √ √ √ × 

IVPFHSWA [45] √ √ √ × 

IVPFHSWG [45] √ √ √ × 

Proposed IVPFHSIWA √ √ √ √ 

Proposed IVPFHSIWG √ √ √ √ 
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5.2. Comparative analysis 

To demonstrate the efficacy of the planned technique, we compared its outcomes with prevailing 

approaches for IVPFS, IVIFSS, and IVPFSS. The findings of this comparison are displayed in Table 11. 

Wang and Liu [50] introduced the IVIFWA approach in their previous research, while Xu and Chen [51] 

proposed the IVIFWG operators. However, these approaches have certain limitations in determining 

alternative parameter values. These operators are also unsuitable when 𝑀𝐷 +𝑁𝑀𝐷 > 1 , as 

determined by experts. Similarly, Zulqarnain et al. [36] proved that AOs for IVIFSS could not support 

the decision-makers assortment when MD+ NMD > 1. The IVPFWA operator proposed by Peng and 

Yang [25] and the IVPFWG operator introduced by Rahman et al. [27] cannot handle the parametric 

values of alternatives. Zulqarnain et al. [38] developed the IVPFSWA and IVPFSWG operators to 

address this issue by dealing with the parameterized values of alternatives in interval form. 

Additionally, if κ
ďij

u + δ
ďij

u ≤ 1 , the IVPFSS can be condensed to IVIFSS. Zulqarnain et al. [45] 

presented AOs for IVPFHSS and utilized them to solve MCDM problems involving the parameterized 

values of sub-attributes. However, in some cases, standing AOs may produce unattractive outcomes. To 

report these composite concerns, we developed interactive AOs for IVPFHSS capable of handling multi-

sub attributes consistent with the standing AOs. The IVPFHSS is a generalization of IVPFSS and an 

extension of IVIFHSS. Thus, based on the above details, the operators proposed in this article are highly 

substantial, stable, and effective. Table 11 equates the proposed model with the predominant models. 

Table 11. Comparison of scheduled operators with some prevalent operators. 

AO 𝕴𝟏 𝕴𝟐 𝕴𝟑 𝕴𝟒 Alternatives ranking 
Optimal 

choice 

IVIFWA[50] 0.3681 0.4573 0.3509 0.2146 ℑ2  >  ℑ1  >  ℑ3 > ℑ4 ℑ2 

IVIFWG [51] 0.3104 0.3952 0.2914 0.2753 ℑ2  >  ℑ1  >  ℑ3 > ℑ4 ℑ2 

IVPFWA [25] 0.0154 0.0251 0.0198 0.0247 ℑ2  >  ℑ4  >  ℑ3 > ℑ1 ℑ2 

IVPFWG [27] 0.0364 0.0856 0.0786 0.0475 ℑ2  >  ℑ3  >  ℑ1 > ℑ4 ℑ2 

IVIFSWA [36] 0.0235 0.0723 0.0584 0.0253 ℑ2  >  ℑ3  >  ℑ1 > ℑ4 ℑ2 

IVIFSWG [36] 0.2365 0.7234 0.5840 0.6525 ℑ2  >  ℑ4  >  ℑ3 > ℑ1 ℑ2 

IVPFSWA [38] 0.0377 0.0834 0.0113 0.0141 ℑ2  >  ℑ1  >  ℑ4 > ℑ3 ℑ2 

IVPFSWG [38] 0.0524 0.0754 0.0241 0/0114 ℑ2  >  ℑ1  >  ℑ3 > ℑ4 ℑ2 

IVPFHSWA 

[45] 

0.0578 0.0599 0.0266 –0.0382 ℑ2  >  ℑ1  >  ℑ3 > ℑ4 
ℑ2 

IVPFHSWG 

[45] 

0.0654 0.0752 0.0241 0.0114 ℑ2  >  ℑ1  >  ℑ3 > ℑ4 
ℑ2 

IVPFHSIWA –0.1028 –0.0275 –0.2492 –0.1795 ℑ2  >  ℑ1  >  ℑ4 > ℑ3 ℑ2 

IVPFHSIWG 0.1419 0.1813 0.0646 0.1417 ℑ2  >  ℑ1  >  ℑ4 > ℑ3 ℑ2 

So, we have the right to be startled by the manipulation and unpredictability of the DM process for 

the predominant operators. Planned supplies for this technique-associated exploit have a minor impact on 

contrary causes. In this way, it reduces the association of unpredictable and presumed particulars in the 

magnification of DM. Figure 4 spectacles the graphical demo of the comparison analysis. 



14678 

AIMS Mathematics  Volume 8, Issue 6, 14644–14683. 

 

Figure 4. Comparative analysis of the planned method with prevailing models. 

6. Conclusions 

The assessment of alternatives advocated by DMs is habitually conveyed by stringent checks 

disturbing DM exploration. An IVPFHSS is a robust mathematical structure for communicating 

indefinite and unreliable data in real-life surroundings to improve these boundaries. Also, DM is a 

robust system that expands the ventures of classifying the most helpful alternative. It takes seriously 

how much existent approach is needed to isolate statistical decision-makers. The most operative 

methodology in DM is to pay close devotion and attention to your objectives. This research endorses 

a novel approach for selecting sustainable suppliers under the IVPFHSS setting. A structure that reports 

on the complication of sustainable suppliers specified in real life. Lack of consideration for interactions 

and complex scenarios between attributes can impede some challenging implications in MCGDM. 

Mathematical modeling for supplier selection can overlook certain effects when integrating objectives 

under financial, superior, and welfare constraints. Surveys should be limited to optimal decisions and 

assessing decision requirements. In flexible DM, the expert's evaluation of alternative data provided 

by the expert is often uncertain, irregular, and imprudent, which can be accommodated by using an 

IVPFHSS to handle this uncertain information. The primary aim of this study is to introduce 

operational laws for the interactive IVPFHSS setting. Based on the established operational laws, we 

propose the IVPFHSIWA and IVPFHSIWG operators for IVPFHSS with their desired properties. 

Furthermore, based on the validated operators, a DM approach has been premeditated to address 

MCGDM obstacles. The anticipated methodology allows evaluating and selecting green thermal 

power equipment suppliers with limited or scarce computational data, and IVPFHSN can overwhelm 

hesitation. A mathematical example is presented to verify that the operator advocating for solving DM 

agendas has a more representative system. An in-depth examination of several existing techniques is 

provided. Based on the results achieved, it can be resolute that the scheme anticipated in this study is 

the most robust and operative approach to address the challenges of MCGDM. Future studies will 

emphasize defining Einstein AOs, Einstein-ordered AOs, distance, and similarity measures with 
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compatible features. Also, it can be prolonged to interval-valued q-rung orthopair fuzzy hypersoft sets 

with essential operations and several AOs with their DM approaches. We can also integrate interval-

valued q-rung orthopair fuzzy hypersoft numbers with other MCGDM techniques and further engage 

in practical application in problems of medical diagnosis, material selection, pattern recognition, 

information fusion, supply chain management, etc. Moreover, several topological, algebraic, and 

ordered structures can be extant for interval-valued q-rung orthopair fuzzy hypersoft sets with their 

DM approaches. 
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