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Abstract: In numerous domains, fractional stochastic delay differential equations are used to
model various physical phenomena, and the study of well-posedness ensures that the mathematical
models accurately represent physical systems, allowing for meaningful predictions and analysis. A
fractional stochastic differential equation is considered well-posed if its solution satisfies the existence,
uniqueness, and continuous dependency properties. We established the well-posedness and regularity
of solutions of conformable fractional stochastic delay differential equations (CFrSDDEs) of order
γ ∈ (1

2 , 1) in Lp spaces with p ≥ 2, whose coefficients satisfied a standard Lipschitz condition.
More specifically, we first demonstrated the existence and uniqueness of solutions; after that, we
demonstrated the continuous dependency of solutions on both the initial values and fractional exponent
γ. The second section was devoted to examining the regularity of time. As a result, we found that, for
each Φ ∈ (0, γ− 1

2 ), the solution to the considered problem has a Φ−Hölder continuous version. Lastly,
two examples that highlighted our findings were provided. The two main elements of the proof were
the Burkholder-Davis-Gundy inequality and the weighted norm.
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1. Introduction

The intriguing field of fractional calculus (FrC) expands the traditional concepts of differentiation
and integration to non-integer orders in mathematics. Complex physical system behavior can be best
described by the use of FrC. We examine a few fascinating uses for FrC [1–4]:

• Control theory makes use of FrC to construct and evaluate complicated systems with memory
effects. FrC is useful in understanding the behavior and stability of electrical circuits.
• Fractional-order multipoles in electromagnetics improve our comprehension of intricate

electromagnetic processes. The description of electrochemical processes relies heavily on
fractional differential equations. They depict the nonlocal characteristics of diffusion and charge
transport in porous media.
• FrC aids fluid mechanics in the modeling of flow in non-Newtonian fluids and porous materials.
• Understanding population dynamics, such as the spread of illnesses or ecological interactions, is

aided by FrC.
• Fractional-order optical systems are employed in optics for imaging and aberration correction.
• Furthermore, FrC sheds light on neural networks and the actions of individual brain neurons.
• A useful tool for simulating viscoelastic systems, such as polymers and biological tissues, is FrC.

A large number of natural phenomena are nonlocal, which means that recent and distant past events
have an impact on them now. These nonlocal relationships are expressed more precisely by fractional
operators than by traditional integer-order. Different mathematical definitions and attributes are used
for different sorts of fractional-order derivatives (FrOD). The kind of system being represented, the
particular problem at hand, and the required mathematical qualities of the derivative all influence which
fractional derivative should be used.

Compared to integer-order calculus, the FrOD is a better way to represent many real-world
occurrences. Several definitions of FrOD exist, including Riemann-Liouville, Caputo-Fabrizio,
Caputo-Grunuwald Letnikov, Atangana-Baleanu, and conformable. There are various definitions for
FrOD, in contrast to integer-order derivatives [5–8]. In general, these definitions are not identical.

The conformable fractional derivative (CFrD) was established by Khalil et al. [9]. For η(t) : [0,∞[→
R, the CFrD of order γ is specified via:

T
γ
t η(t) = lim

ϵ→0

η⌈γ⌉−1(t + ϵt⌈γ⌉−γ) − η⌈γ⌉−1(t)
ϵ

,

µ − 1 < γ ≤ µ, t > 0, µ ∈ N , and ⌈γ⌉, with the smallest number greater than or equal to γ. Given a
certain scenario, when 0 < γ ≤ 1, we get

T
γ
t η(t) = lim

ϵ→0

η(t + ϵt1−γ) − η(t)
t

, t > 0.

When η(t) is γ-differentiable in (0,G), G > 0, and lim
t→0+

ηγ(t) exists, then η(γ)(0) = lim
t→0+

η(γ)(t).
Formulated below, the conformable fractional integral of η(t) beginning at α̃ ≥ 0 is:

Iα̃γ(η)(t) =
∫ t

α̃

η(s)(
s − α̃

)1−γ ds, γ ∈ (0, 1].
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Taylor series, Gronwall’s inequality, exponential functions, Leibniz rule, chain rule, physical
interpretation, and integration by parts were among the subjects discussed in [10–14]. Ma and
colleagues [15] showed that the conformable derivative is acceptable and operates well in a gray
system model. In addition, a lot of study has been done on Sturm’s theorems, Ulam’s stability, and
the variational iteration method. Recent research has been conducted by the authors of [16–22] on
conformable Itô stochastic differential equations, existence results for solutions, Lyapunov stability,
virtually definitely exponential stability, and Ulam-type stability.

The 1940s saw the development of the mathematical theory of stochastic differential equations
(SDEs), largely due to the groundbreaking research of Japanese mathematician Kiyosi Itô. Itô started
the study of SDEs and proposed the idea of the stochastic integral. These formulas are essential for
simulating a wide range of phenomena in disciplines including engineering, physics, and finance.

The far more established and ancient subjects of ordinary and partial differential equations are
connected to the probability theory through SDEs. SDEs introduce unpredictability into the differential
equations, allowing us to define systems affected by random fluctuations. SDEs contain stochastic
terms that represent the inherent uncertainty in real-world processes, in contrast to classical differential
equations, where the coefficients are fixed. Because of this, they are especially helpful for simulating
phenomena that are affected by random variables. SDEs offer a potent framework for comprehending
uncertainty and randomness in a wide range of natural and artificial phenomena [23–26].

• Stock price models are frequently created using SDEs. SDEs are used in the well-known Black-
Scholes model for option pricing. SDEs are essential for modeling bond prices and interest rates.
SDEs aid in the analysis of the best investment plans. Financial risk assessment is aided by SDEs.
• SDEs have their roots in the analysis of Brownian motion. They explain the haphazard motion

of suspended particles in a liquid. SDEs simulate thermally fluctuating physical systems.
Schrödinger’s equation, which describes the time evolution of quantum wave functions, and SDEs
are similar. Diffusion processes and chemical reactions can be represented using SDEs.
• SDEs aid in the understanding of ecological systems, species interactions, and population

dynamics. The spread of infectious diseases can be modeled by using SDEs.
• Communication channel noise is modeled using SDEs. SDEs are useful for the analysis of

wireless networks.
• The stochastic behavior of neurons is described by SDEs. Gene expression and regulatory

interactions are modeled by SDEs.
• SDEs can be used to forecast extreme events and research climate variability.

Fractional stochastic delay differential equations (FrSDDEs) are a fascinating area of research that
combines FrC, delay concepts, and stochastic processes. They simulate systems in which random
fluctuations operate on the underlying dynamics and lead to fractional behavior. Financial time series,
the spread of infectious illnesses, and other topics are modeled in applications.

In the context of FrSDDEs, the notion of well-posedness is essential to comprehending their
behavior. FrSDDEs are used in physics and engineering to model a wide range of physical processes.
The study of well-posedness guarantees that the mathematical models faithfully capture the physical
systems under study, enabling significant analysis and prediction. If the existence, uniqueness, and
continuous dependency conditions are satisfied by the solution to an FrSDDE, the equation is said to
be well-posed.
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The process of studying the existence of the solutions of various models tells us that, under
appropriate conditions, solutions to differential equations can be found. Uniqueness is another
important aspect of well-being. It ensures that, under certain conditions, the solution to the fractional
stochastic differential equation (FSDE) is unique. The regularity property ensures that solution
behavior changes continuously with variations in the initial conditions and fractional order value.

In this study, we proved the existence and uniqueness (EU) and continuous dependency (Con-D)
of the solutions of the CFrSDDE on the fractional exponent γ and on the initial values, in addition to
the regularity of the solutions. Specifically, we have demonstrated in this study the EU and Con-D of
the solutions of CFrSDDEs in Lp spaces via multiplicative noise drives combined with the generalized
Lipschitz-type coefficients. Second, the Hölder continuity of the solutions to CFrSDDEs is of relevance
in Lp spaces. The three main elements used in the results demonstration are the Hölder inequality, the
Burkholder-Davis-Gundy inequality, and the temporally weighted norm.

The CFrSDDE of order 1
2 < γ < 1 was analyzed in this study, which is a generalization of the

traditional SDE driven by Brownian motions. T
γ
t U(t) = Θ(t,U(t),U(t − υ)) + Ξ(t,U(t),U(t − υ))dWt

dt ,

U = λ(t),
(1.1)

where Θ : [0, G] × Rm × Rm → Rm, Ξ : [0, G] × Rm × Rm → Rm are measured and based
on a whole filtered probability space (0, F̃t,P), and (Wt)t∈[0, ∞) is Brownian motion with {F̃t}t≥0.
The m-dimensional Euclidean space with norm |.| can be described by Rm, and the family of
bounded continuous Rm-valued functions ∆ on [−υ, 0] with norm ∥∆∥ = supt∈[−υ,0] |∆| is indicated by
C([−υ, 0];Rm). For every t ∈ [−υ, 0], the history function is represented by λ(t) and the delay period is
denoted by the positive constant υ ∈ R.

The study follows this format: In the next section, we utilize certain significant concepts and
theorems from the theory to provide an adequate foundation for the results we make about CFrSDDEs.
We first demonstrate the well-posedness of the CFrSDDEs solution in the first subsection of Section 3,
then we will demonstrate the regularity in the second section. In Section 4, examples are provided to
emphasize our findings. In the last section, there are some final comments.

2. Preliminaries

Several fundamental ideas, definitions, and theorems that are relevant to this article are covered in
this section.

Definition 2.1. For p ≥ 2, t ∈ [0,∞), assume M̃p
t = L

p(0, F̃t,P) denotes whole F̃t-measurable pth

functions that can be integrated by ℵ = (ℵ1,ℵ2, · · · ,ℵm)T : 0→ Rm with

∥ℵ∥p =

(∑m

ı=1
E(|ℵı|p)

) 1
p

. (2.1)

Consider that the following U(t) is the solution of Eq (1.1) with the initial condition (In.C) U(0) = λ
if U(0) = λ: M̃p

t for t ∈ [0,G]:

U(t) = λ +
∫ t

0
sγ−1Θ

(
s,U(s),U(s − υ)

)
ds +

∫ t

0
sγ−1Ξ

(
s,U(s),U(s − υ)

)
dWt. (2.2)
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Definition 2.2. We assume that the coefficients Θ and Ξ in Eq (1.1) satisfy the following for the intent
of this work:

(i) (H̃1) For ∀Q1,Q2,Y1,Y2 ∈ R
m, there is L such that

∥Ξ(t,Q1,Q2) − Ξ(t,Y1,Y2)∥p ≤ L
(
∥Q1 − Y1∥p + ∥Q2 − Y2∥p

)
.

∥Θ(t,Q1,Q2) − Θ(t,Y1,Y2)∥p ≤ L
(
∥Q1 − Y1∥p + ∥Q2 − Y2∥p

)
.

(ii) (H̃2) The Θ(t, 0, 0) and the Ξ(t, 0, 0) are generally restricted by time, i.e.,

esssup
t∈[0,G]

∥Θ(t, 0, 0)∥p < Z, esssup
t∈[0,G]

∥Ξ(t, 0, 0)∥p < Z. (2.3)

Note that neither (H̃1) nor (H̃1) is dependent on the norm chosen on Rm. However, for simplicity in
our next estimations, we give Rm with the p norm: For every vector Q = (Q1,Q1,Q1, · · · ,Qm)T ∈ Rm,

∥Q∥p =
(∑m

ı=1 |Qı|
p
) 1

p

, give ∥Q∥p of Q.

Theorem 2.3. Suppose that (H̃1) and (H̃2) are fulfilled, then a constant J > 0 that relies on
γ,L,J ,Z,G is there; therefore,

∥Vγ(λ, t) − Vγ(λ, f)∥p ≤ J|t − f|γ−
1
2 , ∀t, f ∈ [0,G]. (2.4)

Corollary 2.4. For Φ ∈ (0, γ − 1
2 ), a modificationV of X when Φ−Hölder continuous paths, i.e.,

P(Ut = Vt) = 1, ∀t ∈ [0,G]. (2.5)

Proof. From Eq (2.4) and Kolmogorov test [27], X(t) has Φ-Hölder continuous modification ∀Φ ∈
(0, γ − 1

2 ).

3. The main results

We demonstrate in this section that the CFrSDDE solutions are well-posed and regular.

3.1. The well-posedness of solutions to CFrSDDEs

To accomplish this, we need to show the EU and Con-D of the solutions on γ and the initial data to
verify the well-posedness of solutions.

Assume that H̃p(0,G) is made up of complete, measurable processes U(t), F̃G−adapted, with F̃G =
(̃Ft)t∈[0,G], and satisfies the following:

∥U(t)∥
H̃p = esssup

t∈[0,G]
∥U(t)∥p < ∞. (3.1)

(
H̃p(0,G), ∥.∥

H̃p

)
; undoubtedly,

(
H̃p(0,G), ∥.∥

H̃p

)
is a Banach space. We build an operator 𭟋λ :

H̃p(0,G) → H̃p(0,G) by 𭟋λ(M(0)) = λ for any λ ∈ M̃p
0, and for t ∈ [0,G], the equality that follows is

true.

𭟋λ(M(t)) = λ +
∫ t

0
sγ−1Θ

(
s,M(s),M(s − υ)

)
ds +

∫ t

0
sγ−1Ξ

(
s,M(s),M(s − υ)

)
dWs. (3.2)
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The following lemma illustrates this operator’s well-defined property. The aforementioned finding,
along with several others that follow, is proved using the elementary inequality below.∥∥∥U1 + U2∥

p
p +

∥∥∥U1 − U2∥
p
p ≤ 2p−1(∥U1∥

p
p +

(
∥U2∥

p
p
)
. (3.3)

Lemma 3.1. Let us suppose that H̃1 and H̃2 are satisfied. We then obtain a well-defined operator 𭟋λ
with the value λ ∈ M̃p

0 .
Proof. Suppose M(t) ∈ H̃p[0,G], and here M(t) is arbitrary. We possess the following ∀t ∈ [0,G] by
utilizing of 𭟋λ(M(t)) as in Eqs (3.2) and (3.3).∥∥∥𭟋λ(M(t))

∥∥∥p

p
≤2p−1

∥∥∥λ∥∥∥p

p
+ 22p−2

∥∥∥∥∥ ∫ t

0
sγ−1Θ

(
s,M(s),M(s − υ)

)
ds

∥∥∥∥∥p

p

+ 22p−2
∥∥∥∥∥ ∫ t

0
sγ−1Ξ

(
s,M(s),M(s − υ)

)
dWt

∥∥∥∥∥p

p
. (3.4)

The Hölder inequality gives us the result that∥∥∥∥∥ ∫ t

0
sγ−1Θ

(
s,M(s),M(s − υ)

)
ds

∥∥∥∥∥p

p
≤

∑m

ı=1
E
( ∫ t

0
sγ−1

∣∣∣Θı(s,M(s),M(s − υ)
)∣∣∣ds

)p

≤
∑m

ı=1
E
(( ∫ t

0
s

(γ−1)p
(p−1) ds

)p−1 ∫ t

0

∣∣∣Θı(s,M(s),M(s − υ)
)∣∣∣pds

)
≤
G(pγ−1)(p − 1)(p−1)

(pγ − 1)(p−1)

∫ t

0

∥∥∥Θ(s,M(s),M(s − υ)
)∥∥∥p

p
ds. (3.5)

According to (H̃1), we acquire∥∥∥Θ(s,M(s),M(s − υ)
)∥∥∥p

p
≤2p−1

(∥∥∥Θ(s,M(s),M(s − υ)
)
+ Θ(s, 0, 0)

∥∥∥p

p
−

∥∥∥Θ(s, 0, 0)
∥∥∥p

p

)
≤2p−1

(
Lp

(∥∥∥M(s)
∥∥∥p

p
+

∥∥∥M(s − υ)
∥∥∥p

p

)
+

∥∥∥Θ(s, 0, 0)
∥∥∥p

p

)
. (3.6)

Therefore,∫ t

o

∥∥∥Θ(s,M(s),M(s − υ)
)∥∥∥p

p
ds ≤2p−1Lp

((
esssup

s∈[0,G]
∥M(s)∥p

)p

+

(
esssup

s∈[0,G]

∥∥∥M(s − υ)
∥∥∥

p

)p)
∫ t

0
1ds + 2p−1

∫ t

0

∥∥∥Θ(s, 0, 0)
∥∥∥p

p
ds

≤2p−1LpG
(∥∥∥M(s)

∥∥∥p

H̃p +
∥∥∥M(s − υ)

∥∥∥p

H̃p

)
2p−1

∫ t

0

∥∥∥Θ(s, 0, 0)
∥∥∥p

p
ds. (3.7)

By Eqs (3.5) and (3.7) , we get∥∥∥∥∥ ∫ t

0
sγ−1Θ

(
s,M(s),M(s − υ)

)
ds

∥∥∥∥∥p

p
≤
G(pγ−1)(2p − 2)(p−2)

(pγ − 1)(p−1)

(
LpG

(∥∥∥M(s)
∥∥∥p

H̃p

+
∥∥∥M(s − υ)

∥∥∥p

H̃p

)
+

∫ t

0

∥∥∥Θ(s, 0, 0)
∥∥∥p

p
ds

)
. (3.8)
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Now, applying the Burkholder-Davis-Gundy inequality and Hölder inequality, we get∥∥∥∥∥ ∫ t

0
sγ−1Ξ

(
s,M(s),M(s − υ)

)
dWt

∥∥∥∥∥p

p
≤

∑m

ı=1
E
∣∣∣∣∣ ∫ t

0
sγ−1(Ξı(s,M(s),M(s − υ)

)
dWs

∣∣∣∣∣p
≤

∑m

ı=1
CpE

∣∣∣∣∣ ∫ t

0
s2γ−2

∣∣∣∣∣Ξı(s,M(s),M(s − υ)
)∣∣∣∣∣2ds

∣∣∣∣∣ p
2

≤
∑m

ı=1
CpE

∫ t

0
s2γ−2

∣∣∣∣∣Ξı(s,M(s),M(s − υ)
)∣∣∣∣∣pds( ∫ t

0
s2γ−2ds

) p−2
2

≤Cp

(
G2γ−1

2γ − 1

) p−2
2

∫ t

0
s2γ−2

∥∥∥∥∥Ξ(s,M(s,M(s − υ)
)∥∥∥∥∥p

p
ds, (3.9)

where Cp =

(
pp+1

2(p−1)p−1

) p
2

. We have from (H̃1) and (H̃2) that

∥∥∥∥∥Ξ(s,M(s),M(s − υ)
)∥∥∥∥∥p

p
≤2p−1Lp

(∥∥∥M(s)
∥∥∥p

p
+

∥∥∥M(s − υ)
∥∥∥p

p

)
+ 2p−1

∥∥∥Ξ(s, 0, 0)
∥∥∥p

p

≤2p−1Lp
(∥∥∥M(s)

∥∥∥p

p
+

∥∥∥M(s − υ)
∥∥∥p

p

)
+ 2p−1Zp. (3.10)

Thus, ∀t ∈ [0,G]. We get the following:∫ t

0
s2γ−2

∥∥∥∥∥Ξ(s,M(s),M(s − υ)
)∥∥∥∥∥p

p
ds ≤2p−1Lp

∫ t

0
s2γ−2

((
esssup

s∈[0,G]

∥∥∥M(s)p

∥∥∥)p

+

(
esssup

s∈[0,G]

∥∥∥M(s − υ)p

∥∥∥)p)
ds + 2p−1Zp

∫ t

0
s2γ−2ds

≤
2p−1G2γ−1

2γ − 1

(
Lp

(
∥M(s)∥p

H̃p
+ ∥M(s − υ)∥p

H̃p

)
+Zp

)
. (3.11)

With Eqs (3.4) and (3.8) and (H̃2) , we obtain that ∥𭟋(M(t)
)
∥
H̃p
< ∞. As a consequence, the map 𭟋λ is

well-defined.

To prove EU, we have to prove the following lemma:

Lemma 3.2. When γ > 1
2 and t > 0, the subsequent satisfies:

ℏ

Γ(2γ − 1)

∫ t

0
s2γ−2E2γ−1(ℏs2γ−1)ds ≤ E2γ−1(ℏt2γ−1), (3.12)

where E2γ−1(.) is a Mittag-Leffler function (MLF), which is defined as

E(2γ−1)(t) =
∑∞

ı=0

tı

Γ((2γ − 1)ı + 1)
. (3.13)
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Proof. Assume that ℏ > 0 is random. First, we substitute integral and sum, and then we apply the
procedure that follows identity.∫ t

0
s2γ−2sı(2γ−1)ds = t(ı+1)(2γ−1)B

(
2γ − 1, ı(2γ − 1) + 1

)
, ı = 0, 1, 2, · · · .

So, we get

ℏ

Γ(2γ − 1)

∫ t

0
s2γ−2E2γ−1(ℏs2γ−1)ds =ℏ

∑∞

ı=0

ℏı

Γ(ı(2γ − 1) + 1)

∫ t

0
s2γ−2sı(2γ−1)ds

=
∑∞

ı=0

ℏı+1t(ı+1)(2γ−1)

Γ(2γ − 1)Γ(ı(2γ − 1) + 1)

=
∑∞

ı=1

ℏıtı(2γ−1)

Γ(ı(2γ − 1) + 1)
=E2γ−1(ℏt2γ−1) − 1
≤E2γ−1(ℏt2γ−1).

In this case, a beta function is B. Consequently, it finishes the proof.

To prove the EU of solutions, we will show that the operator 𭟋λ is contractive under a suitably
weighted norm ( [28], Remark 2.1). The MLF E(2γ−1)(t), as found in Eq (3.13), serves as the weight
function in this instance.

Theorem 3.3. If (H̃1) and (H̃2) are fulfilled, then the Eq (1.1), when U(0) = λ, posses a unique solution
when [0,G] for any λ ∈ M̃p

0.
Proof. We take ℏ > 0 as follows:

ℏ > σ2p−1Γ(2γ − 1), (3.14)

where

σ = 2p−1Lp
((
G(p−2)γ+1) 1( (p−2)γ+1

p−1

)p−1 +

(
G2γ−1

2γ − 1

) p−2
2
( pp+1

2(p − 1)p−1

) p
2
)
. (3.15)

Over the space H̃p([o,G]), we construct a weighted norm ∥.∥ℏ to be

∥U(t)∥ℏ = esssup
t∈[0,G]

( ∥U(t)∥pp
E2γ−1(ℏt2γ−1)

) 1
p

, ∀U(t) ∈ H̃p([0,G]). (3.16)

Two norms, ∥.∥
H̃p and ∥.∥ℏ, are equivalent.

(
H̃p([0,G]

)
, ∥.∥ℏ) is a Banach space as a result. Choose

and fix λ ∈ M̃p
0. By virtue of Lemma 3.1, the operator 𭟋λ is well-defined. We are going to now

demonstrate the contractivity of the map 𭟋λ concerning the norm ∥.∥ℏ. Let M and M̃ be arbitrary for
this purpose. We acquire the subsequent ∀t ∈ [0,G] from Eqs (3.2) and (3.3):

∥𭟋λ
(
M(t)) − 𭟋λ

(
M̃(t))∥pp ≤2p−1

∥∥∥∥∥ ∫ t

0
sγ−1

(
Θ
(
s,M(s),M(s − υ)

)
− Θ

(
s, M̃(s), M̃(s − υ)

))
ds

∥∥∥∥∥p

p

+ 2p−1
∥∥∥∥∥ ∫ t

0
sγ−1

(
Ξ
(
s,M(s),M(s − υ)

)
− Ξ

(
s, M̃(s), M̃(s − υ)

))
dWs

∥∥∥∥∥p

p
.

(3.17)

AIMS Mathematics Volume 9, Issue 5, 11194–11211.



11202

Using the Hölder inequality and (H̃1), we obtain∥∥∥∥∥ ∫ t

0
sγ−1

(
Θ
(
s,M(s),M(s − υ)

)
− Θ

(
s, M̃(s), M̃(s − υ)

))
ds

∥∥∥∥∥p

p

≤
∑m

ı=1
E
( ∫ t

0
sγ−1

(
Θı

(
s,M(s),M(s − υ)

)
− Θı

(
s, M̃(s), M̃(s − υ)

))
ds

)p

≤
∑m

ı=1
E
(( ∫ t

0
s

(γ−1)(p−2)
p−1 ds

)p−1( ∫ t

0
s2γ−2

∣∣∣Θı(s,M(s),M(s − υ)
)
− Θı

(
s, M̃(s), M̃(s − υ))

∣∣∣))
≤
LpGpγ−2γ+1(p − 1)p−1

(pγ − 2γ + 1)p−1

∫ t

0
s2γ−2

(∥∥∥M(s) − M̃(s))
∥∥∥p

p
+

∥∥∥M(s − υ) − M̃(s − υ))
∥∥∥p

p

)
ds. (3.18)

However, using (H̃1) and the Burkholder-Davis-Gundy inequality, we have∥∥∥∥∥ ∫ t

0
sγ−1

(
Ξ
(
s,M(s),M(s − υ)

)
− Ξ

(
s, M̃(s), M̃(s − υ)

))
dWs

∥∥∥∥∥p

p

=
∑m

ı=1
E
∣∣∣∣∣ ∫ t

0
sγ−1

(
Ξı

(
s,M(s),M(s − υ)

)
− Ξı

(
s, M̃(s), M̃(s − υ)

))
dWs

∣∣∣∣∣p
≤

∑m

ı=1
CpE

∣∣∣∣∣ ∫ t

0
s2γ−2

∣∣∣Ξı(s,M(s),M(s − υ)
)
− Ξı

(
s, M̃(s), M̃(s − υ)

)∣∣∣2ds
∣∣∣∣∣ p

2

≤
∑m

ı=1
CpE

∫ t

0
s2γ−2

∣∣∣Ξı(s,M(s),M(s − υ)
)
− Ξı

(
s, M̃(s), M̃(s − υ)

)∣∣∣pds
( ∫ t

0
s2γ−2ds

) p−2
2

≤

(
G2γ−1

2γ − 1

) p−2
2

LpCp

∫ t

0
s2γ−2

(∥∥∥M(s) − M̃(s)∥pp +
∥∥∥M(s − υ) − M̃(s − υ)∥pp

)
ds. (3.19)

Thus, ∀t ∈ [0,G]. We have

∥𭟋λ
(
M(t)

)
− 𭟋λ

(
M̃(t)

)∥∥∥p

p
≤ σ

∫ t

0

(∥∥∥M(s) − M̃(s)∥pp +
∥∥∥M(s − υ) − M̃(s − υ)∥pp

)
s2γ−2ds, (3.20)

where σ is specified in Eq (3.15). The result suggests using the definition of ∥.∥ℏ from Eq (3.16):

∥𭟋λM(t) − 𭟋λM̃(t)∥pp
E2γ−1(ℏt2γ−1)

≤
σ

∫ t

0
s2γ−2

(
∥M(s)−M̃(s)∥pp+∥M(s−υ)−M̃(s−υ)∥pp

)
E2γ−1(ℏs2γ−1) E2γ−1(ℏs2γ−1)ds

E2γ−1(ℏt2γ−1)

≤σ

(
esssup

s∈[0,G]

((
∥M(s) − M̃(s)∥pp + ∥M(s − υ) − M̃(s − υ)∥pp

)
E2γ−1(ℏt2γ−1)

) 1
p
)p

∫ t

0
s2γ−2E2γ−1(ℏs2γ−1)ds

E2γ−1(ℏt2γ−1)

≤
σΓ(2γ − 1)

ℏ

(
∥M(s) − M̃(s)∥pℏ + ∥M(s − υ) − M̃(s − υ)∥pℏ

)
. (3.21)

By utilizing Lemma 3.2, we get the required result.

∥𭟋λ
(
M(t)

)
− 𭟋λ

(
M̃(t)

)
∥ℏ ≤

(
σΓ(2γ − 1)

ℏ

) 1
p
(
∥M(s) − M̃(s)∥ℏ + ∥M(s − υ) − M̃(s − υ)∥ℏ

)
. (3.22)
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From Eq (3.14), we get σΓ(2γ−1)
ℏ

< 1, and the operator 𭟋λ on
(
H̃ p([0,G]), ∥.∥ℏ

)
is a contractive map.

There is a single fixed point of this map in H̃ p([0,G]), according to the Banach fixed point theorem.
This fixed point is also the unique solution to Eq (1.1) with the In.C U(0) = λ. We have demonstrated
this theorem.

We are going to demonstrate that the solution relies constantly on γ in the subsequent theorem.

Theorem 3.4. The solution Vγ(t, λ) depends continuously on γ, i.e.,

lim
γ→γ̃

esssup
t∈[0,G]

∥Vγ(t, λ) − Vγ̃(t, λ)∥p = 0. (3.23)

Proof. Suppose γ, γ̃ ∈ ( 1
2 , 1) and further take λ ∈ M̃p

0. As Vγ(λ, t) and Vγ̃(λ, t) are solutions to Eq (1.1),
we obtain the following:

Vγ(λ, t) − Vγ̃(λ, t) =
∫ t

0
sγ−1

(
Θ(s,Vγ(s),Vγ(s − υ)) − Θ(s,Vγ̃(s),Vγ̃(s − υ))

)
ds

+

∫ t

0

(
sγ−1 − sγ̃−1)Θ(s,Vγ̃(s),Vγ̃(s − υ))ds

+

∫ t

0
sγ−1

(
Ξ(s,Vγ(s),Vγ(s − υ)) − Ξ(s,Vγ̃(s),Vγ̃(s − υ))

)
dWs

+

∫ t

0

(
sγ−1 − sγ̃−1)Ξ(s,Vγ̃(s),Vγ̃(s))dWs. (3.24)

Using Eq (3.3), we obtain the subsequent outcome using Eq (3.24).

∥∥∥Vγ(λ, t) − Vγ̃(λ, t)∥∥∥p

p
≤2p−1σ

∫ t

0
s2γ−2

∥∥∥Vγ(λ, t) − Vγ̃(λ, t)∥∥∥p

p
ds

+ 22p−2
∥∥∥∥∥ ∫ t

0

(
sγ−1 − sγ̃−1)Θ(s,Vγ̃(s),Vγ̃(s − υ))ds

∥∥∥∥∥p

p

+

∥∥∥∥∥ ∫ t

0

(
sγ−1 − sγ̃−1)Ξ(s,Vγ̃(s),Vγ̃(s − υ))dWs

∥∥∥∥∥p

p
. (3.25)

Suppose the following:
I(t, s, γ, γ̃) =

∣∣∣sγ−1 − sγ̃−1
∣∣∣. (3.26)

We are going to now simplify Eq (3.25). By using Eq (3.3), the Hölder inequality, (H̃1), and (H̃2), we
get the following result:∥∥∥∥∥ ∫ t

0

(
sγ−1 − sγ̃−1)Θ(s,Vγ̃(s),Vγ̃(s − υ))ds

∥∥∥∥∥p

p
(3.27)

≤
∑m

1
E
( ∫ t

0
I(t, s, γ, γ̃)

∣∣∣Θı(s,Vγ̃)
∣∣∣ds

)p

≤
∑m

1
E
(( ∫ t

0

(
I(t, s, γ, γ̃)

) p
p−1

)p−1 ∫ t

0

∣∣∣Θı(s,Vγ̃(s),Vγ̃(s − υ))
∣∣∣pds

)
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≤

( ∫ t

0

(
I(t, s, γ, γ̃)

)2
) p

2
( ∫ t

0
1ds

) p−2
2

∫ t

0

∥∥∥Θ(s,Vγ̃(s),Vγ̃(s − υ))
∥∥∥p

p
ds

≤

( ∫ t

0

(
I(t, s, γ, γ̃)

)2
) p

2

G
p−2

2

∫ t

0
2p−1

(
Lp∥Vγ̃(s, λ)∥pp) + ∥Θ(s, 0)∥pp

)
≤

( ∫ t

0

(
I(t, s, γ, γ̃)

)2
) p

2

G
p
2 2p−1

(
Lpesssup

t∈[0,G]
∥Vγ̃(s, λ)∥pp) +Zp

)
. (3.28)

We will now streamline the latter portion of Eq (3.25). For this, using the Burkholder-Davis-Gundy
inequality, Eq (3.26), (H̃1), and (H̃2), we have the result:∥∥∥∥∥ ∫ t

0

(
sγ−1 − sγ̃−1)Ξ(s,Vγ̃(s),Vγ̃(s − υ))dWs

∥∥∥∥∥p

p
(3.29)

≤
∑m

1
E
∣∣∣∣∣ ∫ t

0
I(t, s, γ, γ̃)Ξı(s,Vγ̃(s),Vγ̃(s − υ))dWs

∣∣∣∣∣p
≤

∑m

1
CpE

∣∣∣ ∫ t

0
I(t, s, γ, γ̃)2

∣∣∣Ξı(s,Vγ̃(s),Vγ̃(s − υ))
∣∣∣2dWs

∣∣∣ p
2

≤
∑m

1
CpE

[( ∫ t

0
I(t, s, γ, γ̃)2

∣∣∣Ξı(s,Vγ̃(s),Vγ̃(s − υ))
∣∣∣pds

) 2
p
( ∫ t

0

(
I(t, s, γ, γ̃)

)2ds
) p−2

p
] p

2

=Cp

∫ t

0
I(t, s, γ, γ̃)2

∥∥∥Ξ(s,Vγ̃(s),Vγ̃(s − υ))
∥∥∥p

p
ds

( ∫ t

0

(
I(t, s, γ, γ̃)

)2ds
) p−2

p

≤Cp

( ∫ t

0
I(t, s, γ, γ̃)2ds

) p
2

2p−1
(
Lpesssup

t∈[0,G]
∥Vγ̃(s, λ)∥pp +Zp

)
. (3.30)

Using ∥.∥ℏ and the previously obtained results, we obtain the following:

∥∥∥Vγ(λ, t) − Vγ̃(λ, t)∥∥∥p

p

E2γ−1(σt2γ−1)
≤
σ2p−1

∫ t

0
s2γ−2

∥∥∥Vγ(s,λ)−Vγ̃(s,λ)
∥∥∥p

p

E2γ−1(σt2γ−1) E2γ−1(σt2γ−1)

E2γ−1(σt2γ−1)

+ 23p−3
(
Lpesssup

t∈[0,G]
∥Vγ̃(s, λ)∥pp +Zp

)( ∫ t

0

(
I(t, s, γ, γ̃)

)2ds
) p

2

G
p
2

+ 23p−3
(
Lpesssup

t∈[0,G]
∥Vγ̃(s, λ)∥pp +Zp

)
Cp

( ∫ t

0

(
I(t, s, γ, γ̃)

)2ds
) p

2

≤
σ2p−1Γ(2γ − 1)

ℏ

∥∥∥Vγ(t, λ) − Vγ̃(t, λ)
∥∥∥p

ℏ

+ 23p−3
(
Lpesssup

t∈[0,G]
∥Vγ̃(s, λ)∥pp +Zp

)( ∫ t

0

(
I(t, s, γ, γ̃)

)2ds
) p

2

G
p
2

+ 23p−3
(
Lpesssup

t∈[0,G]
∥Vγ̃(s, λ)∥pp +Zp

)
Cp

( ∫ t

0

(
I(t, s, γ, γ̃)

)2ds
) p

2

. (3.31)

Ultimately, applying Lemma 3.2, we obtain(
1 −

σ2p−1Γ(2γ − 1)
ℏ

)∥∥∥Vγ(t, λ) − Vγ̃(t, λ)
∥∥∥p

ℏ
(3.32)
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≤23p−3
(
Lpesssup

t∈[0,G]
∥Vγ̃(s, λ)∥pp +Zp

)( ∫ t

0

(
I(t, s, γ, γ̃)

)2ds
) p

2

G
p
2

+ 23p−3
(
Lpesssup

t∈[0,G]
∥Vγ̃(s, λ)∥pp +Zp

)
Cp

( ∫ t

0

(
I(t, s, γ, γ̃)

)2ds
) p

2

.

Therefore, as a way to finish the proof, it is necessary to show the following using Eq (3.14) and p ≥ 2:

lim
γ̃→γ

sup
t∈[0,G]

∫ t

0

(
I(t, s, γ, γ̃)

)2ds = 0. (3.33)

We have the following:∫ t

0

(
I(t, s, γ, γ̃)

)2ds =
∫ t

0
s2γ−2ds +

∫ t

0
s2γ̃−2ds −

∫ t

0
sγ+γ̃−2ds (3.34)

=
s2γ−1

2γ − 1
+

s2γ̃−1

2γ̃ − 1
−

2tγ+γ̃−1

γ + γ̃ − 1
.

As such, it demonstrated the needed outcome.

By comparing the two distinct solutions, we get the solutions for the Lipschitz continuity
dependency for the initial values.

Theorem 3.5. For any λ, δ ∈ M̃p
0, the solution Vγ(t, λ) depends Lipschitz continuously on λ, i.e., there

exists L1 > 0 such that
∥Vγ(t, λ) − Vγ(t, δ)|p ≤ L∥λ − δ∥p, ∀ t ∈ [0, G]. (3.35)

Proof. Take δ ∈ M̃p
0. Assume λ ∈ M̃p

0 randomly. As Vγ(t, λ) and Vγ(t, δ) are solutions of Eq (1.1), it
implies that

Vγ(t, λ) − Vγ(t, δ) =λ − δ +
∫ t

0
sγ−1(Θ(s,Vγ(s, λ),Vγ(s − υ, λ))

− Θ(s,Vγ(s, δ),Vγ(s − υ, δ))
)
ds +

∫ t

0
sγ−1(Ξ(s,Vγ(s, λ),Vγ(s − υ, λ))

− Ξ(s,Vγ(s, δ),Vγ(s − υ, δ)
)
dWs. (3.36)

Hence, using Eq (3.3):∥∥∥Vγ(t, λ) − Vγ(t, δ)
∥∥∥p

p

≤2p−1
∥∥∥∥∥ ∫ t

0
sγ−1

(
Θ
(
s,Vγ(s, λ),Vγ(s − υ, λ), )

)
− Θ

(
s,Vγ(s, δ),Vγ(s − υ, δ)

))
ds

∥∥∥∥∥p

p

+ 2p−1
∥∥∥∥∥ ∫ t

0
sγ−1

(
Ξ
(
s,Vγ(s, λ),Vγ(s − υ, λ)

)
− Ξ

(
s,Vγ(s, λ),Vγ(s − υ, δ)

))
dWs

∥∥∥∥∥p

p
. (3.37)

Now, using Eq (3.37), Eq (3.3), the Hölder inequality, and (H̃1), we get the following result:∥∥∥∥∥ ∫ t

0
sγ−1

(
Θ
(
s,Vγ(s, λ),Vγ(s − υ, λ)

)
− Θ

(
s,Vγ(s, δ),Vγ(s − υ, δ)

))
ds

∥∥∥∥∥p

p

AIMS Mathematics Volume 9, Issue 5, 11194–11211.



11206

≤
∑m

ı=1
E
( ∫ t

0
sγ−1

(
Θı

(
s,Vγ(s, λ),Vγ(s − υ, λ)

)
− Θı

(
s,Vγ(s, δ),Vγ(s − υ, δ)

))
ds

)p

≤
∑m

ı=1
E
(( ∫ t

0
s

(γ−1)(p−2)
p−1 ds

)p−1

( ∫ t

0
s2γ−2

∣∣∣Θı(s,Vγ(s, λ),Vγ(s − υ, λ)
)
− Θı

(
s,Vγ(s, δ),Vγ(s − υ, δ)

)∣∣∣))
≤

(
LpGpγ−2γ+1(p − 1)p−1

(pγ − 2γ + 1)p−1

)
∫ t

0
s2γ−2

(∥∥∥Vγ(s, λ) − Vγ(s, δ)
∥∥∥p

p
+

∥∥∥Vγ(s − υ, λ) − Vγ(s − υ, δ)
∥∥∥p

p

)
ds. (3.38)

Now using Eq (3.3), the Hölder inequality, Burkholder-Davis-Gundy inequality, and (H̃1), we get∥∥∥∥∥ ∫ t

0
sγ−1

(
Ξ
(
s,Vγ(s, λ),Vγ(s − υ, λ)

)
− Ξ

(
s,Vγ(s, δ),Vγ(s − υ, δ)

))
dWs

∥∥∥∥∥p

p

=
∑m

ı=1
E
∣∣∣∣∣ ∫ t

0
sγ−1

(
Ξı

(
s,Vγ(s, λ),Vγ(s − υ, λ)

)
− Ξı

(
s,Vγ(s, δ),Vγ(s − υ, δ)

))
dWs

∣∣∣∣∣p
≤

∑m

ı=1
CpE

∣∣∣∣∣ ∫ t

0
s2γ−2

∣∣∣Ξı(s,Vγ(s, λ)Vγ(s − υ, λ)
)
− Ξı

(
s,Vγ(s, δ),Vγ(s − υ, δ)

)∣∣∣2ds
∣∣∣∣∣ p

2

≤
∑m

ı=1
CpE

∫ t

0
s2γ−2

∣∣∣Ξı(s,Vγ(s, λ),Vγ(s − υ, λ)
)
− Ξı

(
s,Vγ(s, δ),Vγ(s − υ, δ)

)∣∣∣pds( ∫ t

0
s2γ−2ds

) p−2
2

≤LpCp

(
G2γ−1

2γ − 1

) p−2
2

∫ t

0
s2γ−2

(∥∥∥Vγ(s, λ) − Vγ(s, δ)
∥∥∥p

p

+
∥∥∥Vγ(s − υ, λ) − Vγ(s − υ, δ)

∥∥∥p

p

)
ds. (3.39)

Utilizing Eqs (3.38) and (3.39), we can therefore extract the following from Eq (3.37).∥∥∥Vγ(t, λ) − Vγ(t, δ)
∥∥∥p

p
≤2p−1

∥∥∥λ − δ∥∥∥p

p
+ 2p−1σ

∫ t

0
s2γ−2

(∥∥∥Vγ(s, λ) − Vγ(s, δ)
∥∥∥p

p

+
∥∥∥Vγ(s − υ, λ) − Vγ(s − υ, δ)

∥∥∥p

p

)
ds. (3.40)

Taking the Gronwall inequality into account, we arrive at the following ( [29], Lemma 7.1.1):∥∥∥Vγ(t − υ, λ) − Vγ(t − υ, δ)
∥∥∥p

p
≤ 2p−1E2γ−1

(
2p−1σΓ(2γ − 1)t2γ−1)∥∥∥λ − δ∥∥∥p

p
. (3.41)

Hence, the proof is complete.

3.2. Regularity for CFrSDDEs

We are going to demonstrate the regularity of CFrSDDEs solutions in this portion.
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Proof of Theorem 2.3.

22−2p
∥∥∥Vγ(t, λ) − Vγ(u, λ)

∥∥∥p

p
≤

∥∥∥∥∥ ∫ t

u
sγ−1Θ(s,Vγ(s, λ))ds

∥∥∥∥∥p

p
+

∥∥∥∥∥ ∫ t

u
sγ−1Ξ(s,Vγ(s, λ))dWs

∥∥∥∥∥p

p
,

applying inequality

22−2p
∥∥∥Vγ(t, λ) − Vγ(t, λ)

∥∥∥p

p
≤

(p − 1)p−1

(pγ − 1)p−1

(
t

pγ−1
p−1 − u

pγ−1
p−1

)p−1
∫ t

u

∥∥∥Θ(s,Vγ(s, λ))
∥∥∥p

p
ds

+ Cp

∫ t

u

∥∥∥Ξ(s,Vγ(s, λ))
∥∥∥p

p

s2−2γ ds
( ∫ t

u

1
s2−2γ ds

) p−2
2

.

So, Z1 > 0 exists when esssup
t∈[0,G]

∥Vγ(t, λ)∥pp ≤ Z1 because Vγ(s, λ) ∈ H̃p([0,G]
)
. Along with (H̃1) and

(H̃2), this implies∥∥∥Θ(s,Vγ(s, λ))
∥∥∥p

p
≤ 2p−1(Lp

∥∥∥Vγ(s, λ))
∥∥∥p

p
+ ∥Θ(s, 0)∥pp

)
≤ 2p−1(LpZ1 +Z

p).∥∥∥Ξ(s,Vγ(s, λ))
∥∥∥p

p
≤ 2p−1(Lp

∥∥∥Vγ(s, λ))
∥∥∥p

p
+ ∥Ξ(s, 0)∥pp

)
≤ 2p−1(LpZ1 +Z

p).
From above, we get the following:

22−2p
∥∥∥Vγ(t, λ) − Vγ(t, λ)

∥∥∥p

p
≤

(2p − 2)p−1

(pγ − 1)p−1

(
t − f

) (2γ−1)p
2

(
LpZ1 +Z

p)G p
2

+
1

(2γ − 1)
p
2

(
t − f

) (2γ−1)p
2

(
LpZ1 +Z

p)2p−1Cp.

Hence, we get ∥∥∥Vγ(t, λ) − Vγ(t, λ)
∥∥∥

p
≤ J(t − f)γ−

1
2 ,

where

Jp = 22p−2
( (2p − 2)p−1

(pγ − 1)p−1

(
LpZ1 +Z

p)G p
2 +

1

(2γ − 1)
p
2
(LpZ1 +Z

p)2p−1Cp

)
.

We provided two examples in the part that follows to demonstrate the usefulness of our demonstrated
outcome.

4. Examples

Example 4.1. Consider the following problem:

T
γ
t U(t) = −aU(t − υ) + b

dWs

dt
,

1
2
< γ < 1, 0 < t < G, (4.1)

U(t) = 1, − υ ≤ t ≤ 0. (4.2)

In this case, the delay time is υ, the drift and diffusion terms are Θ = −aU(t−υ) and Ξ = b accordingly,
and the constants a and b are positive. In the aforementioned model, which was studied in [30, 31],
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γ = 1 characterized the statistical physics of motorists. Assume the following: υ = 0.1, a = 0.5, b = 1.
The terms −aU(t − υ) and b satisfied the require condition. Therefore, with U = 1, υ ≤ t ≤ 0 in
−υ ≤ t ≤ G, the Theorem 3.3 indicates that a solution exists and is unique.
Example 4.2. Examine the following problem:

T
γ
t U(t) =

cU(t − υ)
1 + U10(t − υ)

− aU(t) + bU
dWs

dt
,

1
2
< γ < 1, 0 < t < G, (4.3)

U(t) = 0.5, − υ ≤ t ≤ 0. (4.4)

In this case, the delay time is υ, the drift and diffusion terms are Θ = cU(t−υ)
1+U10(t−υ) and Ξ = −aU(t) +

bU accordingly, and the constants a, b, and c are positive. In the aforementioned model, in [29] it
was examined using γ = 1 to elucidate the random rise in blood vessel concentration. Assume the
following: υ = 5, a = 1, b = 2, c = 2. The required condition of Theorem 3.3 is satsfied by cU(t−υ)

1+U10(t−υ)
and −aU(t) + bU. With U = 0.5, υ ≤ t ≤ 0 in −υ ≤ t ≤ G, Theorem 3.3 states that there is a unique
solution that exists.

5. Conclusions

The existence and uniqueness are important because they guarantee that the differential equation
has a meaningful and reliable solution that can be used to analyze or predict the behavior of the model
or system. A differential equation without existence and uniqueness may have no solution or several
contradictory solutions that rely on arbitrary presumptions. In this research work, we have proven the
well-posedness and regularity of solutions to CFrSDDEs. After proving the existence and uniqueness
of the solutions, we showed how the solutions continuously depend on the fractional exponent γ as well
as the initial values. The regularity of time is the subject of the second section. Finally, two instances
are given to illustrate our results.

In this article, we paid attention to the well-posedness and regularity of the solutions of a class of
CFrSDDEs. Due to the importance of this topic in the future, we will apply the numerical method to
solve various problems that exist in various domains.
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