Research article

Forecasting the monthly retail sales of electricity based on the semi-functional linear model with autoregressive errors

  • Received: 03 October 2024 Revised: 04 January 2025 Accepted: 14 January 2025 Published: 23 January 2025
  • MSC : 62J05, 62P12

  • In many statistical applications, data are collected sequentially over time and exhibit autocorrelation characteristics. Ignoring this autocorrelation may lead to a decrease in the model's prediction accuracy. To this end, assuming that the error process is an autoregressive process, this paper introduced a semi-functional linear model with autoregressive errors. Based on the functional principal component analysis and the spline method, we obtained the estimators of the slope function, nonparametric function, and autoregressive coefficients. Under some regular conditions, we found the convergence rate of the proposed estimators. A simulation study was conducted to investigate the finite sample performance of the proposed estimators. Finally, we applied our model to forecast the monthly retail sales of electricity, which illustrates the validity of our model from a predictive perspective.

    Citation: Bin Yang, Min Chen, Jianjun Zhou. Forecasting the monthly retail sales of electricity based on the semi-functional linear model with autoregressive errors[J]. AIMS Mathematics, 2025, 10(1): 1602-1627. doi: 10.3934/math.2025074

    Related Papers:

  • In many statistical applications, data are collected sequentially over time and exhibit autocorrelation characteristics. Ignoring this autocorrelation may lead to a decrease in the model's prediction accuracy. To this end, assuming that the error process is an autoregressive process, this paper introduced a semi-functional linear model with autoregressive errors. Based on the functional principal component analysis and the spline method, we obtained the estimators of the slope function, nonparametric function, and autoregressive coefficients. Under some regular conditions, we found the convergence rate of the proposed estimators. A simulation study was conducted to investigate the finite sample performance of the proposed estimators. Finally, we applied our model to forecast the monthly retail sales of electricity, which illustrates the validity of our model from a predictive perspective.



    加载中


    [1] W. G. Manteiga, A. M. Calvo, Bootstrap in functional linear regression, J. Stat. Plan. Infer., 141 (2011), 453–461. https://doi.org/10.1016/j.jspi.2010.06.027 doi: 10.1016/j.jspi.2010.06.027
    [2] M. F. Bande, P. Galeano, M. G. Manteiga, Functional principal component regression and functional partial least-squares regression: An overview and a comparative study, Int. Stat. Rev., 85 (2017), 61–83. https://doi.org/10.1111/insr.12116 doi: 10.1111/insr.12116
    [3] F. Ferraty, P. Hall, P. Vieu, Most-predictive design points for functional data predictors, Biometrika, 97 (2010), 807–824. http://www.jstor.org/stable/29777138
    [4] F. Belarbi, S. Chemikh, A. Laksaci, Local linear estimate of the nonparametric robust regression in functional data, Stat. Probab. Lett., 134 (2018), 128–133. https://doi.org/10.1016/j.spl.2017.11.003 doi: 10.1016/j.spl.2017.11.003
    [5] G. A. Pérez, P. Vieu, Semi-functional partial linear regression, Stat. Probabil. Lett., 76 (2006), 1102–1110. https://doi.org/10.1016/j.spl.2005.12.007 doi: 10.1016/j.spl.2005.12.007
    [6] H. Shin, Partial functional linear regression, J. Stat. Plan. Infer., 139 (2009), 3405–3418. https://doi.org/10.1016/j.jspi.2009.03.001 doi: 10.1016/j.jspi.2009.03.001
    [7] H. Shin, M. Lee, On prediction rate in partial functional linear regression, J. Multivariate Anal., 103 (2012), 93–106. https://doi.org/10.1016/j.jmva.2011.06.011 doi: 10.1016/j.jmva.2011.06.011
    [8] F. Yao, S. S. Chee, F. Wang, Regularized partially functional quantile regression, J. Multivariate Anal., 156 (2017), 39–56. https://doi.org/10.1016/j.jmva.2017.02.001 doi: 10.1016/j.jmva.2017.02.001
    [9] D. H. Kong, K. J. Xue, F. Yao, H. H. Zhang, Partially functional linear regression in high dimensions, Biometrika, 103 (2016), 147–159. https://doi.org/10.1093/biomet/asv062 doi: 10.1093/biomet/asv062
    [10] J. J. Zhou, M. Chen, Spline estimators for semi-functional linear model, Stat. Probabil. Lett., 82 (2012), 505–513. https://doi.org/10.1016/j.spl.2011.11.027 doi: 10.1016/j.spl.2011.11.027
    [11] Q. Y. Peng, J. J. Zhou, N. S. Tang, Varying coefficient partially functional linear regression models, Stat. Pap., 57 (2016), 827–841. https://doi.org/10.1007/s00362-015-0681-3 doi: 10.1007/s00362-015-0681-3
    [12] S. Novo, G. Aneiros, P. Vieu, Automatic and location-adaptive estimation in functional single-index regression, J. Nonparametr. Stat., 31 (2019), 364–392. https://doi.org/10.1080/10485252.2019.1567726 doi: 10.1080/10485252.2019.1567726
    [13] A. Cuevas, A partial overview of the theory of statistics with functional data, J. Stat. Plann. Inference., 147 (2014), 1–23. https://doi.org/10.1016/j.jspi.2013.04.002 doi: 10.1016/j.jspi.2013.04.002
    [14] A. Goia, P. Vieu, An introduction to recent advances in high/infinite dimensional statistics, J. Multivariate Anal., 146 (2016), 1–6. https://doi.org/10.1016/j.jmva.2015.12.001 doi: 10.1016/j.jmva.2015.12.001
    [15] N. X. Ling, P. Vieu, Nonparametric modelling for functional data: Selected survey and tracks for future, Statistics, 52 (2018), 934–949. https://doi.org/10.1080/02331888.2018.1487120 doi: 10.1080/02331888.2018.1487120
    [16] N. X. Ling, P. Vieu, On semiparametric regression in functional data analysis, Wires. Comput. Stat., 13 (2020), e1538. https://doi.org/10.1002/wics.1538 doi: 10.1002/wics.1538
    [17] G. Aneiros, R. Cao, R. Fraiman, C. Genest, P. Vieu, Recent advances in functional data analysis and high-dimensional statistics, J. Multivariate Anal., 170 (2019), 3–9. https://doi.org/10.1016/j.jmva.2018.11.007 doi: 10.1016/j.jmva.2018.11.007
    [18] J. Vilar, R. Cao, G. Aneiros, Forecasting next-day electricity demand and price using nonparametric functional methods, Int. J. Elec. Power, 39 (2012), 48–55. https://doi.org/10.1016/j.ijepes.2012.01.004 doi: 10.1016/j.ijepes.2012.01.004
    [19] G. Aneiros, J. Vilar, P. Raña, Short-term forecast of daily curves of electricity demand and price, Int. J. Elec. Power, 80 (2016), 96–108. https://doi.org/10.1016/j.ijepes.2016.01.034 doi: 10.1016/j.ijepes.2016.01.034
    [20] J. Vilar, G. Aneiros, P. Raña Prediction intervals for electricity demand and price using functional data, Int. J. Elec. Power, 96 (2018), 457–472. https://doi.org/10.1016/j.ijepes.2017.10.010 doi: 10.1016/j.ijepes.2017.10.010
    [21] R. Peláez, G. Aneiros, J. Vilar, Bootstrap prediction regions for daily curves of electricity demand and price using functional data, Int. J. Elec. Power, 162 (2024), 110244. https://doi.org/10.1016/j.ijepes.2024.110244 doi: 10.1016/j.ijepes.2024.110244
    [22] G. A. Pérez, P. Vieu, Nonparametric time series prediction: A semi-functional partial linear modeling, J. Multivariate Anal., 99 (2008), 834–857. https://doi.org/10.1016/j.jmva.2007.04.010 doi: 10.1016/j.jmva.2007.04.010
    [23] P. Yu, T. Li, Z. Y. Zhu, Z. Z. Zhang, Composite quantile estimation in partial functional linear regression model with dependent errors, Metrika, 82 (2019), 633–656. https://doi.org/10.1007/s00184-018-0699-3 doi: 10.1007/s00184-018-0699-3
    [24] B. Yang, M. Chen, J. J. Zhou, Testing for error correlation in semi-functional linear models, J. Syst. Sci. Complex., 36 (2023), 1697–1716. https://doi.org/10.1007/s11424-023-1431-6 doi: 10.1007/s11424-023-1431-6
    [25] S. D. Niang, S. Guillas, Functional semiparametric partially linear model with autoregressive errors, J. Multivariate Anal., 101 (2010), 307–315. https://doi.org/10.1016/j.jmva.2008.06.008 doi: 10.1016/j.jmva.2008.06.008
    [26] T. Zhang, P. Dai, Q. Zhang, Joint detection for functional polynomial regression with autoregressive errors, Commun. Stat.-Theory M., 46 (2017), 7837–7854. https://doi.org/10.1080/03610926.2015.1096384 doi: 10.1080/03610926.2015.1096384
    [27] P. X. Xiao, G. C. Wang, Partial functional linear regression with autoregressive errors, Commun. Stat.-Theory M., 51 (2022), 4515–4536. https://doi.org/10.1080/03610926.2020.1818097 doi: 10.1080/03610926.2020.1818097
    [28] M. Wang, M. L. Shu, J. J. Zhou, S. X. Wu, M. Chen, Least square estimation for multiple functional linear model with autoregressive errors, Acta Math. Appl. Sin.-E., 41 (2022), 84–98. https://doi.org/10.1007/s10255-024-1143-2 doi: 10.1007/s10255-024-1143-2
    [29] C. D. Boor, A practical guide to spline, New York: Springer, 1978. https://doi.org/10.2307/2006241
    [30] H. S. Wang, G. D. Li, T. C. Ling, Regression coefficient and autoregressive order shrinkage and selection via the Lasso, J. R. Stat. Soc. B., 69 (2007), 63–78. https://doi.org/10.1111/j.1467-9868.2007.00577.x doi: 10.1111/j.1467-9868.2007.00577.x
    [31] Q. G. Tang, Estimation for semi-functional linear regression, Statistics., 49 (2015), 1262–1278. https://doi.org/10.1080/02331888.2014.979827 doi: 10.1080/02331888.2014.979827
    [32] L. Schumaker, Spline functions: Basic theory, 1 Eds., New York: John Wiley & Sons, 1981. https://doi.org/10.2307/2007301
    [33] P. Hall, J. L. Horowitz, Methodology and convergence rates for functional linear regression, Ann. Stat., 35 (2007), 70–91. https://doi.org/10.1214/009053606000000957 doi: 10.1214/009053606000000957
    [34] H. Lian, Shrinkage estimation and selection for multiple functional regression, Stat. Sinica, 23 (2013), 51–74. https://doi.org/10.5705/ss.2011.160 doi: 10.5705/ss.2011.160
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(250) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog