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Abstract: In many statistical applications, data are collected sequentially over time and exhibit
autocorrelation characteristics. Ignoring this autocorrelation may lead to a decrease in the model’s
prediction accuracy. To this end, assuming that the error process is an autoregressive process, this
paper introduced a semi-functional linear model with autoregressive errors. Based on the functional
principal component analysis and the spline method, we obtained the estimators of the slope function,
nonparametric function, and autoregressive coefficients. Under some regular conditions, we found the
convergence rate of the proposed estimators. A simulation study was conducted to investigate the finite
sample performance of the proposed estimators. Finally, we applied our model to forecast the monthly
retail sales of electricity, which illustrates the validity of our model from a predictive perspective.
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1. Introduction

Functional regression modeling has been extensively studied as an important research field in
functional data analysis (FDA). For example, to investigate the linear relationship between a scalar
response and a functional explanatory variable, comprehensive studies focused on functional linear
regression models have been conducted by Manteiga and Calvo [1] and Bande et al. [2]. However,
the linear assumption is sometimes too restrictive to describe the data structure comprehensively. To
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this end, the functional nonparametric regression model, as an extension of the nonparametric model
in the functional data setting, has also been proposed (see Ferraty and Vieu [3] and Belarbi et al. [4]).
Furthermore, to improve the power of prediction and interpretation of functional regression models,
various functional semiparametric models have been proposed by introducing some additional real-
valued predictors. For example, Pérez and Vieu [5] proposed a semi-functional partial linear regression
model by combining a traditional linear model with a nonparametric treatment of functional data.
Shin [6] and Shin and Lee [7] studied the problem of estimation and prediction of the partial functional
linear regression model, respectively. Yao et al. [8] extended the partial functional linear regression
to quantile regression settings and established a more flexible and robust method. Kong et al. [9]
investigated a class of partial function linear regression models for processing multiple functional
and non-functional explanatory variables and automatically identifying essential risk factors through
appropriate regularization. In addition, Zhou and Chen [10] first introduced the semi-functional linear
model (SFL) by combining the features of a functional linear regression model and a traditional
nonparametric model and studied its spline estimation. Peng et al. [11] proposed a varying coefficient
partially functional linear regression model, which combines a varying coefficient regression model and
a functional linear regression model, and investigated the estimation problem based on the polynomial
spline method. Novo et al. [12] developed an automatic and location-adaptive estimation procedure
for the functional single-index model. For a recent survey on this field, we refer to some literature like
Cuevas [13], Goia and Vieu [14], Ling and Vieu [15, 16], and Aneiros et al. [17].

Meanwhile, given that electricity cannot be stored, modeling and forecasting electricity demand and
price are of primary interest to electric market agents. Traditional prediction models, like simple time
series models, often fail to address the complexities of electricity demand, so functional regression
models have been applied to electricity demand forecasting. For example, Vilar et al. [18] utilized
functional nonparametric and semi-functional partial linear models to forecast next-day electricity
demand and price. Based on the robust functional principal component analysis and nonparametric
models with both functional response and covariate, Aneiros et al. [19] proposed two functional
regression models to forecast daily curves of electricity demand and price. In addition, using residual-
based bootstrap algorithms, Vilar et al. [20] provided two procedures to obtain prediction intervals
for electricity demand and price based on the functional nonparametric autoregressive model and the
partial linear semiparametric model. Peláez et al. [21] also proposed three model-based procedures to
construct bootstrap prediction regions for daily curves of electricity demand and price.

All the models mentioned above are based on a critical assumption that the random errors
are independently and identically distributed. However, the independence assumption may be
inappropriate in many applications. For example, the electricity consumption dataset that has been
extensively studied by Pérez and Vieu [22], Yu et al. [23], and Yang et al. [24] exhibits a specific
autocorrelation structure. If this autocorrelation structure is ignored, it may lead to inaccurate
prediction. To this end, many works have been developed to deal with the autocorrelation structure in
functional regression models. For example, Niang and Guillas [25] studied parametric estimation of a
functional semiparametric partially linear model with autoregressive errors. Zhang et al. [26] proposed
a functional polynomial regression with autoregressive errors. Yu et al. [23] considered composite
quantile estimation for the partial functional linear regression model with random errors from a short-
range dependent and strictly stationary linear process. Xiao and Wang [27] also studied the estimation
problem of the partial functional linear model with autoregressive errors. Wang et al. [28] studied
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the multiple functional linear model with autoregressive errors. Although these functional regression
models with autoregressive errors have improved prediction accuracy, the linear assumption on the
covariates is sometimes inappropriate. Therefore, it is necessary to develop more general models to fit
the more complex data structures. To achieve this goal, by relaxing the linear assumption on the partial
functional linear model, a semi-functional linear model with autoregressive errors is developed in this
paper. Based on the functional principal component analysis and the spline method, we obtain the
estimators of the slope function, nonparametric function, and autoregressive coefficients, respectively.

The rest of this paper is organized as follows. Section 2 describes the semi-functional linear model
with autoregressive errors and presents the estimation method and algorithm. In Section 3, we study
the asymptotic properties of the proposed estimators under some regular conditions. A Monte Carlo
simulation is presented in Section 4 to illustrate the finite sample performance. The proposed method
is illustrated by electricity consumption data in Section 5. Sections 6 and 7 present future prospects
and summarize the paper, respectively. All technical details and proofs are provided in the appendix.

2. Model and estimation

2.1. Model and estimation

Suppose that (Xt,Yt,Zt), 1 ≤ t ≤ n, is a random sample from the semi-functional linear model with
autoregressive errors (SFLAR)

Yt =

∫
T

β(s)Xt(s)ds + g(Zt) + εt,

εt =

q∑
l=1

alεt−l + et,

(2.1)

where Yt is a real-valued random response variable and Zt is a real-valued covariate defined on a
compact interval Z = [z, z]. The functional covariate Xt(s) defined on an interval T ⊂ R is a zero mean,
second-order (i.e., E|X(s)|2 < ∞ for all s ∈ T ) stochastic process defined on (Ω, B, P) with sample
paths in the Hilbert space L2(T ). The inner product of L2(T ) is defined by 〈u, v〉 =

∫
T

u(s)v(s)ds,
for any u, v ∈ L2(T ) and norm ‖u‖ = 〈u, u〉1/2. The unknown slope function β(s) belongs to L2(T ).
For simplicity, throughout this paper, we assume T = [0, 1]. The nonparametric function g(·) is
an unknown smooth function. εt is a random error with zero mean and finite variance independent
of (Xt,Zt). et’s are independent and identically distributed with mean 0 and variance σ2. Note that
model (2.1) includes the partial functional linear model with autoregressive errors studied by Xiao and
Wang [27].

Since the unknown functions β(·) and g(·) are infinite-dimensional parameters, it is impossible
to obtain their estimators based on finite observation data. Therefore, we need to apply dimension
reduction methods. Specifically, if we denote the covariance function of the functional variable X by
CX(s, u) = Cov[X(s), X(u)], and assume that CX(s, u) is continuous on the interval [0, 1]2, according to
the Mercer theorem, we have

CX(s, u) =

∞∑
i=1

λiφi(s)φi(u),
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where λ1 > λ2 > · · · > 0 is the ordered eigenvalue sequence and φ1, φ2, · · · is the corresponding
orthonormal eigenfunction sequence of the covariance operator with kernel CX(s, u). By the Karhunen-
Loève representation, functional variables Xt(s) and the slope function β(s) can be respectively
expanded as:

Xt(s) =

∞∑
i=1

ξtiφi(s), β(s) =

∞∑
i=1

biφi(s), (2.2)

where ξti =
∫ 1

0
Xt(s)φi(s)ds are called the principle component scores satisfying Eξti = 0 and Eξtiξtk =

λiI(i = k), and coefficients bi =
∫ 1

0
β(s)φi(s)ds. {φi(s)}∞i=1 forms a standard orthogonal basis of L2(T ),

commonly referred to as the functional principal component (FPC) basis. Truncate Eqs (2.2) at M, and
the model (2.1) can be approximated as

Yt ≈

M∑
i=1

biξti + g(Zt) + εt. (2.3)

Furthermore, we can approximate the nonparametric function g(·) using polynomial splines.
Specifically, let Gp,Jn be the space of polynomial splines defined on the interval [z, z] with degree
p − 1 and knot sequence z < z1 < · · · < zJn < z. The space Gp,Jn is a J-dimensional linear space, where
J = J(n) = Jn + p. Following the arguments of de Boor [29], we can conclude that, if it is sufficiently
smooth, the nonparametric function g(Zt) can be approximately expressed as

g(Zt) ≈
J∑

j=1

c jB j(Zt),

where B j, j = 1, 2, · · · , J, are the B-spline basis functions in Gp,Jn . Substituting the approximation of
g(Zt) into the model (2.3) yields

Yt ≈

M∑
i=1

biξti +

J∑
j=1

c jB j(Zt) + εt. (2.4)

However, since the covariance function CX(s, u) is unknown, the eigenfunctions φi and variables ξti

are also unknown and unobservable. To address this issue, we define the empirical version of the
covariance function CX(s, u) by

ĈX(s, u) =
1
n

n∑
t=1

Xt(s)Xt(u).

By Mercer’s theorem, we also have

ĈX(s, u) =

∞∑
i=1

λ̂iφ̂i(s)φ̂i(u),

where (λ̂i, φ̂i) are the eigenvalue-eigenfunction pairs for the linear operator with kernel ĈX(s, u), ordered
such that λ̂1 ≥ λ̂2 ≥ · · · ≥ 0. We consider (λ̂i, φ̂i) and ξ̂ti =

∫ 1

0
Xt(s)φ̂i(s)ds as estimators of (λi, φi) and
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ξti, respectively. Then, the estimators β̂(s) =
∑M

i=1 b̂iφ̂i(s) and ĝ(Zt) =
∑J

j=1 ĉ jB j(Zt) can be obtained by
minimizing the following loss function:

Ln(a, b, c) =
1

n − q

n∑
t=q+1

[(Yt − ξ̂
>

t b − B>t c) −
q∑

l=1

al(Yt−l − ξ̂
>

t−lb − B>t−lc)]2, (2.5)

where ξ̂t = (̂ξt1, ξ̂t2, · · · , ξ̂tM)>, Bt = (B1(Zt), B2(Zt), · · · , BJ(Zt))>, a = (a1, a2, · · · , aq)>, b =

(b1, b2, · · · , bM)>, c = (c1, c2, · · · , cJ)>, and t = q + 1, q + 2, · · · , n.
To implement the proposed estimation method, we must choose the degrees of the spline functions,

the positions, and the number of knots and eigenfunctions. This paper uses a B-spline basis with
equally spaced knots and the fixed degree 2. Then, we only need to choose the numbers of B-spline
functions (J) and eigenfunctions (M). Various methods, such as the Akaike information criterion (AIC)
and Bayesian information criterion (BIC), can be used to select the truncation parameters J and M. This
paper uses the BIC criterion to choose the number of J and M. The selection of J and M is determined
by minimizing the following BIC criteria:

BIC(M, J) = log(

∑n
t=q+1[ε̂t −

∑q
l=1 âlε̂t−l]2

n − q
) +

log(n − q)
n − q

(M + J + q), (2.6)

where ε̂t = Yt −
∑M

i=1 b̂iξ̂ti −
∑J

j=1 ĉ jB j(Zt).

2.2. Algorithm

This subsection mainly introduces the algorithm to estimate the unknown parameters. For ease of
description, we rewrite the loss function (2.5) as

Ln(a, θ) =
1

n − q

n∑
t=q+1

[(Yt − Û>t θ) −
q∑

l=1

al(Yt−l − Û>
t−l
θ)]2

=
1

n − q

n∑
t=q+1

[(Yt −

q∑
l=1

alYt−l) − (Ût −

q∑
l=1

alÛt−l)>θ]2,

(2.7)

where Ût = (̂ξ>t , B
>

t )>, ξ̂t = (̂ξt1, ξ̂t2, · · · , ξ̂tM)>. Since there is no closed-form expression of the
minimizer of the loss function (2.7), we adopt the two-step iteratively least-squares (TSILS) algorithm
to estimate the unknown parameters. Specifically, we first set a(0) = (0, 0, · · · , 0)> and compute θ(0) by
minimizing Ln(a(0), θ). Afterward, we substitute θ(0) into the loss function (2.7) to get a(1) by Ln(a, θ(0)),
and substitute a(1) into (2.7) to get θ(1) = arg min Ln(a(1), θ). Repeat this process until convergence. The
TSILS algorithm is summarized as follows:
Algorithm 1. The TSILS algorithm initialization: Given the initial value: a(0) = (0, 0, · · · , 0)>,
compute θ(0) = (Û>Û)−1Û>Y based on the least squares method, where Y = (Y1,Y2, · · · ,Yn)> and
Û> = (Û1, Û2, · · · , Ûn).
Step 1. Update Ṽ(k), H̃(k):

Ṽ(k)
=


ε̂(k)

q+1
...

ε̂(k)
n

 , H̃(k)
=


ε̂(k)

q · · · ε̂(k)
1

...
...

ε̂(k)
n−1 · · · ε̂(k)

n−q

 ,
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where ε̂(k)
t = Yt − Û>t θ̂

(k−1), t = 1, 2, · · · , n.
Step 2. Compute a(k):

a(k) = (H̃(k)>H̃(k))−1H̃(k)>Ṽ(k)
.

Step 3. Update V (k)
t , H(k)

t :

V (k)
t = Yt −

q∑
l=1

a(k)
l Yt−l, H(k)

t = Ût −

q∑
l=1

a(k)
l Ût−l.

Step 4. Compute θ(k):

θ(k) = (H(k)>H(k))−1H(k)>V(k),

where

V(k) =


V (k)

q+1
...

V (k)
n

 , H(k) =


H(k)

q+1
...

H(k)
n

 .
Step 5. Set k = k + 1, and repeat the above steps 1–4 until convergence. Then, the estimation of
the parameter vectors â = (â1, â2, · · · , âq)>, b̂ = (b̂1, b̂2, · · · , b̂M)>, and ĉ = (ĉ1, ĉ2, · · · , ĉJ)> can be
obtained.

3. Theoretical properties

In this section, we investigate the theoretical properties of the proposed estimators. First, we assume
that the true slope function, nonparametric function, and autoregressive coefficient of the model are
β0(t), g0(z), and a0 =

(
a0

1, a
0
2, · · · , a

0
q

)>
, respectively. For convenience, the following notation is needed.

For two sequences of positive numbers an and bn, an . bn signifies that an/bn is uniformly bounded
and an � bn if an . bn and bn . an. Throughout this paper, the constant Ci may change from line to
line. In order to establish the theoretical properties of the estimators, the following assumptions need
to be introduced:
Assumption 1. All roots of the polynomial A(z) = 1−

∑q
l=1 alzl lie outside the unit circle in the complex

plane.
Assumption 2. {Xt,Zt}

n
t=1 and {et}

n
t=1 are independent random sequences and {Xt, et}

n
t=1 has the finite

fourth-order moment, respectively, i.e. E
(∫

X4
t (s)ds

)
< ∞, E

(
e4

t

)
< ∞, for any 1 ≤ t ≤ n, and

random variable ξti satisfy E
(
ξ4

ti

)
≤ C1λ

2
i , i ≥ 1. The density function fZ(z) of the random variable Z

is a continuous bounded function defined on the interval [z, z]. Meanwhile, the random variable et is
independent of (Xt,Zt) and E (X|Z) = 0.
Assumption 3. The eigenvalues λi(i = 1, 2, · · · ) of the covariance function CX and the score coefficients
bi satisfy the following conditions, respectively.
(1) There exist some strictly positive constants C2 and α > 1 such that C−1

2 i−α ≤ λi ≤ C2i−α and
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λi − λi+1 ≥ C2i−α−1, i ≥ 1.
(2) There exist some strictly positive constants C3 and γ > α/2 + 3 such that |bi| ≤ C3i−γ, i ≥ 1.
Assumption 4. Let 0 < ν ≤ 1. The nonparametric function g(z) is a continuous differentiable function
of order r, and for z1, z2 ∈ [z, z] , there are

∣∣∣g(r)(z1) − g(r)(z2)
∣∣∣ ≤ C4|z1 − z2|

ν. Define p = r + ν as a
smoothness measure of the function g(z), which satisfies p ≥ γ + (α − 1)/2.
Assumption 5. Define the matrix

Λ = E

(Ut −

q∑
l=1

a0
l Ut−l)(Ut −

q∑
l=1

a0
l Ut−l)>

 ,
V = E(εt−1, εt−2, · · · , εt−q)>(εt−1, εt−2, · · · , εt−q),

where Ut = (ξ>t , B
>
t )>, ξt = (ξt1, ξt2, · · · , ξtM)>, Bt = (B1(Zt), B2(Zt), · · · , BJ(Zt))>, and the matrix

V is a positive definite matrix. Denote the minimum eigenvalue of Λ by ρmin(Λ) , which satisfies
ρmin(Λ) = Op (M−α).
Assumption 6. The tuning parameter M, J satisfies M � J � n1/(α+2γ).
Remark 1. Assumption 1 is an invertibility condition on the autoregression process and ensures εt is
a stationary series. Assumption 2 is standard in the literature about the least squares method, which
ensures the consistency of CX(t, s). Assumption 3 is established for the consistency of the estimated
principal component scores. Assumption 3(1) prevents the spacings among eigenvalues from being too
small for identification of the slope function bi. Assumption 3(2) makes the slope function sufficiently
smooth relative to the covariance function CX(t, s). Assumption 4 ensures that the nonparametric
function g(z) is sufficiently smooth so that the spline function can approach it. Assumption 5 is a
necessary condition for the model consistency to be established. Assumption 6 gives the order of the
truncation parameters M and J to obtain the convergence speed of β̂(s) and ĝ(z), and Assumption 6
requires that the tuning parameters M and J do not grow too fast.
Theorem 1. Under the Assumptions 1–6, we have:

‖â − a0‖22 = Op

(
n−(α+2γ−1)/(α+2γ)

)
,

‖β̂(s) − β0(s)‖2 = Op

(
n−(2γ−1)/(α+2γ)

)
,

‖ĝ(z) − g0(z)‖2 = Op

(
n−(α+2γ−1)/(α+2γ)

)
.

Remark 2. The theorem shows that the convergence rate of the autoregressive coefficients cannot reach
the optimal convergence rate Op

(
n−1/2

)
(such as Wang et al. [30]), which may be due to the existence

of functional infinite dimensional explanatory variables. The convergence rates of β̂(s) and ĝ(z) are
the same as that of the case where the random error is independent and identically distributed (such
as Tang [31]), indicating that the autocorrelation of the random error does not affect the convergence
rate of the slope function and the nonparametric function.

4. Simulation study

In this section, we conduct a simulation under different settings to investigate the finite sample
performance of our proposed method. The simulation data {(Xt,Zt,Yt), 1 ≤ t ≤ n} are generated from
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the following SFLAR model:

Yt =

∫ 1

0
β(u)Xt(u)du + g(Zt) + εt, εt =

q∑
l=1

alεt−l + et,

where Zt is distributed uniformly on [0,1], and the functional predictor Xt =
∑50

j=1 ξt jφ j, where
ξt j are distributed as independent normal with a mean 0 and variance λ j = (( j − 0.5)π)−2 and
φ j =

√
2sin(( j − 0.5)πt). For the unknown functions β(·) and g(·), and autoregressive coefficients

(a1, · · · , aq), two scenarios have been considered as follows:
Scenario 1. β(u) =

√
2sin(0.5πu) + 3

√
2sin(1.5πu), g(z) = sin(2πz), εt = aεt−1 + et, and the

autoregressive coefficient a takes each of the values in the set (–0.5, 0.1, 0.8).
Scenario 2. β(u) =

√
2sin(0.5πu) + 2

√
2sin(1.5πu), g(z) = cos(2πz), εt = a1εt−1 + a2εt−2 + et, and the

autoregressive coefficients (a1, a2) take each of the values in the set {(0.1, 0.8), (0.5,−0.8)}.
The error variables et are N(0, σ2). In both scenarios, σ takes 0.5 and 1, corresponding to different

signal-to-noise ratios. To implement the proposed method, we apply the BIC criterion of Eq (2.6) to
choose the number J of B-spline functions and the number M of eigenfunctions. Specifically, J and
M are obtained by selecting the minimum BIC value within the preset range. In this simulation, J is
chosen between 3 and 8, and M is selected between 1 and 6. In addition, the errors of the estimators
of function β(u), g(z) and the model prediction error were evaluated by the integral of square errors
ISE1 =

∫ 1

0
[β̂(u) − β(u)]2du, ISE2 =

∫ 1

0
[ĝ(z) − g(z)]2dz and the mean square prediction error (MSPE):

MSPE = 1
n

∑n
t=q+1

(
Ŷt − g(Zt) −

∫ 1

0
β(u)Xt(u)du

)2
, respectively.

In our simulation, we considered sample sizes of n = 400, 800, and 1200, with each setting
repeated 500 times. Tables 1 and 2 summarize the performance of various estimators regarding
bias (Bias), root mean square error (RMSE) for the estimated a and σ, and integrated square
errors (ISE) for the estimated β(·) and g(·) under normal error conditions. From these tables, we can
draw the following observations:
(1) Given the sample size, as the value of σ increases, the bias (Bias) and root mean square
error (RMSE) of â and σ̂ increase, and the mean integral square error (ISE) of the functions β̂(u) and
ĝ(z) increase, indicating that with the rise of variance, that is, the signal-to-noise ratio decreases, the
estimation accuracy of the model parameters will decrease. The mean square prediction error (MSPE)
of the model will increase.
(2) As the sample size n increases from n = 400 to 800 and 1200, we see a decrease in the root
mean square error (RMSE) and the meawe see n integral square error (ISE), and the performance of
the estimation method becomes better and better. When the sample size n increases from n = 400 to
800 and 1200, the estimation of the autoregressive coefficient is asymptotically unbiased. The results
show that the estimation of the autoregressive coefficient a, and the model parameters β̂(u) and ĝ(z),
are consistent estimators. The estimation curves for the slope and nonparametric function of the model
in Scenario 1 (AR(1)) with parameters n = 400, a = −0.5, and σ = 0.5, and in Scenario 2 (AR(2)) with
n = 400, a = (0.5,−0.8), and σ = 0.5, were generated from 500 repetitions (see Figures 1 and 2). In
the top left of Figures 1 and 2, the true slope function curve β(·) (red) and the median estimation curve
β̂(·) (blue) are displayed for Scenarios 1 and 2, respectively. The top right figure shows a comparison
between the true curve (red) and the median estimation curve ĝ(·) (blue) of the nonparametric function
g(·) in both scenarios. The bottom of Figures 1 and 2 displays the comparison of the estimation curves
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for the slope and the nonparametric function, repeated 500 times in Scenarios 1 and 2, respectively.
Figures 1 and 2 show that when n = 400 and σ = 0.5, the slope β(·), the nonparametric function g(·),
and the median estimation curve (in blue) closely align with the true curve (in red) for both AR(1) and
AR(2). For σ = 0.5, a = −0.5, and a = (0.5,−0.8), the 95% pointwise confidence bands for β(·) and
g(·) are displayed for sample sizes n = 400, 800, and 1200 in Scenarios 1 and 2, respectively.

When n = 400, 800 and 1200, and σ = 0.5, Figures 3 and 4 display the 95% pointwise confidence
bands for Scenarios 1 and 2, respectively. Regardless of the changes in the model parameters β(u) and
g(z) or the errors from AR(1) or AR(2), the proposed estimation method yields estimates for β(u) and
g(z) that closely align with the true curve. Moreover, as the sample size increases, β̂(u) and ĝ(z) remain
consistent estimates, demonstrating that the proposed model and estimation method perform well in
finite samples.

Table 1. The bias and RMSE of â, σ̂, the ISE of β̂(u), ĝ(z), and the MSPE under Scenario 1.

a n σ â σ̂ β̂(u) ĝ(z) Model
Bias RMSE Bias RMSE ISE1 ISE2 MSPE

400 0.5 0.003 0.049 -0.004 0.018 0.053 0.003 0.005
1 -0.002 0.051 -0.016 0.077 0.118 0.013 0.018

0.1 800 0.5 -0.001 0.036 -0.001 0.013 0.027 0.002 0.003
1 -0.004 0.033 -0.012 0.050 0.055 0.006 0.009

1200 0.5 0.000 0.028 0.000 0.010 0.019 0.001 0.002
1 0.000 0.030 -0.007 0.043 0.039 0.005 0.006

400 0.5 0.002 0.043 -0.003 0.018 0.052 0.003 0.004
1 -0.004 0.044 -0.016 0.072 0.111 0.009 0.013

-0.5 800 0.5 0.000 0.032 -0.001 0.012 0.025 0.002 0.002
1 -0.001 0.031 -0.006 0.048 0.052 0.005 0.007

1200 0.5 0.000 0.024 0.000 0.010 0.016 0.001 0.002
1 -0.002 0.025 -0.006 0.042 0.033 0.003 0.005

400 0.5 -0.006 0.032 -0.003 0.017 0.050 0.018 0.019
1 -0.007 0.033 -0.020 0.071 0.124 0.066 0.069

0.8 800 0.5 -0.005 0.022 -0.002 0.012 0.024 0.009 0.010
1 -0.003 0.022 -0.005 0.055 0.044 0.034 0.035

1200 0.5 -0.003 0.017 0.000 0.010 0.017 0.007 0.007
1 -0.002 0.017 -0.006 0.040 0.031 0.021 0.022
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Table 2. The bias and RMSE of (â1, â2), σ̂, the ISE of β̂(u), ĝ(z), and the MSPE under
Scenario 2.

(a1, a2) n σ â1 â2 σ̂ β̂(u) ĝ(z) Model
Bias RMSE Bias RMSE Bias RMSE ISE1 ISE2 MSPE

400 0.5 -0.002 0.033 -0.016 0.036 -0.003 0.019 0.027 0.068 0.068
1 -0.005 0.033 -0.011 0.035 -0.017 0.068 0.085 0.284 0.284

(0.1,0.8) 800 0.5 -0.004 0.022 -0.005 0.022 -0.001 0.013 0.013 0.034 0.034
1 -0.002 0.022 -0.007 0.022 -0.011 0.054 0.033 0.109 0.110

1200 0.5 -0.004 0.018 -0.004 0.017 0.001 0.011 0.009 0.022 0.022
1 -0.001 0.018 -0.003 0.018 -0.008 0.04 0.021 0.085 0.085

400 0.5 -0.002 0.031 0.000 0.030 -0.005 0.019 0.028 0.003 0.004
1 -0.002 0.030 -0.001 0.030 -0.025 0.073 0.066 0.011 0.013

(0.5,-0.8) 800 0.5 -0.001 0.022 0.001 0.021 -0.001 0.012 0.013 0.002 0.002
1 0.002 0.021 -0.001 0.021 -0.010 0.050 0.037 0.005 0.006

1200 0.5 -0.002 0.018 0.001 0.018 0.001 0.011 0.009 0.002 0.002
1 0.001 0.017 0.000 0.017 -0.008 0.042 0.020 0.004 0.004

Figure 1. Estimation curves of the slope and nonparametric function under S cenario 1.
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Figure 2. Estimation curves of the slope and nonparametric function under Scenario 2.

Figure 3. The 95% pointwise confidence band of the slope (top) and nonparametric
function (bottom) under Scenario 1.
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Figure 4. The 95% pointwise confidence band of the slope (top) and nonparametric
function (bottom) under Scenario 2.

According to the suggestions of an anonymous reviewer, we run a new simulation to compare the
predictive ability of the proposed model with that of existing models. Specifically, the simulation data
{(Xt,Zt,Yt), 1 ≤ t ≤ n} are generated according to the following two scenarios:
Scenario 3. It is the same as Scenario 1 with autoregressive coefficient a = 0.5 and standard deviation
σ = 0.5.
Scenario 4. It is the same as Scenario 3 except for g(Z) = 2Z.

For each simulation case, we set the sample size to n = 400, and the simulation data is divided into
the training data (Xt,Zt,Yt)320

t=1 and the test data (Xt,Zt,Yt)400
t=321. Similar to Aneiros and Vieu [22] and Yu

et al. [23], we utilize the following two error criteria: mean quadratic error (MQE):

MQE =
1

79

400∑
t=322

(
Yt − Ŷt

)2
,

and mean relative quadratic error (MRQE):

MRQE =
1
79

400∑
s=322

(
Yt − Ŷt

)2

Var(Y)
,

to evaluate the prediction ability of the model, where Var(Y) is the empirical variance of {Yt}
400
t=321.

To demonstrate the superiority of the proposed model, we compare its prediction results with three
standard models: the semi-functional linear model (SFL) from Zhou and Chen [10], the partial
functional linear regression model (PFL) by Zhang et al. [26], and the partial functional linear
regression model with autoregressive error (PFLAR) by Yu et al. [23]. Each simulation experiment
is repeated 200 times, and the results are summarized in Table 3. From Table 3, we can observe that:
(i) When the true model is SFLAR, the proposed model has the best prediction accuracy.
(ii) Using our proposed SFLAR to fit PFLAR data has the same performance as using PFLAR to fit
PFLAR data.
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Table 3. The MQE and MRQE of different models.

Scenarios Criterions Models
SFLAR SFL PFLAR PFL

Scenario 3 MQE 0.258 0.346 0.629 0.759
MRQE 0.160 0.214 0.389 0.469

Scenario 4 MQE 0.256 0.344 0.255 0.341
MRQE 0.175 0.234 0.174 0.233

5. Applications to real data

In this section, the model and method proposed in this paper will be applied to study the power
data set, which can be downloaded from https://www.eia.gov. This paper aims to forecast the monthly
retail sales of electricity Ci kilowatt hour (KWH) in the commercial sector. For this purpose, it is
considered that the US monthly electricity consumed by commercial sectors which includes the power
consumption data from January 1973 to January 2016 (517 months) (Figure 5) and their annual average
retail price Pt (per KWH, including tax) (43 years).

Figure 5. ln (power data) from January 1973 to January 2016.

As shown in Figure 5, the time series shows some linear trends and some heterogeneity in
the variance structure. Similar to Aneiros and Vieu [22] and Yu et al. [23], we eliminate the
heteroscedasticity and the linear trend of the electricity retail sales data by differencing the ln(data),
and obtain the time series (see Figure 6): Xi′ = ln

(
Ci′+1

)
− ln

(
Ci′

)
, i
′

= 1, 2, · · · , 516. Let
Xt(s) =

{
X12(t−1)+s, t = 1, 2, · · · , 43, s = 1, 2, · · · , 12

}
be the monthly ln(difference electricity retail sales

data).
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Figure 6. The differenced ln (power data to the commercial sector) from January 1973 to
January 2016.

There is only one observation per month, so we use ten cubic B-spline basis functions to convert
the discrete monthly power data into functional continuous smooth annual curve predictors {Xt(u), u ∈
[1, 12], t = 1, 2, · · · , 43} (see Figure 7).

Figure 7. Annual curves of power data to the commercial sector from January 1973 to
January 2016.

The response variable is Yt(s) = X12t+s, which represents the power consumption data in the s-month
of the t-year, where t = 1, 2, · · · , 42, s = 1, 2, · · · , 12.

Similar to Aneiros and Vieu [22] and Yu et al. [23], the power data set is divided into the training
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sample {Yt(s), Pt, Xt(u)}41
t=1 and the test sample {Y42(s), P42, X42(u)}. According to Yang et al. [24],

we consider the following semi-functional linear model (SFLAR) with autoregressive error to fit the
training set:

Yt(s) =

∫ 12

1
β(u)Xt(u)du + g(Pt) + εt, εt =

q∑
l=1

alεt−l + et, t = 1, 2, · · · , 41.

Then, the test set verifies the model’s predicted value Y42(s). To demonstrate the superiority of
the proposed model, we also compare its prediction results with three standard models: The semi-
functional linear model (SFL), the partial functional linear regression model (PFL), and the partial
functional linear regression model with autoregressive error (PFLAR). In addition, similar to Aneiros
and Vieu [22] and Yu et al. [23], we also utilize the mean quadratic error (MQE):

MQE =
1
12

12∑
s=1

(
Y42(s) − Ŷ42(s)

)2
,

and mean relative quadratic error (MRQE):

MRQE =
1

12

12∑
s=1

(
Y42(s) − Ŷ42(s)

)2

Var(Y(s))

to evaluate the prediction ability of the model, where Var(Y(s)) is the empirical variance of {Yi(s)}41
i=1.

The prediction effects of the four models under the test set are summarized in Table 4 and Figure 8.
It is observed from Figure 8 that the four models exhibit consistency with the changing trend of
the curve in Figure 7. Additionally, the prediction results from the test set in Table 4 and Figure 8
indicate that the SFL is closer to the actual value than the PFL. The MQE and MRQE of the SFL
are also smaller than those of the PFL, suggesting that the prediction effect of the SFL is superior to
the PFL, regardless of whether the autoregressive error is considered. Furthermore, the model with
autoregressive error demonstrates a better prediction effect than the model without, implying that the
former is more reasonable. The SFLAR model exhibits the smallest MQE and MRQE among the
four models, signifying that the SFLAR model proposed in this paper yields the best prediction effect.
Therefore, using the SFLAR model for this data is more reasonable.

Table 4. The MQE and MRQE of different models.

Criterions Models
SFLAR SFL PFLAR PFL

MQE 0.00017 0.00025 0.00027 0.00030
MRQE 0.34483 0.45411 0.47235 0.48765
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Figure 8. Monthly power data forecast of different models in 2015.

6. Discussion

The results of our study on forecasting monthly retail sales of electricity using an SFLAR model
provide important insights into the dynamics of electricity consumption, which captures the influence
of both functional and non-functional predictors of electricity sales. Incorporating autoregressive errors
allowed the model to effectively capture temporal dependencies within the monthly sales data, thereby
enhancing forecasting accuracy. However, our model also has some limitations. For example, we only
consider one-dimensional covariate Z in our model. Although our model can be easily generalized to
multidimensional situations, it may encounter the curse of dimensionality and computational burden.
As one of the anonymous reviewers said, a single index model could provide much more efficient
results. Hence, we can extend our model to the semi-functional single index model in future research.
At the same time, deep neural networks have been extensively used for nonparametric regression. This
also constitutes a topic for our future research.

7. Conclusions

This study focused on the SFLAR model, incorporating a random error sequence with an AR(p)
structure. By utilizing Mercer’s theorem, the linear component of the function is dimensionally reduced
using the method of functional principal component basis expansion. Meanwhile, the nonparametric
function is approximated using the B-spline function. The slope function β(·), nonparametric function
g(·), and autoregressive coefficient a are estimated using a two-step iterative algorithm. Theoretical
properties of the estimated parameters are provided under specific regular conditions. Based on the
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simulation results, the proposed model and estimation method perform well even with a limited sample
size. The real data analysis also indicates that the SFLAR model has the best prediction accuracy
among these four models when autoregressive errors exist. Therefore, the SFLAR model proposed in
this paper is more suitable for this power data.
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22. G. A. Pérez, P. Vieu, Nonparametric time series prediction: A semi-functional partial linear
modeling, J. Multivariate Anal., 99 (2008), 834–857. https://doi.org/10.1016/j.jmva.2007.04.010

23. P. Yu, T. Li, Z. Y. Zhu, Z. Z. Zhang, Composite quantile estimation in partial
functional linear regression model with dependent errors, Metrika, 82 (2019), 633–656.
https://doi.org/10.1007/s00184-018-0699-3

24. B. Yang, M. Chen, J. J. Zhou, Testing for error correlation in semi-functional linear models, J. Syst.
Sci. Complex., 36 (2023), 1697–1716. https://doi.org/10.1007/s11424-023-1431-6

25. S. D. Niang, S. Guillas, Functional semiparametric partially linear model with autoregressive
errors, J. Multivariate Anal., 101 (2010), 307–315. https://doi.org/10.1016/j.jmva.2008.06.008

26. T. Zhang, P. Dai, Q. Zhang, Joint detection for functional polynomial regression
with autoregressive errors, Commun. Stat.-Theory M., 46 (2017), 7837–7854.
https://doi.org/10.1080/03610926.2015.1096384

27. P. X. Xiao, G. C. Wang, Partial functional linear regression with autoregressive errors, Commun.
Stat.-Theory M., 51 (2022), 4515–4536. https://doi.org/10.1080/03610926.2020.1818097

28. M. Wang, M. L. Shu, J. J. Zhou, S. X. Wu, M. Chen, Least square estimation for multiple
functional linear model with autoregressive errors, Acta Math. Appl. Sin.-E., 41 (2022), 84–98.
https://doi.org/10.1007/s10255-024-1143-2

29. C. D. Boor, A practical guide to spline, New York: Springer, 1978.
https://doi.org/10.2307/2006241

30. H. S. Wang, G. D. Li, T. C. Ling, Regression coefficient and autoregressive order shrinkage
and selection via the Lasso, J. R. Stat. Soc. B., 69 (2007), 63–78. https://doi.org/10.1111/j.1467-
9868.2007.00577.x

31. Q. G. Tang, Estimation for semi-functional linear regression, Statistics., 49 (2015), 1262–1278.
https://doi.org/10.1080/02331888.2014.979827

32. L. Schumaker, Spline functions: Basic theory, 1 Eds., New York: John Wiley & Sons, 1981.
https://doi.org/10.2307/2007301

33. P. Hall, J. L. Horowitz, Methodology and convergence rates for functional linear regression, Ann.
Stat., 35 (2007), 70–91. https://doi.org/10.1214/009053606000000957

34. H. Lian, Shrinkage estimation and selection for multiple functional regression, Stat. Sinica, 23
(2013), 51–74. https://doi.org/10.5705/ss.2011.160

Appendix

Proof of Theorem 1.

To prove the theorem, we need the following conclusions and lemmas. Let B j(z) =
√

JN j(z),
1 ≤ j ≤ J, where N j(z) is a standard B-spline function. It is known from de Boor [29] that for z ∈ [z, z],
there are N j(z) ≥ 0,

∑J
j=1 N j(z) = 1, and there exist strictly positive constants M1 and M2 such that

M1‖c0‖22 ≤

∫ z

z

 J∑
j=1

c0
j B j(z)


2

dz ≤ M2‖c0‖22, (A.1)

AIMS Mathematics Volume 10, Issue 1, 1602–1627.

https://dx.doi.org/https://doi.org/10.1016/j.jmva.2007.04.010
https://dx.doi.org/https://doi.org/10.1007/s00184-018-0699-3
https://dx.doi.org/https://doi.org/10.1007/s11424-023-1431-6
https://dx.doi.org/https://doi.org/10.1016/j.jmva.2008.06.008
https://dx.doi.org/https://doi.org/10.1080/03610926.2015.1096384
https://dx.doi.org/https://doi.org/10.1080/03610926.2020.1818097
https://dx.doi.org/https://doi.org/10.1007/s10255-024-1143-2
https://dx.doi.org/https://doi.org/10.2307/2006241
https://dx.doi.org/https://doi.org/10.1111/j.1467-9868.2007.00577.x
https://dx.doi.org/https://doi.org/10.1111/j.1467-9868.2007.00577.x
https://dx.doi.org/https://doi.org/10.1080/02331888.2014.979827
https://dx.doi.org/https://doi.org/10.2307/2007301
https://dx.doi.org/https://doi.org/10.1214/009053606000000957
https://dx.doi.org/https://doi.org/10.5705/ss.2011.160


1621

where c0 = (c0
1, c

0
2, · · · , c

0
J)> and ‖ · ‖2 are the Euclidean norm of the vector. It can be seen from

Assumption 4 and [32, Deduction 6.21] that there is a positive constant M3 such that

g0(z) =

J∑
j=1

c0
j B j(z) + gn(z), sup

z∈[z,z]
|gn(z)| ≤ M3J−p. (A.2)

Lemma 1. Let Λ̂ =
∑n

t=q+1

{
(Ût −

∑q
l=1 a0

l Ût−l)(Ût −
∑q

l=1 a0
l Ût−l)>

}
/(n − q), where Ût = (ξ̂>t , B

>
t )>,

ξ̂t = (ξ̂t1, ξ̂t2, · · · , ξ̂tM)>, and then under the Assumptions 2–6, there is ρmin(Λ̂) = Op (M−α).
Proof. Note that the matrices Λ and Λ̂ can be written as:

Λ =

q∑
l=0

q∑
l′=0

(−a0
l )(−a0

l′ )EUt−lU>t−l′ ,

Λ̂ =

q∑
l=0

q∑
l′=0

(−a0
l )(−a0

l′ ){
n∑

t=q+1

Ût−lÛ>t−l′ }/(n − q),

where a0
0 = −1, 0 ≤ l, l

′

≤ q. For any l, l
′

, we have

EUt−lU>t−l′ =

(
Eξt−lξ

>

t−l′
Eξt−lB>t−l′

EBt−lξ
>

t−l′
EBt−lB>t−l′

)
,

n∑
t=q+1

Ût−lÛ>t−l′/(n − q) =

( ∑n
t=q+1 ξ̂t−lξ̂

>

t−l′
/(n − q)

∑n
t=q+1 ξ̂t−lB>t−l′

/(n − q)∑n
t=q+1 Bt−lξ̂

>

t−l′
/(n − q)

∑n
t=q+1 Bt−lB>t−l′

/(n − q)

)
.

Then ∑n
t=q+1 Ût−lÛ>t−l′

n − q
− EUt−lU>t−l′ =

∑n
t=q+1 Ût−lÛ>t−l′

n − q
−

∑n
t=q+1 Ut−lU>t−l′

n − q

+

∑n
t=q+1 Ut−lU>t−l′

n − q
− EUt−lU>t−l′

= I1 + I2.

For I1, there is:

I1 =
1

n − q

( ∑n
t=q+1(ξ̂t−lξ̂

>

t−l′
− ξt−lξ

>

t−l′
)

∑n
t=q+1(ξ̂t−l − ξt−l)B>t−l′∑n

t=q+1 Bt−l(ξ̂>t−l′
− ξ>

t−l′
) 0

)
.

Since for any 1 ≤ i, i
′

≤ M,∑n
t=q+1 ξ̂(t−l)iξ̂(t−l′ )i′

n − q
−

∑n
t=q+1 ξ(t−l)iξ(t−l′ )i′

n − q
=

∑n
t=q+1(ξ̂(t−l)i − ξ(t−l)i)ξ̂(t−l′ )i′

n − q

+

∑n
t=q+1 ξ(t−l)i(ξ̂(t−l′ )i′ − ξ(t−l′ )i′ )

n − q
.
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According to condition 2 and Eqs (5.21) and (5.22) in Hall and Horowitz [33], for all 1 ≤ i, i
′

≤ M,
and 1 ≤ t ≤ n, all have |ξ̂(t−l)i − ξ(t−l)i|

2 = Op(n−1i2) = Op(n−1M2), |ξ̂(t−l′ )i′ | = Op(1), and |ξ(t−l)i| = Op(1),
so ∑n

t=q+1 ξ̂(t−l)iξ̂(t−l′ )i′

n − q
−

∑n
t=q+1 ξ(t−l)iξ(t−l′ )i′

n − q
= Op(M/

√
n). (A.3)

Similarly, according to condition 2 and the Eqs (5.21) and (5.22) in Hall and Horowitz [33], it can be
proved that for all 1 ≤ i ≤ M, 1 ≤ j

′

≤ J, 1 ≤ t ≤ n, we have∑n
t=q+1(ξ̂(t−l)i − ξ(t−l)i)B j′ (Zt−l′ )

n − q
= Op(M2/

√
n). (A.4)

According to Assumption 6 and Eqs (A.3) and (A.4), it can be seen that

‖I1‖1 = Op(M3/
√

n), (A.5)

where ‖ · ‖1 represents the row norm of the matrix. Similar to Lian [34], it can be demonstrated that

‖I2‖1 = Op(M/
√

n). (A.6)

Therefore, from Assumption 6 and Eqs (A.5) and (A.6), it can be deduced that

|ρmin(Λ̂) − ρmin(Λ)| = Op(M3/
√

n) = op(M−α).

Combining the above results and Assumption 5, the lemma is proved. The proof of Theorem 1 is given
below.
Proof of Theorem 1. Let ā = (1,−a1, · · · ,−aq)>, Yt = (Yt,Yt−1, · · · ,Yt−q)>,
Ut = (Ut,Ut−1, · · · ,Ut−q)>, and Ût = (Ût, Ût−1, · · · , Ût−q)>. Then Ln(a, θ) can be written as

Ln(ā, θ) =
1

n − q

n∑
t=q+1

(Yt − Ûtθ)>āā>(Yt − Ûtθ).

Define rn = n−(α+2γ−1)/2(α+2γ), ā − ā0 = rnu, and θ − θ0 = rnv, where u = (0, u1, · · · , uq)>, and v =

(v11, · · · , v1M, v21, · · · , v2J)> = (v>1 , v
>
2 )>. Let εt = (εt, εt−1, · · · , εt−q)>, and U∗t = (U∗t ,U

∗
t−1, · · · ,U

∗
t−q)>,

where U∗t−l =
∑∞

i=M+1 b0
i ξ(t−l)i + gn(Zt−l), 0 ≤ l ≤ q. Then

Ln(ā, θ) − Ln(ā0, θ0) =
1

n − q

n∑
t=q+1

[(Yt − Ûtθ)>āā>(Yt − Ûtθ)

−(Yt − Ûtθ
0)>ā0ā0>(Yt − Ûtθ

0)]

=
2

n − q

n∑
t=q+1

ε>t ā0Wt(u, v)

+
2

n − q

n∑
t=q+1

[
(Ut − Ût)θ0 + U∗t

]>
ā0Wt(u, v)

+
1

n − q

n∑
t=q+1

Wt(u, v)2,

AIMS Mathematics Volume 10, Issue 1, 1602–1627.



1623

where Wt(u, v) = rn(Yt − Ûtθ
0)>u − rn(Ûtv)>ā0 − r2

n(Ûtv)>u. From the Cauchy-Schwarz inequality and
inequality xy ≤ x2+y2

2 , we can deduced that

Ln(ā, θ) − Ln(ā0, θ0) ≥
2

n − q

n∑
t=q+1

ε>t ā0Wt(u, v)

−
2

n − q

n∑
t=q+1

{[
(Ut − Ût)θ0 + U∗t

]>
ā0

}2

+
1

2(n − q)

n∑
t=q+1

Wt(u, v)2

, T1 − T2 + T3.

For T1, there is

T1 =
2rn

n − q

n∑
t=q+1

ε>t ā0ε>t u

+
2

n − q

n∑
t=q+1

ε>t ā0
[
rn

(
(Ut − Ût)θ0 + U∗t

)>
u − rn(Ûtv)>ā0 − r2

n(Ûtv)>u
]

, T11 + T12.

Note that ε>t ā0 = et, and it can be seen from the independence of et and ε>t u that

T11 = Op(
rn‖u‖2
√

n
) = op(r2

n). (A.7)

For T12, it can be seen from Assumptions 2–4 and Assumption 6 that for 0 ≤ l ≤ q, all have

M∑
i=1

b0
i (ξ(t−l)i − ξ̂(t−l)i) = Op(n−(α+4γ−4)/2(α+2γ)) = op(n−(α+2γ−1)/2(α+2γ)),

U∗t−l = Op(n−(α+2γ−1)/2(α+2γ)),

|ξ̂(t−l)i| = Op(1), and B j(Zt−l) = Op(1). From the independence of et and (Xt,Zt), we have

T12 = Op(
rn‖v‖2
√

n
) = op(r2

n). (A.8)

Combine Eqs (A.6) and (A.7), and we can deduced that

T1 = op(r2
n). (A.9)

For T2, we have

T2 ≤
4

n − q

n∑
t=q+1

{[
(Ut − Ût)θ0

]>
ā0

}2
+

4
n − q

n∑
t=q+1

(
U∗>t ā0

)2
, T21 + T22.
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From U∗t−l = Op(n−(α+2γ−1)/2(α+2γ)), we can deduced that T22 = Op(n−(α+2γ−1)/(α+2γ)). For T21, since

(Ut − Ût)θ0 =
(
(Ut − Ût)>θ0, (Ut−1 − Ût−1)>θ0, · · · , (Ut−q − Ût−q)>θ0

)>
,

and (Ut−l − Ût−l)>θ0 =
∑M

i=1 b0
i (ξ(t−l)i − ξ̂(t−l)i) = op(n−(α+2γ−1)/2(α+2γ)), then

T2 = Op(n−(α+2γ−1)/(α+2γ)) = Op(r2
n). (A.10)

For T3, it can be deduced from the inequality (x − y)2 ≥ x2/2 − y2 and the Cauchy-Schwarz inequality
that

T3 =
r2

n

2(n − q)

n∑
t=q+1

[
(Yt − Ûtθ

0)>u − (Ûtv)>ā0 − rn(Ûtv)>u
]2

≥
r2

n

4(n − q)

n∑
t=q+1

[
(Yt − Ûtθ

0)>u − (Ûtv)>ā0
]2
−

r4
n

2(n − q)

n∑
t=q+1

[
(Ûtv)>u

]2

≥
r2

n

4(n − q)

n∑
t=q+1

[
(Ûtv)>ā0

]2
+

r2
n

4(n − q)

n∑
t=q+1

[
(Yt − Ûtθ

0)>u
]2

−
r2

n

2(n − q)

n∑
t=q+1

(Yt − Ûtθ
0)>u(Ûtv)>ā0 −

r4
n

2(n − q)

n∑
t=q+1

[
(Ûtv)>u

]2

≥
r2

n

8(n − q)

n∑
t=q+1

[
(Ûtv)>ā0

]2

+
r2

n

4(n − q)

n∑
t=q+1

{[
(Yt − Ûtθ

0)>u
]2
− 2

[
((Ut − Ût)θ0 + Û∗t )>u

]2
}

−
r2

n

2(n − q)

n∑
t=q+1

ε>t u(Ûtv)>ā0 −
r4

n

2(n − q)

n∑
t=q+1

[
(Ûtv)>u

]2

, T31 + T32 − T33 − T34.

From Lemma 1, we have

T31 =
r2

n

8
v>

 1
n − q

n∑
t=q+1

Û>t ā0ā0>Ût

 v ≥ ρmin(Λ̂)‖v‖22/8 = Op(r2
n M−α)‖v‖22.

For T32, there is

T32 =
r2

n

4(n − q)

n∑
t=q+1

u>εtε
>
t u +

r2
n

2(n − q)

n∑
t=q+1

u>εt((Ut − Ût)θ0 + Û∗t )>u

−
r2

n

4(n − q)

n∑
t=q+1

[
((Ut − Ût)θ0 + Û∗t )>u

]2
.

From Assumptions 1 and 2, it can be seen that the sequence {εt} is a stationary and ergodic time series,
and from the stationary ergodicity theorem, we can deduced that

r2
n

4(n − q)

n∑
t=q+1

u>εtε
>
t u = Op(r2

n‖u‖
2
2).
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In addition, from the proof results on T2 and the Cauchy-Schwarz inequality, we have

r2
n

2(n − q)

n∑
t=q+1

u>εt((Ut − Ût)θ0 + Û∗t )>u = op(r2
n‖u‖

2
2),

r2
n

4(n − q)

n∑
t=q+1

[
((Ut − Ût)θ0 + Û∗t )>u

]2
= op(r2

n‖u‖
2
2).

Therefore
T32 = Op(r2

n‖u‖
2
2).

For T34, we have

T34 =
r4

n

2

q∑
l=1

q∑
l′=1

ulul′v
>

 n∑
t=q+1

Ût−lÛ>t−l′/(n − q)

 v.

Take notice of

EUt−lU>t−l′ =

(
Eξt−lξ

>

t−l′
Eξt−lB>t−l′

EBt−lξ
>

t−l′
E(Bt−lB>t−l′

)

)
.

From Assumption 2, when l = l
′

, we have

EUt−lU>t−l′ =

(
Σ 0
0 E(Bt−lB>t−l)

)
,

where Σ = diag(λ1, · · · , λM), and so v>1 Σv1 = O(‖v1‖
2
2). According to Assumption 2 and Eq (A.1), we

know that
v>2E(Bt−lB>t−l)v2 = O(‖v2‖

2
2),

and therefore v>E(Ut−lU>t−l)v = O(‖v1‖
2
2 +‖v2‖

2
2). When l , l

′

, we know that v>E(Ut−lU>t−l′
)v = O(‖v2‖

2
2).

Similar to the proof of Lemma 1, we have

‖

n∑
t=q+1

Ût−lÛ>t−l′/(n − q) − E(Ut−lU>t−l′ )‖1 = Op(M2/
√

n) = op(1),

and then
T34 = Op(r4

n‖u‖
2
2(‖v1‖

2
2 + ‖v2‖

2
2)) = op(r2

n).

For T33, there is

T33 =
r4

n

2

q∑
l=1

q∑
l′=0

ul(−a0
l′ )

n∑
t=q+1

[εt−lU>t−l′v + εt−l(Ût−l′ − Ut−l′ )
>v]/(n − q).

From the independence of et and (Xt,Zt), it can be seen that εt is also independent of (Xt,Zt), so
E(εt−lÛ>t−l′

) = 0. From the stationarity, we know

Var(
1

n − q

n∑
t=q+1

εt−lU>t−l′v) =
1

(n − q)2

n∑
t=q+1

n∑
t′=q+1

E(εt−lεt′−lv
>Ut−l′U

>

t′−l′v)
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= O(
‖v1‖

2
2 + ‖v2‖

2
2

n − q
).

Therefore, combining the results of Lemma 1, we can deduced that

T33 = Op(r2
n

‖u‖2(‖v1‖
2
2 + J−1‖v2‖

2
2)1/2

√
n

) = op(r2
n).

From the above results, we have

T3 = Op(r2
n‖u‖

2) + Op(r2
n M−α)‖v‖2.

Combining the results of T1, T2, and T3, we have

Ln(ā, θ) − Ln(ā0, θ0) ≥ Op(r2
n‖u‖

2) + Op(r2
n M−α)‖v‖2 − Op(r2

n).

It can be seen that the lower bound of Ln(ā, θ) − Ln(ā0, θ0) is mainly controlled by the positive term T3

when ‖u‖2 and ‖v‖2 are large enough. Therefore

‖θ̂ − θ0‖2 = Op(rn),

‖â − a0‖2 = Op(rn).

Take notice of

‖β̂(t) − β0(t)‖2 = ‖

M∑
i=1

b̂iφ̂i −

∞∑
i=1

b0
i φi‖

2

≤ 2‖
M∑

i=1

b̂iφ̂i −

M∑
i=1

b0
i φi‖

2 + 2‖
∞∑

i=M+1

b0
i φi‖

2

≤ 4‖
M∑

i=1

(b̂i − b0
i )φ̂i‖

2 + 4‖
M∑

i=1

b0
i (φ̂i − φi)‖2 + 2‖

∞∑
i=M+1

b0
i φi‖

2

, 4D1 + 4D2 + 2D3.

It can be seen from ‖θ̂ − θ0‖2 = Op(rn), and Assumptions 2 and 3, that

D3 =

∞∑
i=M+1

b02
i = O(n−(2γ−1)/(α+2γ)), D1 = ‖b̂ − b0‖22 = Op(r2

n) = op(n−(2γ−1)/(α+2γ)),

D2 ≤ M
M∑

i=1

‖φ̂i − φi‖
2b02

i = Op(n−(α+4γ−4)/(α+2γ)) = op(n−(2γ−1)/(α+2γ)).

So
‖β̂(t) − β0(t)‖2 = Op(n−(2γ−1)/(α+2γ)).

From Eqs (A.1) and (A.2), we know that

‖ĝ(z) − g0(z)‖2 ≤ 2
∫ z

z
[

J∑
j=1

(ĉ j − c0
j)B j(z)]2dz + 2

∫ z

z
g2

n(z)dz
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≤ 2M2‖ĉ − c0‖22 + 2M3J−2p.

Combining Assumption 4, Assumption 6, and ‖θ̂ − θ0‖2 = Op(rn), we have

‖ĝ(z) − g0(z)‖2 = Op(n−(α+2γ−1)/(α+2γ)).

The proof of the theorem is complete.
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