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1. Introduction and main results

John [17] and Martio and Sarvas [24] were the first who introduced and studied John domains and
uniform domains, respectively. Now, there are plenty of alternative characterizations for uniform and
John domains; see [5, 6, 20, 23, 28–32]. Additionally, its importance along with some special domains
throughout the function theory is well documented; see [5,7,13,15,20,25,26,35–37]. Moreover, John
domains and uniform domains in Rn enjoy with numerous geometric and function theoretic features
in many areas of modern mathematical analysis, see [1–3, 6, 18, 19, 21, 22, 31, 34]. As in [10], Guo
and Koskela have introduced the class of ϕ-John domains, which form a natural generalization of John
domains. The motivation for this paper stems from the discussions in [16, 33], where the effect of the
removal of a finite set of points and union of generalized John domain was examined. The main result
of this paper shows that D is a ϕ-John domain if, and only if, D\P is a ϕ′-John domain, where P is a
subset of D containing finitely many points of D, ϕ and ϕ′ depend on each other, and, finally, we prove
that the union of ϕ-John domains is ϕ′′-John domain.

Throughout the paper, unless otherwise stated, we always assume that D is a proper subdomain of
the metric space X and B(x, r) = {y ∈ X : |x − y| < r} denotes the metric ball at x of radius r. For a set
D in X, we use D to denote the metric completion of D, and we let ∂D = D\D be its metric boundary.
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We write
A(x; r,R) = {y : r ≤ |x − y| ≤ R}

for the closed annular ring center at x with inner and outer radii r and R, respectively.
From now on, for notational convenience, we use notation |x − y| to indicate the distance between x

and y in any metric space X.

Definition 1.1. A domain (open and connected) D in X is said to be a C-uniform domain if there exists
a constant C ≥ 1 with the property that each pair of points z1, z2 in D can be joined by a rectifiable arc
γ in D satisfying

(1) (Double cone condition) min {l(γ[z1, z]), l(γ[z2, z])} ≤ CδD(z) for all z ∈ γ, and
(2) (Quasiconvex condition) l(γ) ≤ C|z1 − z2|,

where l(γ) denotes the arc-length of γ, γ[zi, z] is the subcurve of γ between zi and z, and δD(z) denotes
the distance dist(z, ∂D). At this time, γ is said to be a double C-uniform curve.

If the condition (1) is satisfied, not necessarily (2), then D is said to be a C-John domain and the arc
γ is called a C-John curve.

The classes of John domains and of uniform domains in Euclidean space enjoy an important role
in many areas of modern mathematical analysis; see [14, 24, 27]. Inspired by the study on generalized
quasidisks [9, 12], Guo and Koskela [11] generalized the definition of John domain as follows.

Definition 1.2. Let D ⊆ X be a bounded domain, let ϕ : [0,∞) → [0,∞) be a continuous, increasing
function with ϕ(0) = 0 and ϕ(t) ≥ t for all t > 0, and let C ≥ 1 be a constant, z0 ∈ D. We say that D is
ϕ-John domain, if for any z ∈ D, there exists a rectifiable curve γ : zy z0, such that

l(γ[z, u]) ≤ ϕ(CδD(u)),

for all u ∈ γ. The concept of ϕ-dist and ϕ-diam John domains are defined analogously. A corresponding
curve is called a ϕ- length(dist,diam) John curve.

The notion of ϕ-John domains allows us to formulate a second definition of ϕ-John domains, and
the next definition and Definition 1.2 are equivalent; please see [8].

Definition 1.3. Let D ⊆ X be a bounded domain. We say that D is ϕ-John domain if there exist
constant C ≥ 1 and function ϕ with the property that each pair of points z1, z2 in D can be joined by a
rectifiable arc γ in D satisfying

min{l(γ[z1, u]), (γ[u, z2])} ≤ ϕ(CδD(u)),

for all u ∈ γ. Here, ϕ is a continuous, increasing function with ϕ(0) = 0 and ϕ(t) ≥ t for all t > 0.

We remark that, in general, the generalized John domain means the ϕ-John domain. Obviously, the
ϕ-John domain is a generalization of the C-John domain since the C-John domain coincides with the
ϕ-John domain with ϕ(Ct) = Ct. In this paper, we always simplify C-John domain by John domain
and ϕ-John domain by generalized John domain.

In [16], Huang et. al. showed that a domain D in Rn is a John domain if, and only if, D\P is a John
domain, where P is a subset of D containing finitely many points of D.
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Theorem 1.4. (See [16], Theorem 1.4) A domain D ⊆ Rn (n ≥ 2) is a John domain if, and only if,
G = D\P is also a John domain, where P = {p1, p2, · · · , pm} and pi ∈ D (i = 1, 2, · · · ,m).

To state our results, we introduce the following definition.

Definition 1.5. Let c ≥ 1. Let X be a rectifiable connected and locally compact metric space, and
D ⊆ X. Then, D is called

(1) c-quasiconvex, if for any x, y ∈ D there is a curve γ joining x and y in D satisfying l(γ) ≤ c|x−y|.
We also call this γ a c-quasiconvex curve;

(2) c-annular quasiconvex, if for every x ∈ D and for all r > 0, each pair of points y, z ∈ A(x; r, 2r) ⊆
D can be joined with a curve γ in A(x; r/c, 2cr) ⊆ D such that l(γ) ≤ c|y − z|.

Remark 1.6. It was proved by Buckley et al. in [4] that if X is connected and c-annular quasiconvex at
some point ω ∈ X, then X is 9c-quasiconvex. Therefore, the annular quasiconvexity implies
quasiconvexity.

Our first purpose is to show that a domain D in metric space X is a ϕ-John domain if and only if
D\P is a ϕ′-John domain, where P is a subset of D containing finitely many points of D. Our proof is
based on a refinement of the method of Huang et. al. [16]. We obtain a general result as follows.

Theorem 1.7. Suppose that X is a rectifiably connected and locally compact metric space, and that
domain D ⊆ X is a c-annular quasiconvex. Then, the following are quantitatively equivalent:

(1) D is a ϕ-John domain;
(2) G = D\P is a ϕ′-John domain, where P = {p1, p2, · · · , pm} and pi ∈ D (i = 1, 2, · · · ,m).

Here, ϕ and ϕ′ depend on each other and c.

In [33], Väisälä studied the union of John domains in Euclidean spaces, and showed that the union
of John domains also is a John domain. In [8], Guan proved that the union of John domains also is
a John domain in Banach spaces. Under affable geometric conditions, we obtain a general result as
follows.

Theorem 1.8. Let X be a metric space, and let D1,D2 ⊆ X be two c-quasiconvex domains, where
c ≥ 1. Suppose that D1 and D2 are two ϕ-John domains in X, and that z0 ∈ D1 ∩ D2 and r > 0 with

B(z0, r) ⊆ D1 ∪ D2 and min{diam(D1), diam(D2)} ≤ c0r,

where c0 ≥ 1 and diam(Di) is the diameter of Di, i = 1, 2. Then, D1 ∪ D2 is a ϕ′′-John domain with
ϕ′′ depending only on c, c0 and ϕ. Note that the function ϕ′′ is a continuous, increasing function with
ϕ′′(0) = 0 and ϕ′′(t) ≥ t for all t > 0.

The rest of this paper is organized as follows. In Section 2, we show that D is a generalized John
domain if, and only if, D\P is a generalized John domain, where P is a subset of D containing finitely
many points of D. The goal of Section 3 is to show that the union of generalized John domains is a
generalized John domain.

2. The decomposition properties of generalized John domains

In this section, we always assume that X is a rectifiably connected and locally compact metric space,
and that domain D ⊆ X is a c-annular quasiconvex. Furthermore, we suppose that P = {p1, p2, · · · , pm}

and pi ∈ D (i = 1, 2, · · · ,m).
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In what follows, we continue to investigate the decomposition properties of generalized John
domain in metric space. The following results play a key role in the proof of Theorem 1.7. Based
on [10] and [16], we will prove the following results.

Lemma 2.1. Under the assumptions of Theorem 1.7. If D is a ϕ-John domain, then G = D\P is also a
ϕ1-John domain with ϕ1 depending only on ϕ.

Proof. By assumption, we show that G = D\P is also a ϕ1-John domain with ϕ1 depending only on ϕ.
Without loss of generality, in order to prove Lemma 2.1, we need only to consider the case P = {p1}.
For convenience, we let

r =
1
2
δD(p1) and Br = B(p1, r).

For any points z1, z2 ∈ G = D\{p1}. Now, we divide the discussions into three cases:
Case 1. z1, z2 ∈ D\Br.

Since D is a ϕ-John domain, then there exist constant C ≥ 1 and function ϕ with the property that
each pair of points z1, z2 in D can be joined by a rectifiable arc γ in D satisfying

min{l(γ[z1, z]), (γ[z, z2])} ≤ ϕ(CδD(z)) (2.1)

for all z ∈ γ.
We now consider two subcases:

Subcase 1.1. γ ⊆ D\Br.
If γ ⊆ D\Br, then we take β = γ, and it is clear that β ⊆ G.
To prove this subcase, we have the following claim.

Claim 1. Let z be any point in β ⊆ D\Br, and we have

δD(z) ≤ 3δG(z).

Since β = γ and β ⊆ D\Br ⊆ G, for any z ∈ β, we get

|z − p1| > r.

If δD(z) ≤ |z − p1|, by using the definitions of δD(z) and δG(z), we have

δD(z) = δG(z). (2.2)

If δD(z) > |z − p1|, it follows that

δD(z) > δG(z) = |z − p1|.

According to the triangle inequality and |z − p1| > r, we deduce that

δD(z) ≤ |z − p1| + δD(p1) = δG(z) + 2r ≤ 3δG(z). (2.3)

So, from (2.2) and (2.3), Claim 1 is obtained.
Since D is a ϕ-John domain, and β = γ ⊆ D\Br ⊆ G, for any z ∈ β, from the conclusion of Claim 1

and (2.1), it follows that
min{l(β[z1, z]), l(β[z2, z])} ≤ ϕ(3CδG(z)).

AIMS Mathematics Volume 9, Issue 6, 15875–15890.
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Subcase 1.2. γ ∩ Br , ∅.
We let z′1 be the first intersection point of γ from z1 to z2, with ∂Br and z′2 as the last intersection

point of γ from z1 to z2 with ∂Br. Let Ur be the disk determined by z′1, z′2 and p1 in Br with center p1

and radius r. Then, z′1, z′2 divide ∂Ur into subarcs, and we denote the subarc with shorter arclength by
α (if they have the same arclength, then we choose one of them to be α), that is,

l(α) ≤ πr. (2.4)

Set
β = γ[z1, z′1] ∪ α ∪ γ[z′2, z2].

Claim 2. l(α) ≤ π
2 |z
′
1 − z′2|.

In disk Ur, according to the chord arc formula and the properties of trigonometric function, it
follows that

π

2
· 2r · sin

θ

2
≥ θ · r and 2r · sin

θ

2
= |z′1 − z′2|. (2.5)

where θ ∈ [0, π] is the center angle of two points z′1 and z′2. According to (2.5) and l(α) = θ · r, we get
that

π

2
|z′1 − z′2| ≥ l(α). (2.6)

Therefore, the proof of the Claim 2 is now complete.
By the definition of z′1, z′2 and disk Ur, we have

l(γ[z′1, z
′
2]) ≥ |z′1 − z′2|. (2.7)

Together with (2.6) and (2.7), it follows that

l(α) ≤
π

2
l(γ[z′1, z

′
2]).

If z ∈ γ[z1, z′1] or z ∈ γ[z′2, z2], by symmetry, we only prove z ∈ γ[z1, z′1]; the proof of z ∈ γ[z′2, z2]
uses the same argument for z ∈ γ[z1, z′1].

For any z ∈ γ[z1, z′1] ⊆ D\Br. It follows immediately from Claim 1 that δD(z) ≤ 3δG(z).
Hence, together with Claim 2 and δD(z) ≤ 3δG(z), it follows that

min{l(β[z1, z]), l(β[z2, z])} ≤
π

2
min{l(γ[z1, z]), l(γ[z2, z])}

≤
π

2
ϕ(CδD(z))

≤
π

2
ϕ(3CδG(z)).

If z ∈ α ⊆ ∂Ur, then we have

δG(z) = r and δG(z′2) ≤ δD(p1) + r = 3r. (2.8)

AIMS Mathematics Volume 9, Issue 6, 15875–15890.
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According to the inequality (2.4) and (2.8), it follows immediately from the definition of the ϕ-John
domain that

min{l(β[z1, z]), l(β[z2, z])} ≤ l(α) + min{l(γ[z1, z′1]), l(γ[z′2, z2])}
≤ πr + min{l(γ[z1, z′2]), l(γ[z′2, z2])}
≤ πr + ϕ(CδD(z′2))
≤ πδG(z) + ϕ(3CδG(z))
≤ ϕ(πδG(z)) + ϕ(3CδG(z))
≤ 2ϕ(4CδG(z)),

where C ≥ 1 is a constant.
Case 2. z1, z2 ∈ Br\{p1}.

Let z′1 be the intersection point of the ray starting from p1 and passing through z1 with ∂Br, and let
z′2 be the intersection point of the ray starting from p1 and passing through z2 with ∂Br, then we have

|z1 − z′1| ≤ r and |z2 − z′2| ≤ r. (2.9)

We use Ur to denote the disk determined by z′1, z′2 and p1 in Br with center p1 and radius r. Then, z′1
and z′2 divide ∂Ur into two subarcs. Let α denote the subarc with the shorter arclength (if they have the
same arclength, then we choose one of them to be α). We set

β = [z1, z′1] ∪ α ∪ [z2, z′2],

where [zi, z′i] denotes the line segments in metric space of zi and z′i , i = 1, 2.
If z ∈ α ⊆ ∂Ur, it is clear that

δG(z) = |z − p1| = r. (2.10)

Together with (2.9) and (2.10), it follows that

min{l(β[z1, z]), l(β[z2, z])} ≤ l(α) + min{|z1 − z′1|, |z2 − z′2|}

≤ πr + r

= (π + 1)δG(z)
≤ ϕ((π + 1)δG(z)).

(2.11)

If z ∈ [z1, z′1] or z ∈ [z2, z′2], by symmetry, it is sufficient to show that z ∈ [z1, z′1]. For any z ∈ [z1, z′1],
we have the desired estimate

min{l(β[z1, z]), l(β[z2, z])} ≤ |z1 − z| ≤ δG(z) ≤ ϕ(δG(z)). (2.12)

Hence, by combing (2.11) with (2.12), for any z ∈ β, we deduce that

min{l(β[z1, z]), l(β[z2, z])} ≤ ϕ((π + 1)δG(z)).

Case 3. z1 ∈ D\Br and z2 ∈ Br\{p1}.
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Since D is a ϕ-John domain, there must exist a curve γ joining z1 and z2 such that

min{l(γ[z1, z]), l(γ[z2, z])} ≤ ϕ(CδD(z))

for all z ∈ γ.
Let z′1 to be the first intersection point of γ from z1 to z2 with ∂Br, and let z′2 be the intersection point

of the ray starting from p1 and passing through z2 with ∂Br. We use Ur to denote the disk determined
by z′1, z′2 and p1 in Br with center p1 and radius r. Then, z′1 and z′2 divide ∂Ur into two subarcs. Let α
denote the subarc with the shorter arclength (if they have the same arclength, then we choose one of
them to be α). Then, according to the description above, we have

l(α) ≤ πr and |z2 − z′2| ≤ r. (2.13)

Set
β = γ[z1, z′1] ∪ α ∪ [z2, z′2],

where [z2, z′2] represents a straight line segment joining z2 to z′2.
We now consider three subcases:

Subcase 3.1. z ∈ α ⊆ ∂Ur.
Using a similar argument as in Case 2, we have δG(z) = r. According to (2.13), from the definition

of ϕ-John domain, we get that

min{l(β[z1, z]), l(β[z2, z])} ≤ l(α) + min{l(γ[z1, z′1]), |z2 − z′2|}

≤ πr + |z2 − z′2|

≤ πr + r

= (π + 1)δG(z)
≤ ϕ((π + 1)δG(z)).

Subcase 3.2. z ∈ [z2, z′2].
From the definition of z′2, it follows from z ∈ [z2, z′2] that

min{l(β[z1, z]), l(β[z2, z])} ≤ |z2 − z| ≤ δG(z) ≤ ϕ(δG(z)).

Subcase 3.3. z ∈ γ[z1, z′1].
If l(γ[z1, z]) ≤ l(γ[z2, z]). Since D is a ϕ-John domain, by using the conclusion of Claim 1, it follows

that
min{l(β[z1, z]), l(β[z2, z])} ≤ l(γ[z1, z]) ≤ ϕ(CδD(z)) ≤ ϕ(3CδG(z)).

If l(γ[z1, z]) > l(γ[z2, z]), by the conclusion of Subcase 3.1, we deduce that

l(β[z2, z′1]) = l(α) + |z2 − z′2| ≤ (π + 1)r. (2.14)

Now, for any z ∈ γ[z1, z′1] with l(γ[z′1, z]) < r/2, then we have

δG(z) ≥ δD(z′1) − |z′1 − z| ≥ δD(z′1) − l(γ[z′1, z]) ≥ r −
r
2

=
r
2
. (2.15)

AIMS Mathematics Volume 9, Issue 6, 15875–15890.



15882

Together with (2.14) and (2.15), it follows that

min{l(β[z1, z]), l(β[z2, z])} = l(β[z2, z′1]) + l(γ[z′1, z])

≤

(
π +

3
2

)
r

≤ (2π + 3)δG(z)
≤ ϕ((2π + 3)δG(z)).

If l(γ[z′1, z]) ≥ r/2, for any z ∈ γ[z1, z′1] ⊆ D\Br, by Claim 1, we know that δD(z) ≤ 3δG(z).
According to inequality (2.14) and the definition of the ϕ-John domain, we get

min{l(β[z1, z]), l(β[z2, z])} = l(β[z2, z′1]) + l(γ[z′1, z])
≤ (π + 1)r + l(γ[z′1, z])
≤ (2π + 3)l(γ[z′1, z])
≤ (2π + 3)ϕ(3CδG(z)).

Therefore, as discussed above, it follows that G = D\P is a ϕ1-John domain. Here,

ϕ1(C1t) = max
{
2ϕ(4Ct), ϕ((2π + 3)t), (2π + 3)ϕ(3Ct)

}
.

Hence, this completes the proof of Lemma 2.1. �

Lemma 2.2. Under the assumptions of Theorem 1.7. If G = D\P is a ϕ-John domain, then D is also a
ϕ2-John domain, where ϕ2 depends only on ϕ and c.

Proof. We always assume that D ⊆ X is a c-annular quasiconvex, and that G = D\P is a domain, where

P = {p1, p2, · · · , pm} and pi ∈ D (i = 1, 2, · · · ,m).

Let ϕ be a continuous, increasing function with ϕ(0) = 0 and ϕ(t) ≥ t for all t > 0. For any pair of
points z1, z2 ∈ D, we divide the discussions into three cases:
Case 1. z1, z2 ∈ G.

According to the assumptions of Theorem 1.7, we know that G = D\P is a ϕ-John domain, that is,
there is a rectifiable curve γ ⊂ G connecting z1 and z2 such that

min{l(γ[z1, z]), l(γ[z2, z])} ≤ ϕ(CδG(z))

for all z ∈ γ, where C ≥ 1 is a constant. Since G = D\P ⊆ D, we have

δG(z) ≤ δD(z).

According to ϕ being a continuous, increasing function, it follows that

min{l(γ[z1, z]), l(γ[z2, z])} ≤ ϕ(CδD(z)) (2.16)

for all z ∈ γ.
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Case 2. z1, z2 ∈ D\G.
Let z1, z2 ∈ P = D\G, and P = {p1, p2, · · · , pm}, pi ∈ D (i = 1, 2, · · · ,m). Set

min{δD(z1), δD(z2)} = 12cr and s = min{|pi − p j| : i , j}.

We choose
z′1 ∈ B(z1, τ) ∩G and z′2 ∈ B(z2, τ) ∩G,

where
τ = min

{
r,

s
12c

}
.

According to the definition of the ϕ-John domain, there must exist a curve γ ⊆ G joining z′1 with z′2
such that

min{l(γ[z′1, z]), l(γ[z′2, z])} ≤ ϕ(CδG(z)).

for all z ∈ γ.
Since D ⊆ X is a c-annular quasiconvex, by Remark 1.6, we have the D is 9c-quasiconvex, that

is, there exists a rectifiable curve γ1 in D joining z1 to z′1 with l(γ1) ≤ 9c|z1 − z′1|, and there exists a
rectifiable curve γ2 in D joining z2 to z′2 with l(γ2) ≤ 9c|z2 − z′2|, where c ≥ 1. Hence, we have

max{l(γ1), l(γ2)} ≤ 9cτ ≤ 9cr.

Let
β = γ1 ∪ γ ∪ γ2.

For any z ∈ β, if z ∈ γ1 or z ∈ γ2, by symmetry, we assume that z ∈ γ1. From the definition of
quasiconvexity, it follows that

min{l(β[z1, z]), l(β[z2, z])} ≤ l(β[z1, z]) = l(γ1[z1, z])
≤ 9c|z1 − z|

≤
9c

12c − 1
δD(z)

≤ ϕ

(
9c

12c − 1
δD(z)

)
< ϕ(δD(z)).

(2.17)

If z ∈ γ and min{l(γ[z′1, z]), l(γ[z′2, z])} ≤ cr, we deduce that

δD(z) ≥ min{δD(z1), δD(z2)} −min{l(β[z1, z]), l(β[z2, z])}
= 12cr −min{l(β[z1, z]), l(β[z2, z])}
= 12cr − (min{l(γ1) + l(γ[z′1, z]), l(γ2) + l(γ[z′2, z])})
≥ 12cr − (9cr + min{l(γ[z′1, z]), l(γ[z′2, z])})
≥ 2cr.

(2.18)
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Hence, by inequality (2.18) and the definition of function ϕ, it is clear that

min{l(β[z1, z]), l(β[z2, z])} = min{l(γ1) + l(γ[z′1, z]), l(γ2) + l(γ[z′2, z])}
≤ 9cr + min{l(γ[z′1, z]), l(γ[z′2, z])}
≤ 10cr

≤ 5δD(z)
≤ ϕ(5δD(z)).

(2.19)

If z ∈ γ and min{l(γ[z′1, z]), l(γ[z′2, z])} > cr, it follows from the definition of the ϕ-John domain that

min{l(β[z1, z]), l(β[z2, z])} = min{l(γ1) + l(γ[z′1, z]), l(γ2) + l(γ[z′2, z])}
≤ 9cr + min{l(γ[z′1, z]), l(γ[z′2, z])}
≤ 10 ·min{l(γ[z′1, z]), l(γ[z′2, z])}
≤ 10ϕ(CδD(z)).

(2.20)

Together with (2.17), (2.19) and (2.20), which shows that in this subcase, the lemma holds with

ϕ2(C2t) = max{ϕ(5t), 10ϕ(Ct)}. (2.21)

Case 3. z1 ∈ G and z2 ∈ D\G.
Using a similar argument as in Case 2, we can show that there is a rectifiable curve γ ⊆ D connecting

z1 and z2 such that for any z ∈ γ,

min{l(γ[z1, z]), l(γ[z2, z])} ≤ ϕ2(C2δD(z)). (2.22)

By combining (2.16), (2.21) and (2.22), we get that D is a ϕ2-John domain, that is

min{l(β[z1, z]), l(β[z2, z])} ≤ ϕ2(C2δD(z)).

where C2 ≥ 1 is a constant, and

ϕ2(C2t) = max{ϕ(5t), 10ϕ(Ct)}.

Hence, Lemma 2.2 is proved. �

The proof of Theorem 1.7. Under the assumptions of Theorem 1.7, Theorem 1.7 follows from
Lemmas 2.1 and 2.2. �

3. The union of generalized John domains

The proof of Theorem 1.8. The assumption implies that D1,D2 ⊆ X are two c-quasiconvex and ϕ-John
domains. Furthermore, we suppose that z0 ∈ D1 ∩ D2 and r > 0 with

B(z0, r) ⊆ D1 ∪ D2 and min{diam(D1), diam(D2)} ≤ c0r.
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Let D = D1 ∪ D2. Under these assumptions, in order to prove Theorem 1.8, we need only to show
that there exist constant C′′ ≥ 1 and function ϕ′′ with the property that each pair of points a, b in D can
be joined by a rectifiable arc γ in D satisfying

min{l(γ[a, z]), l(γ[z, b])} ≤ ϕ′′(C′′δD(z))

for all z ∈ γ. Here, ϕ′′ is a continuous, increasing function with ϕ′′(0) = 0 and ϕ′′(t) ≥ t for all t > 0.
Without loss of generality, we assume that diam(D1) ≤ diam(D2). Let a ∈ D1 and b ∈ D2, and we

can choose ϕ-John curves α : ay z0 and β : by z0 in D1 and D2, respectively. The continuum α ∪ β

contains a curve γ : ay b. It suffices to show that γ is a ϕ′′-John curve in D = D1 ∪ D2.
We choose two points a1 ∈ α and b1 ∈ β dividing α and β to subarcs of equal length, respectively.

Let
a2 = sup

{
u ∈ α : α[u, z0] ⊆ B

(
z0,

r
2

)}
,

and
b2 = sup

{
v ∈ β : β[v, z0] ⊆ B

(
z0,

r
2

)}
.

In what follows, we will divide the proof into two steps.

Step 1. For all x ∈ α, we prove that

min{l(α[a, x]), l(α[x, z0] ∪ β)} ≤ ϕ3(C3δD(x)) (3.1)

with constant C3 ≥ 1.
Since D1 is ϕ-John domain and α : ay z0 is ϕ-John curve in D1, thus, we have

min{l(α[a, x]), l(α[x, z0])} ≤ ϕ(CδD1(x)). (3.2)

Let x ∈ α. Now, to prove inequality (3.1), we divide the discussions into three cases:
Case 1. x ∈ α[a, a1].

Since D = D1 ∪ D2, it is clear that
δD1(x) ≤ δD(x).

From the definitions of a1 and the ϕ-John domain, for any x ∈ α[a, a1], by (3.2), it follows that

min{l(α[a, x]), l(α[x, z0] ∪ β)} ≤ min{l(α[a, x]), l(α[x, z0])}
≤ ϕ(CδD1(x))
≤ ϕ(CδD(x)).

Case 2. x ∈ α[a2, z0].
Now that diam(D1) ≤ c0r, according to the definition of a2, it is clear that

δD(x) ≥
r
2
≥

diam(D1)
2c0

. (3.3)

Since D1 is a c-quasiconvex domain, we have

l(α) ≤ c|a − z0| ≤ c · diam(D1), (3.4)
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where c ≥ 1 is a constant. Therefore, according to (3.3), (3.4) and the definition of function ϕ, it
follows that

min{l(α[a, x]), l(α[x, z0] ∪ β)} ≤ l(α) ≤ c · diam(D1) ≤ 2cc0δD(x) ≤ 2cc0ϕ(δD(x)).

Case 3. x ∈ α[a1, a2] and a2 ∈ α[a1, z0].
This case may be empty. From the construction of a2, it is obvious that

min{l(α[a, x]), l(α[x, z0])} ≥
r
2
. (3.5)

From the definition of c-quasiconvex domain and inequality diam(D1) ≤ c0r, we obtain that

l(α) ≤ c|a − z0| ≤ c · diam(D1) ≤ cc0r. (3.6)

Hence, Combing (3.2), (3.5) and (3.6), it follows that

min{l(α[a, x]), l(α[x, z0] ∪ β)} ≤ l(α[a, x]) ≤ l(α) ≤ cc0r

≤ 2cc0 ·min{l(α[a, x]), l(α[x, z0])}
≤ 2cc0ϕ(CδD1(x))
≤ 2cc0ϕ(CδD(x)).

Therefore, for all x ∈ α, we have

min{l(α[a, x]), l(α[x, z0] ∪ β)} ≤ ϕ3(C3δD(x)),

where
ϕ3(C3t) = max{2cc0ϕ(t), 2cc0ϕ(Ct)} = 2cc0ϕ(Ct),

and C3 ≥ 1 is a constant.
Step 2. For all y ∈ β, we prove that

min{l(α ∪ β[z0, y]), l(β[y, b])} ≤ ϕ4(C4δD(y)) (3.7)

with constant C4 ≥ 1.
Let y ∈ β. To prove inequality (3.7), our proof consists of three parts. For the first part, if y ∈

β[b, b1], Since D2 is ϕ-John domain and β : by z0 is a ϕ-John curve in D2, thus, we get that

min{l(β[z0, y]), l(β[y, b])} ≤ ϕ(CδD2(y)). (3.8)

By the inequality (3.8), we deduce that

min{l(α ∪ β[z0, y]), l(β[y, b])} ≤ min{l(β[z0, y]), l(β[y, b])}
≤ ϕ(CδD2(y))
≤ ϕ(CδD(y)).
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For the second part, if y ∈ β[b2, z0], according to the definition of b2, we obtain that

δD(y) ≥
r
2
≥

diam(D1)
2c0

. (3.9)

Since D2 is a c-quasiconvex domain, and β is a ϕ-John curve, from the definitions of a2 and b2, it is
clear that

l(β[z0, y]) ≤ c|y − z0| ≤ c|a2 − z0| ≤ c · diam(D1). (3.10)

Combing (3.4), (3.9) and (3.10), it follows that

min{l(α ∪ β[z0, y]), l(β[y, b])} ≤ l
(
α ∪ β[z0, y]

)
= l(α) + l(β[z0, y])
≤ 2c · diam(D1)
≤ 4cc0δD(y)
≤ 4cc0ϕ(δD(y)).

For the final part, if b2 ∈ β[b1, z0] and y ∈ β[b1, b2], this case may again be empty. Since D1 is a
c-quasiconvex domain, and diam(D1) ≤ c0r, we get that

l(α) ≤ c|a − z0| ≤ c · diam(D1) ≤ cc0r, (3.11)

and since D2 ⊆ D is a ϕ-John domain, we have

min{l(β[z0, y]), l(β(y, b))} ≤ ϕ(CδD2(y)) ≤ ϕ(CδD(y)). (3.12)

In addition, from the definition of b2, we deduce that

min{l(β[z0, y]), l(β(y, b))} ≥
r
2
. (3.13)

According to (3.11)–(3.13), we get

l(α) ≤ cc0r ≤ 2cc0 ·min{l(β[z0, y]), l(β(y, b))} ≤ 2cc0ϕ(CδD(y)). (3.14)

Now, it follows immediately from the inequality (3.14) that

min{l(α ∪ β[z0, y]), l(β[y, b])} ≤ l(α) + min{l(β[z0, y]), l(β[y, b])}
≤ 2cc0ϕ(CδD(y)) + ϕ(CδD(y))
≤ 4cc0ϕ(CδD(y)).

Therefore, for all y ∈ β, we have

min{l(α ∪ β[z0, y]), l(β[y, b])} ≤ ϕ4(C4δD(y))

where
ϕ4(C4t) = max{4cc0ϕ(t), 4cc0ϕ(Ct)} = 4cc0ϕ(Ct),

and C4 ≥ 1 is a constant.
Hence, we verified all the cases and our conclusion holds, that is, D1∪D2 is a ϕ′′-John domain with

ϕ′′(C′′t) = max{ϕ3(C3t), ϕ4(C4t)} = ϕ4(C4t) = 4cc0ϕ(Ct),

where C′′ ≥ 1 is a constant. �
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4. Conclusions

In summary, we investigated the removability and union of generalized John domain, that is, the
main result of this paper showed that D is a ϕ-John domain if, and only if, D\P is a ϕ′-John domain,
where P is a subset of D containing finitely many points of D, ϕ and ϕ′ depend on each other, and
finally we prove the union of ϕ-John domains is ϕ′′-John domain.

Given the Theorem 1.7 of the paper, it is natural to ask the following question:

Question 4.1. Let X be a rectifiably connected, locally compact and c-annular quasiconvex metric
space, and let P be a countable subset of X. Is X ϕ-John metric space if and only if X\P ϕ′-John metric
space?
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