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Abstract: The aim of this paper is to introduce and study the concept of a hyperideal-based zero-
divisor graph associated with a general hyperring. This is a generalized version of the zero-divisor
graph associated with a commutative ring. For any general hyperring R having a hyperideal I, the I-
based zero-divisor graph Γ(I)(R) associated with R is the simple graph whose vertices are the elements
of R \ I having their hyperproduct in I, and two distinct vertices are joined by an edge when their
hyperproduct has a non-empty intersection with I. In the first part of the paper, we concentrate on
some general properties of this graph related to absorbing elements, while the second part is dedicated
to the study of the I-based zero-divisor graph associated to the general hyperring Zn of the integers
modulo n, when n = 2pmq, with p and q two different odd primes, and fixing the hyperideal I.

Keywords: general hyperring; hyperideal; absorbing elements; hyperideal-based zero-divisor graph
Mathematics Subject Classification: 13A70, 16Y20

1. Introduction

Connecting different theories from different perspectives is a powerful tool to reveal remarkable
properties and results in one theory through the elements of the other theory, by identifying previously
unnoticed aspects or hidden structures. This can lead to a deeper understanding of the original theory
and its limitations. This is also the case of the connections between different algebraic structures
theories (such as group theory, ring theory, hypercompositional algebra, etc.) and graph theory. On
one side, many properties of the algebraic structures have been better visualized and easily described
using the properties of the associated graphs [23, 25, 28]. On the other side, new algebraic properties
of graphs have been derived from the properties of the algebraic structures, and this is the aim of the
algebraic graph theory. The interconnection between the two theories- very nicely called
“conversation” by Peter Cameron in his recently published paper [6] with the significant title “What
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can graphs and algebraic structures say to each other?”- dates back in 1878 to the fundamental work
of Cayley [5], where he defined the Cayley graphs. One hundred years later, in 1988, Beck [4]
introduced the concept of the zero-divisor graph of a commutative ring (extended to the
non-commutative case in 2002 by Redmond [31]) in order to solve problems related to the colorings
of rings. Let R be a unitary ring, and Z(R) denote the set of the zero-divisors of R. Then, the
zero-divisor graph of R, defined by Beck and denoted by Γ0(R), has the vertex set R, and two distinct
vertices x and y are joined by an edge if and only if xy = 0. It is then clear that the vertex 0 in Γ0(R) is
connected with any other vertex, while non-zero-divisors are connected only with 0. This definition
was slightly changed in 1999 by Anderson and Livingston [2], considering the graph Γ(R) as an
undirected graph with the vertex set Z(R)∗ = Z(R) \ {0} (the set of non-zero zero-divisors of R) and
where two distinct vertices x and y are connected by an edge if and only if xy = 0. This is the
definition that was further explored by Levy and Shapiro [22] and later on extended to
semirings [12, 13], nearrings [7], semigroups [11], etc.

A generalization of the zero-divisor graph was proposed in 2003 by Redmond [32], who changed
the definition of the edges in this graph, by considering two vertices connected if their product lies
in a fixed ideal of the ring. He called the new graph ΓI(R) the ideal-based zero-divisor graph of a
commutative ring R. If the fixed ideal I is the trivial one, i.e., I = {0}, then the ideal-based zero-
divisor graph coincides with the zero-divisor graph. In this paper, we will extend this construction to
the case of general hyperrings. The first definition of a hyperring was given by Marc Krasner, after
defining hyperfields, and this notion has remained in the literature with the name of Krasner hyperring
[21]. It is a hypercompositional structure (R,+, ·), having the additive part a canonical hypergroup,
the multiplicative one being a semigroup with a bilaterally absorbing element 0, and satisfying the
distributive axiom. Hypergroups appeared in 1934 as a natural generalization of groups, when F. Marty
noticed the importance of this structure in the study of the cosets determined by non-normal subgroups.
A hypergroup is a non-empty set H endowed with a hyperoperation ◦ : H × H −→ P(H) \ {∅} (where
P(H) denotes the power set of H) that is associative and reproductive (see the detailed definitions in
Section 2). A commutative hypergroup (H,+, 0), where each element has a unique inverse (for any
x ∈ H, there exists −x ∈ H such that 0 ∈ −x + x = x + (−x)) and the reversibility axiom holds
(z ∈ x + y implies x ∈ z + (−y), for any x, y, z ∈ H), was called canonical by Mittas [29]. A general
hyperring is an algebraic structure (R,+, ·), where (R,+) is a hypergroup, (R, ·) is a semihypergroup
and the multiplication inclussively distributes on both sides over addition: (x + y) · z ⊆ x · z + y · z and
x · (y + z) ⊆ x · y + x · z, for any x, y, z ∈ R. This structure was first defined by Vougiouklis [34] and
then studied by Spartalis [33], Cristea [9], Jančic-Rašovic [18]. Several non-trivial constructions of
general hyperrings have been recently proposed by Hamidi et al. [3]. One of them refers to the general
hyperring (Zn,⊕,�) of the integers modulo n, where n is an even number (see Example 2.1). In the
same paper, the authors also determined the hyperideals of this general hyperring (see Proposition 2.3),
which will be used in Section 4.

In this manuscript, we introduce and study the hyperideal-based zero-divisor graph of a general
hyperring. This is a simple graph Γ(I)(R) associated with a general hyperring R with respect to a
hyperideal I , R. Its vertex set is Z(I)(R) = {x ∈ R \ I | ∃y ∈ R \ I : x · y ∩ y · x ⊆ I} and two
distinct vertices x and y are adjacent, so connected by an edge, if (x · y) ∩ (y · x) ∩ I , ∅. First, we
present some general aspects of this graph associated to an OR-general commutative hyperring, i.e., to
a general hyperring R satisfying the property x · y = y · x = OR, for any x, y ∈ R, where OR denotes
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the set of all absorbing elements of R. Properties and examples related to the absorbing elements are
covered in Section 3. The second part of the paper is dedicated to the particular case of the general
hyperring R = (Zn,⊕,�). If n ∈ N is an even number, then there exists a ∈ Zn, a , 0, such that 2a = 0
and I = {0, a} is a hyperideal of R. We investigate the properties of the I-based zero-divisor graph
Γ(I)(R), taking the hyperideal I = {0, a} and different particular values of n = 2pmq, with m ∈ N, p and
q different odd primes. The paper ends with some conclusive ideas and proposals for a continuation of
this study.

2. Preliminaries

In this section, we briefly recall the definitions and main properties of the fundamental notions
related to the theory of general hyperrings, fixing also the used notation and terminology. For more
details, the reader is referred to the original manuscripts where general hyperrings were introduced and
studied [3, 26, 33, 34], as well as to the fundamental book [10].

Let R be a nonempty set; P(R) denotes the power set of R, i.e., the set of all subsets of R, while
P∗(R) = P(R) \ {∅}. A hyperoperation or a hypercomposition defined on R is a function ◦ : R ×
R −→ P∗(R), that can be denoted also additively or multiplicatively, which associates with any pair of
elements x, y in R a nonempty subset x ◦ y of R. For two nonempty subsets A and B of R, we write
A ◦ B =

⋃
x∈A,y∈B

x ◦ y, A ◦ y = A ◦ {y}, and x ◦ B = {x} ◦ B. The pair (R, ◦) is called a hypergroupoid which

becomes a semihypergroup if the associativity holds, i.e., (x ◦ y) ◦ z = x ◦ (y ◦ z), for any x, y, z in R. If
a semihypergroup (R, ◦) satisfies the reproduction axiom, i.e., R ◦ x = x ◦ R = R, for any element x in
R, then it is called a hypergroup.

Endow now a nonempty set R with two hyperoperations: one is written in the additive form with
respect to which (R,+) is a hypergroup, while the second one is given in the multiplicative form such
that (R, ·) is a semihypergroup. Moreover, if the multiplication inclussively distributes over the
addition, i.e., (x + y) · z ⊆ x · z + y · z and x · (y + z) ⊆ x · y + x · z, for any x, y, z in R, then the
hypercompositional structure (R,+, ·) is called a general hyperring. A general hyperring (R,+, ·) is
called commutative, if the multiplication commutes, i.e., x · y = y · x, for any x, y in R, while it is a
∆-general hyperring, if x · y = y · x = ∆, for any x, y in R and ∆ a nonempty subset of R. We say that a
general hyperring (R,+, ·) satisfies the strongly distributivity property, if x · (y + z) = x · y + x · z and
(x + y) · z = x · z + y · z, for any x, y, z ∈ R, briefly being called an S.D.-general hyperring.

A nonempty subset I of R is called a right (respectively a left) hyperideal of R, if (I,+) is a
hypergroup and R · I ⊆ I (respectively I · R ⊆ I). A hyperideal I is both a left and a right hyperideal of
R and it is called prime hyperideal if P , R and (x · y) ∩ (y · x) ⊆ P implies that x ∈ P or y ∈ P.

As an example of a general hyperring, we recall here the construction proposed in [3] related to the
cyclic group Zn of the integers modulo n, with n ∈ N.

Example 2.1. Let n ∈ N be an even natural number. Endow the set Zn with two binary hyperoperations,
denoted ⊕ and �, as follows: for a fixed a ∈ Zn, a , 0 such that 2a = 0, define x ⊕ y = x +a y =

{x + y, x + y + a} and x � y = x ·a y = {xy, xy + a}, for any x, y ∈ Zn.
According to Theorem 3.7 [3], (Zn,⊕,�) is a general hyperring. Besides, notice that if n is an odd

number, then (Zn,�) is not a semihypergroup. Indeed, in the particular case of n = 3, a = 2 , 0, we
get (0 � a) � 2 = {0, 1, 2}, while 0 � (1 � 2) = {0, 2}.
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As a consequence, we get the following properties of the general hyperring (Z2n ,⊕,�).

Corollary 2.2. [3] Let n be a natural number, n ≥ 2, and a be an arbitrary element in Z2n such that
2a = 0. Then, for all k ∈ N, we have ka = ak

= {0, a}.

In [3], the authors have determined all the hyperideals of the general hyperring R defined in
Example 2.1. They are hyperideals generated by one element, where for any x ∈ Zn, the hyperideal
generated by x is 〈x〉 =

⋃
k∈N

kx. More details follow in the next result.

Proposition 2.3. [3] Let R = (Zn,⊕,�) be the genenal hyperring defined in Example 2.1, where a ∈ Zn,
such that 2a = 0. Then the following statements are true:

1) 〈a〉 = {0, a}.
2) If x , a and gcd{x, a} = d, then 〈x〉 = 〈d〉.
3) I is a hyperideal of R if and only if there exists x ∈ Zn such that I = 〈x〉.

3. Absorbing elements in general hyperrings

In a groupoid (G, ∗), an element x is called an absorbing element if it satisfies the equalities x ∗ g =

g ∗ x = x, for all elements g ∈ G. If such an element exists, then it is unique, and if a group has an
absorbing element, then it is a trivial group. Thus, the absorbing elements have a significant role in
rings, where 0 (the neutral element with respect to the addition) is a multiplicative absorbing element,
i.e., r · 0 = 0 · r = 0, for any element r of the ring.

In this section we study the concept of an absorbing element in a general hyperring. First, we recall
that, unlike a group, a hypergroup can have one or more bilateral identities, or even have no bilateral
identity at all.

Definition 3.1. [14] Let (R,+, ·) be a general hyperring.

(i) An element x ∈ R is a multiplicative absorbing element or (·)-absorbing element of R if, for all
r ∈ R, x ∈ x · r ∩ r · x.

(ii) A bilateral identity of (R,+) is called an absorbing element of R, if it is a (·)-absorbing element of
R.

We denote by O(·)
R the set of all (·)-absorbing elements of R, while OR is the set of all absorbing

elements of the general hyperring R.

Example 3.2. [14] i) On the set R = {a, b, c, d} define the structure of the general hyperring as follows:

+ a b c d
a {a, b} {a, b} {c, d} {c, d}
b {a, b} {a, b} {c, d} {c, d}
c {c, d} {c, d} {a, b} {a, b}
d {c, d} {c, d} {a, b} {a, b}

and

· a b c d
a R R R R
b a b c d
c a b c d
d a b c d

It is clear that a is a bilateral identity of (R,+) and the only (·)-absorbing element in R, thus O(·)
R =

OR = {a}.
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ii) The set R = {a, b, c} endowed with the addition and multiplication defined by the following
Cayley’s tables

+ a b c
a a b c
b b b {c, a}
c c {c, a} b

and

· a b c
a a b c
b a b c
c a b c

is a general hyperring, having a as its unique bilateral identity. But O(·)
R = ∅ and thus OR = ∅.

iii) The set R = {a, b, c, d, e} with the following addition and multiplication becomes a commutative
general hyperring:

+ a b c d e
a a {a, b} {a, c} {d, a} {a, e}
b {a, b} b {b, c} {d, b} {b, e}
c {a, c} {b, c} c {d, c} {c, e}
d {d, a} {d, b} {d, c} d {d, e}
e {a, e} {b, e} {c, e} {d, e} e

and

· a b c d e
a {a, b} {a, b} {a, b} {a, b} {a, b}
b {a, b} {a, b} {a, b} {a, b} {a, b}
c {a, b} {a, b} {a, b} {a, b} {a, b}
d {a, b} {a, b} {a, b} {a, b} {a, b}
e {a, b} {a, b} {a, b} {a, b} {a, b}

Immediately one notices that every element is a bilateral unit and O(·)
R = {a, b}, meaning that OR =

{a, b} and moreover R is an OR-general hyperring, i.e., x · y = y · x = OR, for any x, y ∈ R.

Proposition 3.3. Let (R,+, ·) be an S.D.- general hyperring. Then the following assertions are valid:

(i) O(·)
R is a subsemihypergroup of (R, ·).

(ii) For any x, y ∈ O(·)
R , the inclusion x + y ⊆ O(·)

R holds.
(iii) If R is commutative, then O(·)

R and OR are hyperideals of R. Besides, any hyperideal I of R contains
OR.

Proof. (i) Let x, y ∈ O(·)
R . Then, for any r ∈ R, we have x · y ⊆ (r · x) · y = r · (x · y), and similarly,

x · y ⊆ x · (y · r) = (x · y) · r, meaning that x · y ⊆ O(·)
R . Thus, O(·)

R is a subsemihypergroup of (R, ·). Notice
that here, strong distributivity is not necessary.

(ii) Let x, y ∈ O(·)
R . Then, for any r ∈ R, we have x + y ⊆ r · x + r · y = r · (x + y) and similarly,

x + y ⊆ x · r + y · r = (x + y) · r, meaning that x + y ⊆ O(·)
R .

(iii) Accordingly with (ii), (O(·)
R ,+) is a subhypergroup of (R,+). Let x be an arbitrary element in

O
(·)
R . Then, for any r, s ∈ R, we get r · x ⊆ r · (x · s) = (r · x) · s and x · r ⊆ (s · x) · r = s · (x · r). Since

(R, ·) is commutative, we also get r · x ⊆ s · (r · x) and x · r ⊆ (x · r) · s, therefore r · x ∪ x · r ⊆ O(·)
R .

Since the set of all bilateral identities with respect to the addition is a hyperideal of R, it follows that
OR is a hyperideal of R, too. Besides, for any x ∈ OR and r ∈ I, we have x ∈ x · r ⊆ I, so OR ⊆ I. �

Theorem 3.4. Let (R,+, ·) be a ∆-general hyperring.

(i) If ∆ is a subhypergroup of (R,+), then (R,+, ·) is a commutative S.D.-general hyperring.
(ii) If ∆ = O

(·)
R , then ∆ and OR are hyperideals of R.

Proof. (i) Take arbitrary three elements x, y, z ∈ R. Then x · (y + z) =
⋃

w∈y+z

x ·w =
⋃

∆ = ∆ = ∆ + ∆ =

x · y + x · z. Similarly, one proves that (x + y) · z = x · y + x · z and x · y = ∆ = y · x, so (R,+, ·) is a
commutative S.D.-general hyperring.
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(ii) SinceO(·)
R is a subhypergroup of (R,+) it follows that R is a commutative S.D.-general hyperring,

and according with Proposition 3.3, we know that O(·)
R and O(·)

R are hyperideals of R.
�

4. Hyperideal-based zero-divisor graph of a general hyperring

In this section, we introduce the concept of a zero-divisor graph based on nontrivial hyperideals of
general hyperrings and investigate its algebraic properties with respect to the (·)-absorbing elements
and absorbing elements.

First, we fix some notations related to graph theory. In this paper, we consider simple graphs, i.e.,
undirected graphs without loops and multiple edges. A simple graph is called connected, if there is a
path connecting any two distinct vertices in the graph. A graph Γ is called complete if any two distinct
vertices are adjacent, so there is an edge between them. Kn denotes the complete graph on n vertices.
A complete bipartite graph is a graph whose vertex set may be partitioned into two subsets such that
no edge has both endpoints in the same subset, and every possible edge that could connect vertices in
different subsets is part of the graph. A complete bipartite graph with partitions of the size m and n is
denoted by Km,n. For two vertices x and y of a graph Γ, we define d(x, y) to be the length of a shortest
path connecting x and y in Γ. In particular, d(x, x) = 0 and d(x, y) = ∞ if there is no such path. The
diameter of Γ is diam(Γ) = sup{d(x, y) | x and y are vertices in Γ }. The girth of Γ, denoted by gr(Γ),
is the length of a shortest cycle in Γ, where by cycle we mean a path starting and ending at the same
point. We make the convention that gr(Γ) = ∞ if Γ contains no cycles.

With an arbitrary general hyperring (R,+, ·), let us associate a simple graph related to one hyperideal
of R. Let I(R) denote the set of all hyperideals of R. For any I ∈ I(R) \ R, define the set Z(I)(R) = {x ∈
R \ I | ∃y ∈ R \ Isuch that x · y ∩ y · x ⊆ I}.

Definition 4.1. The hyperideal-based zero-divisor graph Γ(I)(R) associated with a general hyperring R
and a hyperideal I , R of R is the simple graph having Z(I)(R) as its vertex set, where two distinct
vertices x, y are adjacent if (x · y) ∩ (y · x) ∩ I , ∅.

We better illustrate this definition in the following two examples.

Example 4.2. [14] (i) Endow the set R = {a, b, c, d, e} with the structure of a general hyperring, as in
Example 3.2 iii). The set of its hyperideals is the following:

I(R) =
{
I1 = {a, b, c}, I2 = {a, b, d}, I3 = {a, b, e}, I4 = {a, b, d, c},

I5 = {a, e, b, c}, I6 = {a, b, d, e}, I7 = {a, b}, I8 = R
}
.

For any hyperideal I ∈ I(R), we first determine the vertex set of the associated I-based divisor
graph Γ(I)(R), and we obtain:

Z(I1)(R)={x∈R \ I1 | ∃y ∈ R \ I1 : x · y ∩ y · x ⊆ I1}={x∈{d, e} | ∃y ∈ {d, e} : {a, b} ⊆ I1}={d, e}

, and similarly Z(I2)(R) = {c, e}, Z(I3)(R) = {d, c}. Since all three hyperideals I1, I2, and I3 contain the set
{a, b}, it follows that the three associated I-based zero-divisor graphs Γ(I1)(R), Γ(I2)(R), and Γ(I3)(R) are
isomorphic with the path graph P2, which is isomorphic with the complete bipartite graph K1,1.
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Since Z(I4)(R) = {e}, Z(I5)(R) = {d} and Z(I6)(R) = {c} and all hyperideals I4, I5, and I6 contain the set
{a, b}, it follows that the associated I-based zero-divisor graphs Γ(I j)(R), j ∈ {4, 5, 6}, are isomorphic
with the complete graph K1 (the graph with one vertex and no edges). Finally, we get that Z(I7)(R) =

{c, d, e}, where any pair of vertices is connected, meaning that the associated I7-based zero-divisor
graph Γ(I7)(R) is isomorphic with the complete graph K3.

(ii) Endow the set R = {a, b, c, d, e, f } with a general hyperring structure, where the two
hyperoperations are defined by the following Cayley tables:

+ a b c d e f
a {a, d} {b, e} {c, f } {d, a} {e, b} { f , c}
b {b, e} {c, f } {d, a} {e, b} { f , c} {a, d}
c {c, f } {d, a} {e, b} { f , c} {a, d} {b, e}
d {d, a} {e, b} { f , c} {a, d} {b, e} {c, f }
e {e, b} { f , c} {a, d} {b, e} {c, f } {d, a}
f { f , c} {a, d} {b, e} {c, f } {d, a} {b, e}

and
· a b c d e f
a {a, d} {a, d} {a, d} {a, d} {a, d} {a, d}
b {a, d} {b, e} {c, f } {d, a} {e, b} { f , c}
c {a, d} {c, f } {e, b} {a, d} {c, f } {e, b}
d {d, a} {a, d} {d, a} {a, d} {d, a} {a, d}
e {a, d} {e, b} {c, f } {a, d} {e, b} {c, f }
f {a, d} { f , c} {e, b} {d, a} {c, f } {b, e}

.

The set J = {a, d} is a hyperideal of (R,+, ·) and Z(J)(R) = {b, c, e, f }, but no pair of vertices is
connected, so Γ(J)(R) � N4, the graph with 4 vertices and no edge.

Let (R,+, ·) be a general commutative hyperring and OR the set of its absorbing elements. R is an
OR-general hyperring if x · y = y · x = OR, for any x, y ∈ OR. The next result summarizes the main
properties of the hyperideal-based zero-divisor graph Γ(I)(R) of an OR-general hyperring.

Theorem 4.3. Let (R,+, ·) be anOR-general commutative hyperring. For an arbitrary hyperideal I , R
of R, the associated hyperideal-based zero-divisor graph Γ(I)(R) has the following properties:

(i) Z(I)(R) = R \ I ⊆ R \ OR,
(ii) Γ(I)(R) is a complete graph, so diam(Γ(I)(R)) = 1 and gr(Γ(I)(R)) = 3.

Proof. (i) According to Theorem 3.4, (R,+, ·) is a commutative S .D.- general hyperring, and thus, OR

is a hyperideal of (R,+, ·). By hypothesis, for any x, y ∈ R, it holds x · y = y · x = OR, implying that

Z(I)(R) = {x ∈ R \ I | ∃y ∈ R \ I : x · y ∩ y · x ⊆ I}

= {x ∈ R \ I | ∃y ∈ R \ I : OR ⊆ I} = R \ I ⊆ R \ OR.

(ii) Since (R,+, ·) is an OR-general hyperring, any two vertices of the graph Γ(I)(R) are connected, since
x·y∪y·x∪I , ∅, therefore the graph Γ(I)(R) is complete; thus, diam(Γ(I)(R)) = 1 and gr(Γ(I)(R)) = 3. �

Theorem 4.4. Let (R,+, ·) be a general hyperring and I a hyperideal of R, such that I , R. Then the
following statements hold:
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(i) I ∩ Z(I)(R) = ∅.
(ii) If R has the unit element 1, then 1 < Z(I)(R).

(iii) If P is a prime hyperideal of R, then Z(P)(R) = ∅.

Proof. (i) This is an obvious observation.
(ii) Suppose that 1 ∈ Z(I)(R). Then there exists y ∈ R \ I such that y ∈ (1 · y) ∩ (y · 1) ⊆ I, which is a

contradiction.
(iii) Suppose that Z(P)(R) , ∅ and take an arbitrary x ∈ Z(P)(R). Then x ∈ R \ P and there exists

y ∈ R \ P such that (x · y)∩ (y · x) ⊆ P. Since P is a prime hyperideal, we get that x ∈ P or y ∈ P, which
is a contradiction. Thus, Z(P)(R) = ∅. �

5. The particular case of the general hyperring (Z2pmq,⊕,�)

In this section, we consider the finite general hyperring (Zn,⊕,�), with n ∈ N an even integer,
considered in Example 2.1, where there exists a ∈ Zn, a , 0, such that 2a = 0. We investigate the
properties of the hyperideal-based zero-divisor graph Γ(I)(R), taking the hyperideal I = {0, a} and the
different particular values of n = 2pmq, with p and q different odd primes and m ∈ N.

We first start with a general property of the vertex set Z(I)(R) of the hyperideal-based zero-divisor
graph Γ(I)(R), determining it then for the basic case when m = 0, so n = 2p, with p an odd prime.

Theorem 5.1. Let R = (Zn,⊕,�) be the general hyperring in Example 2.1, and consider the hyperideal
I = {0, a}.

(i) If x ∈ Z(I)(R), then x ∈ Zn \ {0, 1, a} and gcd(x, n) , 1.
(ii) Z(I)(R) = ∅ if and only if n = 2p, with p being an odd prime.

Proof. (i) If x ∈ Z(I)(R), by Theorem 4.4, we immediately have x ∈ R\{0, 1, a} and there exists y ∈ R\ I
such that x � y = {xy, xy + a} ⊆ {0, a}, meaning that xy = 0 or xy = a.

Suppose now, by absurdity, that gcd(x, n) = 1. If xy = 0, then n|y, which is a contradiction with the
fact that y , 0. If xy = a, then xy ≡ a (mod n), implying that 2xy ≡ 2a (mod n) ≡ 0 (mod n). Thus
n|2xy, so n|y, which is again a contradiction. Therefore, gcd(x, n) , 1.

(ii) Suppose that Z(I)(Zn,⊕,�) = ∅, where n = 2m,m ∈ N, and then I = {0,m}. It follows that, for
any x, y ∈ Zn \ {0,m}, we have xy . 0 (mod 2m) or xy . m (mod 2m). Thus, 2m 6 |xy or 2m 6 |xy − m,
both lead to the conclusion that m 6 |xy. Thereby, for any x, y ∈ Z2m such that m 6 |x and m 6 |y, it follows
that m 6 |xy, meaning that m is a prime number.

Conversely, consider n = 2p, with p an odd prime number, and then I = {0, p}. If there exists
x ∈ Z(I)(Z2p), then x ∈ Z2p\{0, 1, p} and there exists y ∈ Z2p\{0, p} such that x�y = {xy, xy + p} ⊆ {0, p},
equivalently with xy ∈ {0, p}. On one side, if xy = 0, then xy ≡ 0 (mod 2p), and thus p|xy, with p a
prime, leads to p|x or p|y. Both conclusions are in contradiction with the hypothesis x , p and y , p.
On the other side, if xy = p, then xy ≡ p (mod 2p), and thus gcd(x, 2p)|p, meaning that gcd(x, 2p) = 1
or gcd(x, 2p) = p. The first case is excluded by item (i) of this theorem, while in the second case we
get p|x, which is again a contradiction of the fact that x , p. Concluding, if n = 2p, with p an odd
prime, then it follows that Z(I)(Z2p) = ∅, and the proof is now complete.

�

The aim of the next result is to show that the hyperideal-based zero-divisor graph Γ(I)(R) associated
to the general hyperring R = (Z2pq,⊕,�), is a bipartite complete graph.
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Theorem 5.2. Let R = (Zn,⊕,�) be the general hyperring in Example 2.1, where n = 2pq, with p , q
two distinct odd primes, and I = {0, pq}. Then the following statements are true:

(i) Z(I)(R) = {x ∈ Zn \ {0, 1, pq} | p|x or q|x}.

(ii) |Z(I)(R)| = b
n − 1

p
c + b

n − 1
q
c − 2.

(iii) E(Γ(I)(R)) = V1 × V2, where V1 = {kp | 1 ≤ k ≤ b
n − 1

p
c, k , q} and V2 = {k′q | 1 ≤ k′ ≤

b
n − 1

q
c, k′ , p}.

(iv) Γ(I)(R) = Kα,β, with α = b
n − 1

p
c − 1 and β = b

n − 1
q
c − 1.

Proof. (i) Let x ∈ Z(I)(R). According to Theorem 5.1 and Definition 4.1, we know that x < {0, 1, pq}
and there exists at least one y ∈ Zn \ {0, pq} such that x � y ⊆ I, equivalently with xy ≡ 0 (mod 2pq)
or xy ≡ pq (mod 2pq). In both cases, it follows that pq|xy. Since p and q are distinct odd primes and
gcd(x, 2pq) , 1, by Theorem 5.1, we get that gcd(x, 2pq) ∈ {2, p, q, 2p, 2q}. It is enough to prove that
gcd(x, n) , 2, meaning that p|x or q|x. Indeed, if gcd(x, 2pq) = 2, since pq|xy, it follows immediately
that pq|y, which is a contradiction with the condition y , pq.

(ii) For any x ∈ Z(I)(R), we know that p|x and q|x and there exists at least one y ∈ Zn \ {0, pq} such
that xy ≡ 0 (mod 2pq) or xy ≡ pq (mod 2pq). Let us consider first that p|x.

• If xy ≡ 0 (mod 2pq), then y ≡ 0 (mod 2q), and thus y ∈ {2q, 2·(2q), 3·(2q), . . . , (p−1)·(2q)} = A1,
with |A1| = p − 1.
• If xy ≡ pq (mod 2pq), then y ≡ q (mod 2q), and so y ∈ {q, 2q+q, 2·(2q)+q, . . . , (p−1)·(2q)+q} =

A2, with |A2| = p. Since y , pq, from the set A2, we must exclude the value pq = ( p−1
2 )(2q) + q.

Consider now the case when q|x. Again we have to discuss the following two cases:

• If xy ≡ 0 (mod 2pq), then y ≡ 0 (mod 2p), and thus y ∈ {2p, 2 · (2p), 3 · (2p), . . . , (q−1) · (2p)} =

B1, with |B1| = q − 1.
• If xy ≡ pq (mod 2pq), then y ≡ p (mod 2q), and so y ∈ {p, 2p+ p, 2 · (2p)+ p, . . . , (q−1) · (2p)+

p} = B2, with |B2| = p. But again, from the set B2, we must exclude the value pq = (q−1
2 )(2p) + p.

Since the sets A1, A2 \ {pq}, B1, and B2 \ {pq} are mutually disjoint, we conclude that

|Z(I)(R)| = |A1 ∪ (A2 \ {pq}) ∪ B1 ∪ (B2 \ {pq})| =
= |A1| + |A2 \ {pq}| + |B1| + |B2 \ {pq}| =

= p − 1 + p − 1 + q − 1 + q − 1 =

= 2q − 1 + 2p − 1 − 2 =

= b
2pq − 1

p
c + b

2pq − 1
q
c − 2 =

= b
n − 1

p
c + b

n − 1
q
c − 2.

(iii) Let x, y ∈ Z(I)(R). Then x and y are adjacent if and only if x � y ∩ {0, pq} , ∅, so if and only if
x, y ∈ A, where A = A1 ∪ (A2 \ {pq}) ∪ B1 ∪ (B2 \ {pq}). This is equivalently with (x, y) = (kp, k′q),

with 1 ≤ k ≤ b
n − 1

p
c, k , q and 1 ≤ k′ ≤ b

n − 1
q
c, k′ , p.
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Indeed, if (x, y) = (kp, k′p), which 1 ≤ k, k′ ≤ b
n − 1

p
c, k , q, k′ , q, then xy = kk′p2 and

since pq|xy, it follows that q | p, which is a contradiction. A similar contradiction is obtained if

(x, y) = (kq, k′q), with 1 ≤ k, k′ ≤ b
n − 1

q
c, k , p, k′ , p.

(iv) Since V1 ∩ V2 = ∅, it follows clearly that Γ(I)(R) = Kα,β, with α = b
n − 1

p
c − 1 and β =

b
n − 1

q
c − 1. �

Theorem 5.3. Let R = (Zn,⊕,�) be the general hyperring in Example 2.1, where n = 2pm, with p an
odd prime number, m ≥ 2, and the hyperideal I = {0, pm}. Then the following statements are true:

(i) Z(I)(R) = {x ∈ Zn \ {0, 1, pm} such that p|x}.

(ii) |Z(I)(R)| = b
n − 1

p
c − 1.

(iii) E(Γ(I)(R)) = Z(I)(R) × Z(I)(R).

(iv) |E(Γ(I)(R))| =
1
2
( m−1∑

i=1

(b
n − 1

pi c − 1)(pi − 1 + θi)
)
, where we denote

θi =


b
2pi − 1

2
c, if 1 ≤ i ≤ b

m
2
c,

b
2pi − 1

2
c − 1, if b

m
2
c < i ≤ m − 1.

(v) Γ(I)(R) = Kb n−1
p c−1.

Proof. (i) Let x ∈ Z(I)(R). Then x < {0, 1, pm} and there exists at least one y ∈ Zn \ {0, pm} such that
xy ≡ 0 (mod 2pm) or xy ≡ pm (mod 2pm). Thus, in any case, pm|xy. Since x < {pm, 2pm}, it follows
that gcd(x, 2pm) ∈ {2, p, p2, . . . , pm−1, 2p, 2p2, . . . , 2pm−1}. If gcd(x, 2pm) = 2, since gcd(2, p) = 1 and
pm|xy, it follows that pm|y, which is in contradiction with the fact that y , pm. Therefore, it is clear that
p|x. Moreover, gcd(x, 2pm) = pi, because otherwise, if gcd(x, 2pm) = 2p j 6 |pm, 1 ≤ j ≤ m − 1, we get
xy . pm (mod 2pm), which is not possible.

(ii) From the previous item, it follows that the cardinality of Z(I)(R) is the number of multiplies of

p, except pm and less than n = 2pm. Hence |Z(I)(R)| = b
n − 1

p
c − 1.

(iii) It is clear that any two elements x, y ∈ Z(I)(R) are adjacent, so E(Γ(I)(R)) = Z(I)(R) × Z(I)(R).
(iv) Let x, y ∈ Z(I)(R). Then gcd(x, 2pm) = pi, 1 ≤ i ≤ m − 1 and y < {0, pm, pi} (since x , y).

On one side, if xy ≡ 0 (mod 2pm), then (
x
pi )y ≡ 0 (mod 2pm−i) and so y ∈ {2pm−i, 2(2pm−i), . . . , (pi −

1)2pm−i)} = Wi. Since, for any i, 1 ≤ i ≤ m − 1, pm < Wi, we get that |Wi| = pi − 1.
On the other side, for any i, 1 ≤ i ≤ m − 1, if xy ≡ pm (mod 2pm), then (

x
pi )y ≡ pm−i (mod 2pm−i)

and so y ∈ {pm−i, 2pm−i + pm−i, . . . , (b
2pi − 1

2
c)2pm−i + pm−i)} = Wi. Since, for any i, 1 ≤ i ≤ b n

2c −

1, pm ∈ Wi, we get that |Wi| = b
2pi − 1

2
c and for any i, b

m
2
c < i ≤ m − 1, {pm, pi} ⊆ Wi, we get that

|Wi| = b
2pi − 1

2
c − 1. (Indeed, pi ∈ Wi if and only if there exists k, 1 ≤ k ≤ b

2pi − 1
2
c such that
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k(2pm−i) + pm−i = pi, equivalently with k =
p2i−m − 1

2
. Thus, k is well defined if 2i − m ≥ 1, i.e.,

i ≥ b
m + 1

2
c > b

m
2
c.)

Thereby |E(Γ(I)(R))| =
1
2
( m−1∑

i=1

(b
n − 1

pi c − 1)(pi − 1 + θi)
)
, where we denote

θi =


b
2pi − 1

2
c, if 1 ≤ i ≤ b

m
2
c,

b
2pi − 1

2
c − 1, if b

m
2
c < i ≤ m − 1.

(v) Γ(I)(R) is the complete graph on (b n−1
p c − 1) elements. �

We consider now the case when n = 2pmq, m ≥ 1, with p and q distinct odd primes. Since the
computations are more complex, we will find the properties of the associated hyperideal-based zero-
divisor graph Γ(I)(R) associated with the general hyperring R = (Z2pmq,⊕,�) in the next three theorems.

Theorem 5.4. Let R = (Z2pmq,⊕,�) be the general hyperring defined in Example 2.1 and the hyperideal

I = {0, pnq}. Then there exists a partition V = {Vi}
2n
i=1 of Z(I)(R) such that |

2n⋃
i=1

Vi| = |Z(I)(R)| = b
n − 1

p
c+

b
n − 1

q
c − b

n − 1
pq
c − 1.

Proof. Let x ∈ Z(I)(R). Then there exists at least one y ∈ Zn \ I such that xy ≡ 0 (mod 2pmq) or
xy ≡ pmq (mod 2pmq). Similarly to the previous cases, it follows that gcd(x, n) ∈ {2, pi, q, p jq | 1 ≤
i ≤ m, 1 ≤ j ≤ m − 1}. The following possibilities appear.

1) If gcd(x, n) = 2 and xy ≡ 0 (mod 2pmq), then y ≡ pmq (mod 2pmq), which is a contradiction.
Besides, since gcd(2, pmq) = 1, it follows that xy . pmq (mod 2pmq). Thus gcd(x, n) , 2.

2) Consider that gcd(x, n) = pi, 1 ≤ i ≤ m.

• If xy ≡ 0 (mod 2pmq), then
x
pi y ≡ 0 (mod 2pm−iq), with gcd(

x
pi , 2pm−iq) = 1. Thus

y ∈ {2pm−iq, 2pm−iq + 2pm−iq, 2(2pm−iq) + 2pm−iq, . . . , (pi − 2)(2pm−iq) + 2pm−iq},

because k(2pm−iq) + 2pm−iq = 2pmq⇔ (k + 1)2pm−iq = 2pmq⇔ k + 1 = pi ⇔ k = pi − 1.
• If xy ≡ pmq (mod 2pmq), then

x
pi y ≡ pm−iq (mod 2pm−iq), with gcd(

x
pi , 2pm−iq) = 1. Thus

y ∈ {pm−iq, pm−iq + 2pm−iq, 2(2pm−iq) + pm−iq, . . . , b
2pi − 1

2
c(2pm−iq) + pm−iq},

because k(2pm−iq) + pm−iq ≤ 2pmq⇔ (2k + 1)pm−iq ≤ 2pmq⇔ 2k + 1 < 2pi ⇔ k ≤ b
2pi − 1

2
c, so

we have to consider the multiplies of 2pm−iq till (k − 1)(2pm−iq).

3) If gcd(x, n) = q and xy ≡ 0 (mod 2pmq), then
x
q

y ≡ 0 (mod 2pm), with gcd(
x
q
, 2pm) = 1. Thus,

y ∈ {2pm, 2pm + 2pm, 2(2pm) + 2pm, . . . , (q − 2)(2pm) + 2pm},
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because k(2pm) + 2pm = 2pmq⇔ k + 1 = q.
If xy ≡ pmq (mod 2pmq), then

x
q

y ≡ pm (mod 2pm) and therefore

y ∈ {pm, 2pm + pm, 2(2pm) + pm, . . . , (b
2q − 1

2
c)(2pm) + pm}.

4) Consider that gcd(x, n) = p jq, 1 ≤ j ≤ m − 1.

• If xy ≡ 0 (mod 2pmq), then
x

p jq
y ≡ 0 (mod 2pm− j), and thus

y ∈ {2pm− j, 2pm− j + 2pm− j, 2(2pm− j) + 2pm− j, . . . , (p jq − 2)(2pm− j) + 2pm− j}.

• If xy ≡ pmq (mod 2pmq), then
x
p j qy ≡ pm− j (mod 2pm− j), and thus

y ∈ {pm− j, pm− j + 2pm− j, 2(2pm− j) + pm− j, . . . , (b
2p jq − 1

2
c)(2pm− j) + pm− j}.

Concluding, gcd(x, n) ∈ {pi, q, p jq | 1 ≤ i ≤ m, 1 ≤ j ≤ m − 1}. It follows that

Z(I)(R) = {x ∈ Zn \ {0, 1, pmq} | p|x or q|x},

and thus

|Z(I)(R)| =
(
b
2pmq − 1

p
c − 1

)
+

(
b
2pmq − 1

q
c − 1

)
−

(
b
2pmq − 1

pq
c − 1

)
= b

n − 1
p
c + b

n − 1
q
c − b

n − 1
pq
c − 1.

Moreover, considering the sets

V j = {kp j | k ∈ N} \ {αq, βpi, γptq | 1 ≤ i , j ≤ m, 1 ≤ t ≤ m, α, β, γ ∈ N}

V ′l = {kplq | k ∈ N} \ {αq, βpi, γptq | 1 ≤ i ≤ m, 1 ≤ t , l ≤ m, α, β, γ ∈ N}

D = {kq | k ∈ N} \ {αpi, βptq | 1 ≤ i ≤ m, 1 ≤ t ≤ m, α, β ∈ N}

and denoting Vm+1 = V ′1,Vm+2 = V ′2, . . . ,D = V2m, we get Z(I)(R) =

2m⋃
i=1

Vi, where for any r, s , 1 ≤ r ,

s ≤ 2m, Vr ∩ Vs = ∅, so the family {Vi}1≤i≤2m is a partition of the set Z(I)(R). �

Based on Theorem 5.4, there exists a partition {Vi}
2m
i=1 for Z(I)(R), meaning that we can define an

equivalence relation ∼ on (Z2pmq,⊕,�) as follows:

y ∼ y′ ⇔ ∃ i, 1 ≤ i ≤ 2m, such that y, y′ ∈ Vi ⇔ ∃ x ∈ Z2pmq such that xy ≡ xy′ (mod 2pmq).

For any y ∈ Z2pmq, we denote by ŷ = {y′ ∈ Z2pmq | y ∼ y′} the equivalence class of y with respect to the
equivalence ∼.

In addition, for any j, 1 ≤ j ≤ m − 1, we will take
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β j =


b
2p jq − 1

2
c, if 1 ≤ j < b

m
2
c,

b
2p jq − 1

2
c − 1, if b

m
2
c ≤ j ≤ m − 1.

From now on, in the I-based zero-divisor graph Γ(I)(R), for any vertex y ∈ Z(I)(R), we denote
deg(̂y) = {deg(x) | x ∈ ŷ} = deg(y) as the degree of equivalence class of y. We recall that, the degree
deg(x) of a vertex x of a graph is the number of edges that are incident to the vertex.

Theorem 5.5. Let m be an even number. In the same hypothesis of Theorem 5.4, we get

|E(Γ(I)(R))| =
1
2
( m∑

i=1

|p̂i|(pi − 1 + b
2pi − 1

2
c) +

m−1∑
j=1

| p̂ jq|(p jq − 1 + β j) + |̂q|(q − 1 + b
2q − 1

2
c)
)
.

Proof. Let x, y ∈ Z(I)(R). Then x < {0, 1, pmq} and there exists at least one y ∈ R \ {0, pmq} such that
xy ≡ 0 (mod 2pmq) or xy ≡ pmq (mod 2pmq).

Based on Theorem 5.4 case 2) (when gcd(x, n) = pi), for any i, 1 ≤ i ≤ m, we have y ∈ {y | piy ≡ 0
(mod 2pmq)} ∪ {y | piy ≡ pmq (mod 2pmq)} if and only if

y ∈ W1 = {2pm−iq, 2pm−iq + 2pm−iq, 2(2pm−iq) + 2pm−iq, . . . , (pi − 2)(2pm−iq) + 2pm−iq}

∪W2 = {pm−iq, 2pm−iq + pm−iq, 2(2pm−iq) + pm−iq, . . . , b
2pi − 1

2
c(2pm−iq) + pm−iq},

where |W1| = pi − 1 and |W2| = b
2pi − 1

2
c (we must exclude from the set W2 the element

(
pi − 1

2
)(2pm−iq + pm−iq) = pmq), W1 and W2 being disjoint. This means that, for any y ∈ p̂i,

deg(y) = pi − 1 + b
2pi − 1

2
c.

Considering now case 4) of Theorem 5.4 (when gcd(x, n) = p jq, 1 ≤ j ≤ m − 1), we have y ∈ {y |
p jqy ≡ 0 (mod 2pmq)} ∪ {y | p jqy ≡ pmq (mod 2pmq)} if and only if

y ∈ W ′
1 = {2pm− j, 2pm− j + 2pm− j, 2(2pm− j) + 2pm− j, . . . , (p jq − 1)(2pm− j) + 2pm− j}

∪W ′
2 = {pm− j, 2pm− j + pm− j, 2(2pm− j) + pm− j, . . . , b

2p jq − 1
2

c(2pm− j) + pm− j}.

Since, for any j, 1 ≤ j < b
m
2
c, we must exclude from the set W ′

2 the element

pmq = (
p jq − 1

2
)(2pm− j) + pm− j, we get that, deg( p̂ jq) = p jq − 1 + b

2p jq − 1
2

c and for any

j, b
m
2
c ≤ j ≤ m − 1, we must exclude the elements pmq = (

p jq − 1
2

)(2pm− j) + pm− j and

p jq = (
p2 jq − pm

2pm )(2pm− j) + pm− j, we conclude that deg(p̂ jq) = p jq − 1 + b
2p jq − 1

2
c − 1. In other

words, deg(p̂ jq) = p jq − 1 + β j.
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Finally, in case 3) of Theorem 5.4 (when gcd(x, n) = q), we have y ∈ {y | qy ≡ 0 (mod 2pmq)} ∪ {y |
qy ≡ pmq (mod 2pmq)} if and only if

y ∈ W ′′
1 = {2pm, 2pm + 2pm, 2(2pm) + 2pm, . . . , (q − 2)(2pm) + 2pm}

∪W ′′
2 = {pm, 2pm + pm, 2(2pm) + pm, . . . , (b

2q − 1
2
c)(2pm) + pm}.

Excluding from the set W ′′
2 the element (

q − 1
2

)(2pm) + pm = pmq, we get deg(̂q) = q−1 + b
2q − 1

2
c.

Hence

|E(Γ(I)(R))| =
1
2
( m∑

i=1

| p̂i|(pi − 1 + b
2pi − 1

2
c) +

m−1∑
j=1

| p̂ jq|(p jq − 1 + β j) + |̂q|(q − 1 + b
2q − 1

2
c)
)
, where,

based on Theorem 5.4, we compute

| p̂i| = (b
n − 1

pi c − 1) − (
m∑

k=i+1

b
n − 1

pk c − 1 +

m−1∑
k=i+1

b
n − 1
pkq
c − 1)

= (b
2pmq

pi c − 2) − (
m∑

k=i+1

b
2pmq

pk c − 2 +

m−1∑
k=i+1

b
2pmq
pkq
c − 2)

= 2(1 + pm−i −

n∑
k=i+1

pm−kq −
m−1∑

k=i+1

pm−k),

| p̂iq| = (b
n − 1
piq
c − 1) − (

m−1∑
k=i+1

b
n − 1
pkq
c − 1)

= (b
2pmq
piq
c − 2) − (

m−1∑
k=i+1

b
2pmq
pkq
c − 2) = 2pm−i −

m−1∑
k=i+1

2pm−k,

|̂q| = (b
n − 1

q
c − 1) − (

m−1∑
k=1

b
n − 1
pkq
c − 1)

= (b
2pmq

q
c − 2) − (

m−1∑
k=1

b
2pmq
pkq
c − 2) = 2pm −

m−1∑
k=1

2pm−k.

�

Moreover, for any j, 1 ≤ j ≤ m − 1, let’s introduce the following notation:

β′j =


b
2p jq − 1

2
c, if 1 ≤ j ≤ b

m
2
c,

b
2p jq − 1

2
c − 1, if b

m
2
c < j ≤ m − 1

.

Theorem 5.6. Let m be an odd number. In the same hypothesis of Theorem 5.4, we get

|E(Γ(I)(R))| =
1
2
( m∑

i=1

|p̂i|(pi − 1 + b
2pi − 1

2
c) +

m−1∑
j=1

| p̂ jq|(p jq − 1 + β′j) + |̂q|(q − 1 + b
2q − 1

2
c)
)
.
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Proof. The proof is similar to the one of Theorem 5.5. �

We will conclude our study with the case when n = 2m, with m ≤ 2. Also here, we must divide the
study into two subcases: when m is an even natural number and when it is an odd one.

Theorem 5.7. Let R = (Z2m ,⊕,�), with m ≥ 2 an even number, be the general hyperring defined in
Example 2.1, with the hyperideal I = {0, 2m−1}. The following assertions hold:

(i) Z(I)(R) = {x ∈ Z2m \ {0, 1, 2m−1} | 2|x}.
(ii) |Z(I)(R)| = 2m−1 − 2.

(iii) |E(Γ(I)(R))| =
1
2

(
m−1∑
i=1

|2̂i|(γi + b
2i+1 − 1

2
c − 1)), where γi =

2i − 2, if 1 ≤ i <
m
2
,

2i − 3, if
m
2
≤ i ≤ m − 2.

Proof. (i) The proof is similar to the one in Theorem 5.2.
(ii) Let x ∈ Z(I)(R). Since, by item (i), we know that 2 | x, and moreover that x < {2m−1, 2m}, it

follows immediately that |Z(I)(R)| =
2m

2
− 2 = 2m−1 − 2.

(iii) Let x, y ∈ Z(I)(R). Then gcd(x, n) ∈ {1, 2, 22, 23, . . . , 2m−1}. Clearly, gcd(x, 2m) , 1. Let
gcd(x, n) = 2i, with 1 ≤ i ≤ m − 1. As in the previous theorems, if xy ≡ 0 (mod 2m), then (

x
2i )y ≡ 0

(mod 2m−i) and so y ∈ {2m−i, 2(2m−i), . . . , (2i − 1)2m−i} = Wi. Since m is an even number, for any
i,

m
2
≤ i ≤ m − 2, the inclusion {2m−i, 2m−1} ⊆ Wi holds, so we get that |Wi| = 2i − 3. For any

i, 1 ≤ i <
m
2

, we have 2m−1 ∈ Wi, therefore |Wi| = 2i − 2.

In addition, for any i, 1 ≤ i ≤ m − 1, the relation xy ≡ 2m (mod 2m) leads to (
x
2i )y ≡ 2m−1−i

(mod 2m−i) and thus y ∈ {2m−i−1, 2m−i + 2m−i−1, . . . , (b
2i+1 − 1

2
c)2m−i + 2m−i−1)} = Wi. Since, for any

i, 1 ≤ i ≤ m − 1, y must be different by 2m−1, 2m−i−1, we get that |Wi| = b
2i+1 − 1

2
c − 1.

Thus |E(Γ(I)(R))| =
1
2

(
m−1∑
i=1

|2̂i|(γi + b
2i+1 − 1

2
c − 1)), where γi =

2i − 2, if 1 ≤ i <
m
2
,

2i − 3, if
m
2
≤ i ≤ m − 2.

�

Theorem 5.8. In the same hypothesis as Theorem 5.7, but with m ≥ 2 an odd number, the following
statements hold:

(i) Z(I)(R) = {x ∈ Z2m \ {0, 1, 2m−1} | 2|x},
(ii) |Z(I)(R)| = 2m−1 − 2,

(iii) |E(Γ(I)(R))| =
1
2

(
m−1∑
i=1

|2̂i|(γi + δi)), where we have γi =

2i − 2, if 1 ≤ i ≤ b
m
2
c,

2i − 3, if b
m
2
c < i ≤ m − 2

and δi =
b
2i+1 − 1

2
c, if i = b

m
2
c,

b
2i+1 − 1

2
c + 1, if i , b

m
2
c.
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Proof. (i), (ii) The proof of these two assertions is similar to the one in Theorem 5.7.
(iii) Let m be an odd number and x, y ∈ Z(I)(R). Then gcd(x, 2m) ∈ {1, 2, 22, 23, . . . , 2m−1}. Clearly,

gcd(x, 2m) , 1. Let gcd(x, 2m) = 2i, with 1 ≤ i ≤ m − 1. If xy ≡ 0 (mod 2m), then (
x
2i )y ≡ 0

(mod 2m−i) and therefore y ∈ {2m−i, 2(2m−i), . . . , (2i − 1)2m−i} = Wi. Since m is an odd number, for any
i, b

m
2
c < i ≤ m − 2, the inclusion {2i, 2m−1} ⊆ Wi holds, and therefore we calculate that |Wi| = 2i − 3,

while for any i, 1 ≤ i ≤ b
m
2
c, we have that 2m−1 ∈ Wi, leading to |Wi| = 2i − 2.

Besides, for any i, 1 ≤ i ≤ m − 1, the congruence xy ≡ 2m (mod 2m) leads to (
x
2i )y ≡ 2m−1−i

(mod 2m−i) and thus y ∈ {2m−i−1, 2m−i + 2m−i−1, . . . , (b
2i+1 − 1

2
c)2m−i + 2m−i−1)} = Wi. Since m is odd, it

follows that, for any i = b
m
2
c, 2i ∈ Wi, so we get that |Wi| = b

2i+1 − 1
2
c while for any i , b

m
2
c, 2i < Wi,

so in this case, we get that |Wi| = b
2i+1 − 1

2
c + 1.

Hence |E(Γ(I)(R))| =
1
2

(
m−1∑
i=1

|2̂i|(γi + δi)), where γi =

2i − 2, if 1 ≤ i ≤ b
m
2
c,

2i − 3, if b
m
2
c < i ≤ m − 2

and

δi =


b
2i+1 − 1

2
c, if i = b

m
2
c,

b
2i+1 − 1

2
c + 1, if i , b

m
2
c.

�

We will now illustrate this result in one particular case, when n = 32 = 25.

Example 5.9. Consider the general hyperring (Z32,⊕,�) with its hyperideal I = {0, 16}. Then, based
on Theorem 5.8, it is easy to calculate the following data:

2̂3 = {8, 24}, 2̂2 = {4, 12, 20, 28}, 2̂1 = {2, 6, 10, 14, 18, 22, 26, 30}, and therefore

Z(I)(Z32) = 2̂3 ∪ 2̂2 ∪ 2̂1 = {8, 24, 4, 12, 20, 28, 2, 6, 10, 14, 18, 22, 26, 30}, |Z(I)(Z32)| = 14 = 25−1 − 2.

We may now verify formula for the cardinality of each equivalence class:

|2̂3| = b
32
8
c − 2 = 2, |2̂2| = b

32
4
c − 2 − |2̂3| = 4, and |2̂1| = b

32
2
c − 2 − (|2̂3| + |2̂2|) = 8,

while the degree of each vertex is

deg(2̂3) =deg(8) = deg(24) = (23 − 3 + b
24 − 1

2
c + 1) = 13,

deg(2̂2) =deg(4) = deg(12) = deg(20) = deg(28) = (22 − 2 + b
23 − 1

2
c) = 5,

deg(2̂1) =deg(2)=deg(6)=deg(10)=deg(14)=deg(18)=deg(22)=deg(26)=deg(30)=

= (21 − 2 + b
22 − 1

2
c + 1)=2
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and therefore

|E(G(I)(Z32))| =
1
2

(2 · 13 + 4 · 5 + 8 · 2) = 31.

Thus, we get that the I-based zero-divisor graph Γ(I)(R) is the one shown in Figure1.

•
2

•
6

•
10

•
14

•
18

•
22

•
26

•
30

•

8
•

24

•

12
•

20

•

4
•

28

Figure 1. I-based zero-divisor graph Γ(I)(Z32)

6. Conclusions

One remarkable line of research in hypercompositional algebra is represented by the study of the
connections between hypercompositional structures and graphs. On one side, several types of graphs
have been associated with hypergroups [8, 17], while on the other, different hypercompositions (very
often called path hypercompositions) have been defined using the elements of a given graph or
hypergraph [1, 19, 20, 24, 27, 30]. Applications in the automata theory of this association have been
recalled in [23, 25]. In the last few years, works related to graphs associated with rings have inspired
several studies on hyperrings [3, 14, 15, 16], and the aim of this article goes in the same direction.

In this manuscript, the hyperideal-based zero-divisor graph associated with a general hyperring has
been introduced. Several properties related to prime hyperideals and absorbing elements have been
emphasized, but the main part of the manuscript is dedicated to the study of this graph associated with
the general hyperring Zn, for the special case when n = 2m or n = 2pmq, with m ∈ N, and p and q two
distinct odd primes. We have noticed that the computations of the number of the vertices and edges
of this particular graph are complex, although the considered hyperideal has only two elements. That
is why, in order to extend this study to a more general case, we will try to construct an algorithm that
determines the needed parameters. Based on this study, similar results could be obtained related to
the hyperideal-based zero-divisor graph associated with a multiring, a general multiring, or even the
related fuzzy hypercompositional structures.
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