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1. Introduction

Let A, B ∈ Cn×n, with A − λB being a regular matrix pencil, i.e., det(A − λB) is not identically zero.
If the pencil is regular with respect to the unit circle, i.e., det(A − λB) , 0 for all λ with |λ| = 1, then
there exists a decomposition (see, e.g., [4, chap. 10]),

A − λB = T
[
A1 − λIn1 0

0 In2 − λB2

]
Q,

A1 ∈ C
n1×n1 , B2 ∈ C

n2×n2 , n1 + n2 = n,
(1.1)

in which T,Q ∈ Cn×n are nonsingular, and the eigenvalues of A1 lie inside the open unit disk.
We are using In to denote the identity matrix of order n. Throughout the paper, we will also be

denoting the 2-norm of a given matrix X as ∥X∥2, while X∗ will stand for its conjugate transpose.
The decomposition (1.1) is referred to as the canonical form of the pencil A − λB. It characterizes

that the set of eigenvalues of the pencil A − λB is the union of the set of eigenvalues inside the open
unit disk (all of which are eigenvalues of A1) and the set of eigenvalues outside the closed unit disk (all
of which are reciprocals of the eigenvalues of B2). The decomposition (1.1) is not unique. However,
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any other decomposition must have the form

A − λB = T̂
[
Â1 − λIn1 0

0 In2 − λB̂2

]
Q̂, (1.2)

with

T̂ = T
[
Y1 0
0 Y2

]
, Q̂ =

[
Y−1

1 0
0 Y−1

2

]
Q, Â1 = Y−1

1 A1Y1, B̂2 = Y−1
2 B2Y2,

where Y1 and Y2 are nonsingular matrices. Therefore, in practice, a canonical form can be found only
up to such a transformation.

By using a Möbius transform, it is clear that the unit circle can be replaced by a more general region
of the complex plane. In particular, the matrices A1 and B2 can be chosen in Jordan canonical form
with a B2 nilpotent (i.e., having only zero eigenvalues), and this yields the Weierstrass canonical form
(see, e.g., [14, chap. 6]).

The spectral projector Pr (resp., Pl) onto the right (resp. left) deflating subspace corresponding to
the eigenvalues inside the unit circle can be expressed by the complex contour integral (see, e.g., [4,
chap. 10], [6, chap. 4]):

Pr =
1

2πi

∮
|λ|=1

(λB − A)−1B dλ, Pl =
1

2πi

∮
|λ|=1

B(λB − A)−1 dλ. (1.3)

These spectral projectors are connected by the relations PlA = APr, PlB = BPr. They contain all
required information on the spectral properties of the pencil A − λB. They may be useful, in part or
as a whole, for example in model reduction (see, e.g., [2] and references therein), or when analyzing
linear differential algebraic systems (see, e.g., [11]).

Using (1.1), the projectors (1.3) simplify to

Pr = Q−1
[
In1 0
0 0

]
Q, Pl = T

[
In1 0
0 0

]
T−1. (1.4)

Hence, if a decomposition (1.2) is known, the projectors are computable through (1.4). However,
from a numerical algorithmic viewpoint, there are other ways to efficiently compute Pr and Pl

without resorting to the canonical form. For example by applying a spectral dichotomy method or an
inverse-free spectral divide and conquer method [1, 10] or methods devised in the context of linear
differential algebraic equations [11], although a canonical form –or part of it– may still be required in
some circumstances.

While the knowledge of a canonical form (1.2) immediately implies the knowledge of the projectors
through (1.4), it turns out that the converse question has not received much attention. This is the subject
of our work: determine the canonical form knowing only the projector Pr or Pl. In other words, solve
the reverse problem of going from (1.4) to (1.2). In this case, the factor forms shown in the equalities
of (1.4) are not known but are merely identities that presuppose (1.2). Specifically, the newness of
the present note is thus: From the projector Pr or Pl, we determine the matrices T , Q, A1 and B2 that
characterize the representation (1.1) or the matrices in the equivalent form (1.2).

As noted earlier, choosing B2 nilpotent results in the Weierstrass canonical form (also
called Kronecker canonical form) that generalizes the Jordan canonical form meant for single
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matrices to regular matrix pairs. It can thus give insights into the structure of a generalized
eigenproblem with the matrix pair (A, B) and its underlying applications. As an illustrative example,
consider the analysis of a linear system of differential algebraic equations (DAEs) with constant
coefficients,

Bx′ = Ax + f ,

where B is a singular matrix so that the above cannot simply be multiplied by B−1 to revert to ordinary
differential equations (ODEs). A canonical form can help transform such DAEs to ease their analysis
(e.g., to explore different model parameters or different input vectors f ).

The organization of the paper is as follows. After recalling some past works aimed at computing
spectral projectors in Section 2, we give details about our new method in Section 3, followed by
examples in Section 4 and finally some concluding remarks in Section 5.

2. On determining the spectral projectors

Given that this study assumes that the spectral projectors are known, we cite here for ease of
reference some common approaches used to obtain them in practice. Several spectral dichotomy
algorithms credit their roots to the early works of Bulgakov, Godunov and Malyshev, of which [5, 10]
are examples among many others. In their extensive paper [1], Bai, Demmel, and Ming Gu stated that
they built and improved on such early efforts to offer two inverse-free, highly parallel, spectral divide
and conquer algorithms: one for computing an invariant subspace of a nonsymmetric matrix and
another one for computing the left and right deflating subspaces of a regular matrix pencil. Bai
et al. [1] included specifics on how to use a Möbius transform to split the dichotomy along a more
general region of the complex plane than the unit circle. Aside from their practical usefulness, the
algorithms in [1] were deemed more stable than other parallel algorithms for the nonsymmetric
eigenproblem based on the matrix sign function.

In the course of investigating linear constant coefficient DAEs for properties such as local solvability
or asymptotical stability, März [11] indicated the need to decouple those DAEs in canonical form by
means of spectral projectors. The work included an iterative algorithm, dubbed matrix and projector
chain, producing a sequence of matrices that become stationary and from which the desired projector
emerges.

There are other methods [12] that also retrieve the projector through an iterative process. Finally,
we can cite works such as [9,13] which first performed some form of decomposition where eigenvalues
come into play (a generalized Schur factorization and block-diagonalization), allowing to ultimately
obtain the spectral projections by either solving a system of generalized Sylvester equations or via a
special reordering of the Schur factorization.

3. Determining a canonical form using a spectral projector

3.1. Main result

We now turn to the newness of our contribution, which is the determination of the canonical form
knowing only the projector Pr or Pl. We suppose that Pr is known (a similar reasoning can be applied
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to Pl and, therefore, is omitted), and denote by

U1 = orth(Pr) and V2 = orth(In − Pr) (3.1)

the results of a column orthonormalization process that computes the matrices U1 of size n × n1 and
V2 of size n× n2 whose columns form orthonormal bases of the range spaces ran(Pr) and ran(In −Pr).
We have the following:

Theorem 3.1. Assume that the pencil A − λB is regular with respect to the unit circle, and consider
the canonical form (1.1) with unknown matrices T , Q, A1, and B2. Set Q =

[
U1 V2

]−1
and T =

(A + (B − A)Pr)Q−1, then the matrices Q and T are nonsingular and we have the canonical form

A − λB = T
[
A1 − λIn1 0

0 In2 − λB2

]
Q, (3.2)

where the eigenvalues of A1 are inside the open unit disk and the reciprocals of the eigenvalues of B2

are outside the closed unit disk; the matrices A1, A1 and B1, B2 are related by

A1 = Y1A1Y−1
1 and B2 = Y2B2Y−1

2 , (3.3)

where Y1 and Y2 are nonsingular matrices.

Proof. The orthonormalization process needed in (3.1) can be done (see, for example, [7]) via a QR,
SVD (singular value decomposition), or other method. Using, for instance, the SVD, we obtain

Pr =
[
U1 U2

] [Σ1 0
0 0

] [
W1 W2

]∗
= U1Σ1W∗

1 , (3.4a)

In − Pr =
[
V2 V1

] [Γ2 0
0 0

] [
Z2 Z1

]∗
= V2Γ2Z∗2, (3.4b)

where U1, W1, V1, and Z1 are n × n1 matrices, U2, W2, V2, Z2 are n × n2 matrices, and
[
U1 U2

]
,[

W1 W2

]
,
[
V2 V1

]
and

[
Z2 Z1

]
are unitary matrices. The matrix Σ1 is an n1 × n1 diagonal matrix

containing the nonzero singular values of Pr and Γ2 is an n2 × n2 diagonal matrix containing the
nonzero singular values of In − Pr. Note that n1 = trace(Pr) = rank(Pr). The properties P2

r = Pr and
(In − Pr)2 = In − Pr imply that

W∗
1U1Σ1 = Σ1W∗

1U1 = In1 , PrU1 = U1, (3.5a)
Z∗2V2Γ2 = Γ2Z∗2V2 = In2 , (In − Pr)V2 = V2. (3.5b)

From PrU1 = U1 and (In − Pr)V2 = V2 we deduce that
[
In1 0
0 0

]
QU1 = QU1 and

[
0 0
0 In2

]
QV2 = QV2.

Therefore QU1 and QV2 can be written as

QU1 =

[
Y1

0

]
, QV2 =

[
0
Y2

]
,
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where Y1 and Y2 are respectively n1 × n1 and n2 × n2 nonsingular matrices. As a consequence[
U1 V2

]
=

[
PrU1 (In − Pr)V2

]
=

[
Q−1

[
In1 0
0 0

]
QU1 Q−1

[
0 0
0 In2

]
QV2

]
= Q−1

[
Y1 0
0 Y2

]
.

This shows that the matrix Q is nonsingular and Q−1 = Q−1

[
Y1 0
0 Y2

]
. A simple calculation yields

A + (B − A)Pr = T Q, so T is nonsingular and T−1 = Q(T Q)−1. Hence

T−1AQ−1 =

[
Y−1

1 A1Y1 0
0 In2

]
, T−1BQ−1 =

[
In1 0
0 Y−1

2 B2Y2

]
.

□

3.2. Perturbation results

Let the matrices A and B be slightly perturbed to Ã = A + ∆A and B̃ = B + ∆B, and let the spectral
projection Pr be perturbed to P̃r = Pr + ∆Pr , accordingly. The projection P̃r can be expressed as
in (1.3) with Ã and B̃ instead of A and B. Our main objective is to study how far the matrices T and Q
(in Theorem 3.1) will change when the matrices A and B are replaced by Ã and B̃.

We assume that the perturbed pencil Ã − λB̃ is regular and measure the size of perturbations by

ϵ = max(∥∆A∥2, ∥∆B∥2). (3.6)

Such a measure of perturbations appears when studying the ϵ-pseudosepctrum of the pencil λB − A
defined by (see, [15])

Λϵ(A, B) = {λ : det(A + ∆A − λ(B + ∆B)) = 0
for ∆A,∆B s.t. max(∥∆A∥2, ∥∆B∥2) ≤ ϵ}

= {λ : ∥(λB − A)−1∥2(1 + |λ|) ≥
1
ϵ
}. (3.7)

A related measure to ϵ is the norm of the resolvent (λB − A)−1 over the unit circle defined by

r(A, B) = max
|λ|=1
∥(λB − A)−1∥2. (3.8)

From (3.7) and (3.8), it is clear that 2 r(A, B) ≥ 1/ϵ whenever λ belongs to both the unit circle and
the set Σϵ(A, B). This entails certain restrictions on the existence of the perturbed projection, as the
following proposition shows.

Proposition 1. Let the perturbations ∆A and ∆B be measured as in (3.6) and assume
that 2 ϵ r(A, B) < 1, then the perturbed projection P̃r is well-defined and the perturbation ∆Pr satisfies
∥∆Pr∥2 = O

(
ϵ r2(A, B)

)
.
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Proof. For λ on the unit circle, we have

λB̃ − Ã = λB − A + λ∆B − ∆A = (λB − A)C(λ),

where
C(λ) = (In + (λB − A)−1(λ∆B − ∆A)).

Since for |λ| = 1, we have

∥(λB − A)−1(λ∆B − ∆A)∥2 ≤ 2 ϵ r(A, B) < 1,

and we deduce that C(λ) is nonsingular and

∥C(λ)−1∥2 ≤
1

1 − 2 ϵ r(A, B)
. (3.9)

We also deduce that λB̃− Ã is nonsingular and, therefore, the projection P̃r is well-defined and is given
by

P̃r =
1

2πi

∮
|λ|=1

(
λB̃ − Ã

)−1
B̃ dλ.

A straightforward computation now gives(
λB̃ − Ã

)−1
B̃ = (λB − A)−1 B + (λB − A)−1 ∆B

− C(λ)−1(λB − A)−1(λ∆B − ∆A)(λB − A)−1B̃.

Therefore
P̃r = Pr + ∆Pr ,

where

∆Pr =
1

2πi

∮
|λ|=1

(
(λB − A)−1∆B −C(λ)−1(λB − A)−1(λ∆B − ∆A)(λB − A)−1B̃

)
dλ.

We have

∥∆Pr∥2 ≤
1

2π

∮
|λ|=1
∥(λB − A)−1∥2∥∆B∥2 |dλ|

+

∮
|λ|=1

(
∥C(λ)−1∥2∥(λB − A)−1∥22(∥∆B∥2 + ∥∆A∥2)(∥B∥2 + ∥∆B∥2)

)
|dλ|,

and using (3.6), (3.8), and (3.9), we deduce that

∥∆Pr∥2 ≤ ϵ r(A, B)
1 + 2 r(A, B)∥B∥2

1 − 2ϵ r(A, B)
.

Since 1 + 2 r(A, B)∥B∥2 = O (r(A, B)), we can write ∥∆Pr∥2 = O
(
ϵ r2(A, B)

)
. □
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Proposition 1 shows that the condition 2 ϵ r(A, B) < 1 ensures the existence of P̃r, but in order to
ensure the nearness of Pr and P̃r and, hence, the smallness of ∥∆Pr∥2, we also need ϵ r2(A, B) to be
small. In particular, the resolvent should not be large on the unit circle. As we will see, the term
ϵ r2(A, B) essentially represents the error in the perturbed version of Theorem 3.1.

The following proposition gives an analogue of (3.1) for the perturbed projection.

Proposition 2. Let U =
(
In + ∆Pr

)
U1, Ũ1 = U (U∗U)−

1
2 , V =

(
In − ∆Pr

)
V1, and Ṽ1 = V (V∗V)−

1
2 . If

ϵ is small enough so that Proposition 1 can be applied, then the columns of Ũ1 (resp., Ṽ1) form an
orthonormal basis of the range space ran(P̃r) (resp., ran(In − P̃r)).

Proof. The assumption on ϵ ensures that Proposition 1 can be applied and, in particular, that In ± ∆Pr

is nonsingular. It follows that

rank(U) = rank(U1) = rank(Ũ1), rank(V) = rank(V1) = rank(Ṽ1),

rank((In − ∆Pr )W2) = rank(W2), rank((In + ∆Pr )Z2) = rank(Z2).

From the properties of Pr (see (3.4) and (3.5)), we immediately deduce that

P̃rŨ1 = Ũ1, (In − P̃r)Ṽ1 = Ṽ1,

P̃r
(
(In − ∆Pr )W2

)
= 0, (In − P̃r)

(
(In + ∆Pr )Z2

)
= (In + ∆Pr )Z2,

and these properties determine the null space of P̃r and In − P̃r. □

Thus, if A and B are slightly perturbed to Ã = A + ∆A and B̃ = B + ∆B, as in Propositions 1 and 2,
then the matrices Q and T in Theorem 3.1 can be replaced by

Q̃ =
[
Ũ1 Ṽ1

]−1
and T̃ =

(
Ã + (B̃ − Ã)P̃r

)
Q̃−1.

From Proposition 2, it is easy to check that U = U1 +O
(
ϵ r2(A, B)

)
, U∗U = In1 +O

(
ϵ r2(A, B)

)
, and so

Ũ1 = U1 + O
(
ϵ r2(A, B)

)
. Similarly, we have Ṽ1 = V1 + O

(
ϵ r2(A, B)

)
. This leads to

Q̃ = Q + O
(
ϵ r2(A, B)

)
, T̃ = T + O

(
ϵ r2(A, B)

)
.

4. Examples

Two examples are given to illustrate Theorem 3.1. In the first example, the spectral projection is
computed numerically by one of the methods referenced earlier, and in the second one, the spectral
projection is obtained directly using the spectral properties of the pencil under consideration.

Example 1. Computations are carried out in MATLAB. Consider

A =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B =


−2 −1 −1 0
0 −2 0 0
1 0 0 0
0 1 0 0

 .
AIMS Mathematics Volume 9, Issue 5, 10882–10892.
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The exact eigenvalues of the pencil A − λB are −2, −0.5, 0, and∞.
The spectal projection Pr onto the right deflating subspace corresponding to the eigenvalues inside

the unit circle is computed using the algorithm developed in [1] to which the reader is referred for
further details on convergence and stability. Below is a brief description.

Start with the matrices A and B as initializers for A0 and B0, then proceed iteratively: At each

iteration k = 0, 1, ..., perform a QR decomposition of the matrix
[

Bk

−Ak

]
, and replace the matrices Ak and

Bk by, respectively, Q∗12Ak and Q∗22Bk, where Q12 (resp., Q22) denotes the n × n submatrix of Q —that
results from the QR decomposition— formed from the first n rows and last n columns (resp., last n
rows and last n columns). After a few iterations (see [1, Section 9] for the stopping criterion), a good
approximation of the projection Pr is obtained from (Ak + Bk)−1Bk. With the matrices of this example,
after 10 iterations, we obtain

Pr =


1.0000 −1.6667 · 10−1 0.5 0

0 1 0 0
0 3.3333 · 10−1 0 0
0 −0.5 0 0

 .
Then Theorem 3.1 is used to compute the matrices T, Q, A1 and B2.

T =


−3.6859 · 10−1 2.2738 3.3307 · 10−16 −1.1102 · 10−16

1.3331 1.0777 1.8302 · 10−16 −3.1251 · 10−16

6.2868 · 10−1 −7.7767 · 10−1 7.3463 · 10−1 −5.1021 · 10−1

−6.6657 · 10−1 −5.3887 · 10−1 −5.7043 · 10−1 −8.2134 · 10−1



Q =


= 6.2868 · 10−1 −1.0121 3.1434 · 10−1 −1.0627 · 10−16

−7.7767 · 10−1 −6.0385 · 10−1 −3.8883 · 10−1 −9.8460 · 10−18

−9.5760 · 10−19 −5.9131 · 10−19 9.1829 · 10−1 −5.7043 · 10−1

6.6506 · 10−19 −1.9809 · 10−1 −6.3776 · 10−1 −8.2134 · 10−1


A1 =

[
−4.4207 · 10−1 −3.5738 · 10−1

−7.1661 · 10−2 −5.7932 · 10−2

]
, B2 =

[
−3.3730 · 10−1 2.3426 · 10−1

2.3426 · 10−1 −1.6270 · 10−1

]
.

The 2-norm of the absolute error between A, B and the computed canonical form is given by∥∥∥∥∥∥A − T
[
A1 0
0 In2

]
Q

∥∥∥∥∥∥
2

= 8.7411 · 10−16,

∥∥∥∥∥∥B − T
[
In1 0
0 B2

]
Q

∥∥∥∥∥∥
2

= 1.0271 · 10−15,

and the eigenvalues of A1 are −0.5 and 6.9389 · 10−18 and those of B2 are −0.5 and 0 (having
reciprocals −2 and∞). Hence, the exact values agree with the numerical predictions of Theorem 3.1.

Example 2. Consider the matrix pencil A − λB with

A =
[

K C
C∗ 0

]
, B =

[
In 0
0 0

]
, (4.1)

where K is an n × n matrix and C is an n × m matrix of full rank with n > m. Such a pencil arises in
the stability analysis of the steady-state solutions of equations modeling viscous incompressible flows
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(see, e.g., [3]). The case when B has the form
[
M 0
0 0

]
, where M is a Hermitian positive definite matrix,

can be brought back to the matrix B in (4.1) by changing K to L−1K(L−1)∗ and C to L−1C, where L is
the Choleski factor of M.

Consider the QR decomposition of C:

C = QR =
[
Q1 Q2

] [R1

0

]
= Q1R1, (4.2)

where R1 is m×m nonsingular and upper triagular, Q is n×n unitary, Q1 is n×m, and Q2 is n× (n−m).
From [3, Theorem 2.1], the pencil A − λB has n − m finite eigenvalues and 2m infinite eigenvalues of
algebraic multiplicity 2m. The finite eigenvalues are given by the eigenvalues of the matrix Q∗2KQ2

and the corresponding eigenvectors are spanned by the range of
[

Q2Q∗2
−R−1

1 KQ2Q∗2

]
.

Let us find the spectral projectorPr corresponding to all finite eigenvalues (instead of the unit circle,
we consider here any circle that encloses all finite eigenvalues of the pencil) and the resulting canonical
form.

Using the properties P2
r = Pr, BPr = PlB, ran(Pr) = ran

([
Q2Q∗2

−R−1
1 KQ2Q∗2

])
, and

trace(Pr) = rank(Pr) = n − m, we deduce that

Pr =

[
Q2Q∗2 0

−R−1
1 KQ2Q∗2 0

]
, In+m − Pr =

[
Q1Q∗1 0

−R−1
1 KQ2Q∗2 Im

]
,

and in low rank forms

Pr =

[
Q2

−R−1
1 K12

] [
Q∗2 0

]
, In+m − Pr =

[
0 Q1

R−1
1 −R−1

1 (K11 − Im)

] [
Q∗1K − Q∗1 R1

Q∗1 0

]
,

where Ki j = Q∗i KQ j, i, j = 1, 2. Note that
[

Q2

−R−1
1 K12

]
and

[
0 Q1

R−1
1 −R−1

1 (K11 − Im)

]
have full rank and

therefore their columns provide bases for the range spaces of Pr and In+m − Pr.
Consider the QR decompositions:[

Q2

−R−1
1 K12

]
= U1Y1,

[
0 Q1

R−1
1 −R−1

1 (K11 − Im)

]
= V2Y2, (4.3)

where U1 and V2 are matrices whose columns provide orthonormal bases for ran(Pr) and ran(In −Pr),
and Y1 and Y2 are, respectively, n×n and 2m×2m (upper triangular) nonsingular matrices. Using (4.3),
the matrices Q and T in Therorem 3.1 are given by

Q =
[
U1 V2

]−1

=

[
Y1 0
0 Y2

] [
Q2 0 Q1

−R−1
1 K12 R−1

1 −R−1
1 (K11 − Im)

]−1

=

[
Y1 0
0 Y2

] 
Q∗2 0

Q∗1(K − In) R1

Q∗1 0


AIMS Mathematics Volume 9, Issue 5, 10882–10892.
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and

T = (A + (B − A)Pr)
[

Q2 0 Q1

−R−1
1 K12 R−1

1 −R−1
1 (K11 − Im)

] [
Y−1

1 0
0 Y−1

2

]
=

[
Q2 Q1 Q2K21 + Q1

0 0 R∗1

] [
Y−1

1 0
0 Y−1

2

]
.

A straightforward computation gives the canonical form stated in Theorem 3.1 with

A1 = Y1K22Y−1
1 and B2 = Y2

[
0 Im

0 0

]
Y−1

2 ,

thus providing analytic solutions to a class of matrix pencil problems that have the form (4.1).

5. Conclusions

It is often convenient in numerical computing to be able to retrieve useful quantities as byproducts
from others, as is the case with estimating the residual or condition number when solving a linear
system, or obtaining optional factors upon performing a matrix factorization. Here we have described
a new method with which to determine the canonical form of a pencil by taking advantage of existing
efficient numerical algorithms already developed to determine spectral projections. We performed a
perturbation analysis of the proposed method and illustrated it with two examples. The first example
was a walk-through that numerically went over the steps of the method, while the second example
showed how to further build on the method to theoretically establish an analytic representation of the
canonical form of a pencil that arises in the stability analysis of the steady-state solutions of equations
modeling viscous incompressible flows. Given that much efforts have been devoted to determining
the spectral projections compared to determining the canonical form, our proposed method is a potent
bridge from the former to the latter, and it also helps fill a gap in the literature. Application areas where
this newfound ability may be useful include model order reduction (see, e.g., [2, 8]).
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