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Abstract: In this paper, we discuss the generalized quasilinear Schrödinger equation with nonlocal
term:

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u =
(
|x|−µ ∗ F(u)

)
f (u), x ∈ RN , (P)

where N ≥ 3, µ ∈ (0,N), g ∈ C1(R,R+), V ∈ C1(RN ,R) and f ∈ C(R,R). Under some “Berestycki-
Lions type conditions” on the nonlinearity f which are almost necessary, we prove that problem (P)
has a nontrivial solution ū ∈ H1(RN) such that v̄ = G(ū) is a ground state solution of the following
problem

−∆v + V(x)
G−1(v)

g(G−1(v))
=

(
|x|−µ ∗ F(G−1(v))

)
f (G−1(v)), x ∈ RN , (P̄)

where G(t) :=
∫ t

0
g(s)ds. We also give a minimax characterization for the ground state solution v̄.

Keywords: quasilinear Schrödinger equation; nonlocal term; ground state solution; Berestycki-Lions
conditions

1. Introduction

The purpose of this paper is to explore the quasilinear Schrödinger equation with nonlocal term:

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u =
(
|x|−µ ∗ F(u)

)
f (u), x ∈ RN , (P)

where N ≥ 3, µ ∈ (0,N), V is nonnegative, f is continuous and g ∈ C1(R,R+). To obtain solutions of
equation (P), we make the following assumptions about g, V and f :

(g) g ∈ C1(R,R+) is even with g
′

(t) ≥ 0 for all t ≥ 0;

(V1) V ∈ C(RN , [0,∞)) and V(x) ≤ V∞ := lim|x|→∞ V(x), for all x ∈ RN;
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(F1) f ∈ C(R,R);

(F2) lim|t|→0
f (t)

g(t)|G(t)|
N−µ

N
= 0, lim|t|→∞

f (t)

g(t)|G(t)|
N+2−µ

N−2
= 0.

Such a problem is often referred to as being nonlocal due to the appearance of the term
(|x|−µ ∗ F(u)) f (u) which implies that (P) is no longer a pointwise identity. In particular, when µ → 0
in (P), then it be reduced to the following generalized quasilinear Schrödinger equation with f := F f :

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = f (x, u), x ∈ RN . (1.1)

Equation (1.1) has received wide attention and solutions of (1.1) are related to the standing wave
solutions of the quasilinear Schrödinger equation:

i∂tz = −△z +W(x)z − h(x, |z|)z − △l(|z|2)l
′

(|z|2)z, (1.2)

where z : R × RN → C; W : RN → R is a given potential; h : RN × R → R and l : R → R are
suitable functions. Different expressions of l represent different physical backgrounds. For example,
when l(s) = s, [1] applied (1.2) to superfluid film equation in plasma physics and fluid mechanics;
when l(s) = sα and α > 1, we can see [2]. Let z(t, x) = exp(−iEt)u(x), where u(x) is a real function
and E ∈ R. Then equation (1.2) can be converted into (see [3]):

− △u + V(x)u − △l(u2)l′(u2)u = f (x, u), x ∈ RN , (1.3)

where f (x, t) = h(x, |t|)t and V(x) = W(x) − E.

About Eq (1.1), there are a lot of papers studying the existence of solutions by using variational
methods. Especially, In [4], Liu et al. firstly attained the positive solution through using variational
method and the idea of change of variables. Moreover, in [5], Deng et al. obtained the existence
of positive solutions with critical exponents by using a change of variable and variational argument.
In [6], Li et al. proved the existence of a positive ground state solution which possesses a unique local
maximum and decays exponentially by variational methods. For more about the results of (1.1), we
can see [7–9] and the references therein.

When g(t) = 1 and µ↛ 0, (P) is reduced to the classical elliptic equation

− △u + V(x)u =
(
|x|−µ ∗ F(u)

)
f (u), x ∈ RN . (1.4)

When N = 3, µ = 1, V ≡ 1 and f (t) = t, the equation of (1.4) become

− △u + u =
(
|x|−1 ∗ u2

)
u, x ∈ R3, (1.5)

which arises in the description of the quantum theory of a polaron at rest by Pekar in 1954 [10] and the
modeling of an electron trapped in its own hole in 1976 in the work of Choquard, see [11].

To recall the literature in mathematics, Lieb [11] proved the existence and uniqueness, up to trans-
lations, of the ground state solution for (1.5) and Lions [12] showed the existence of a sequence of
radially symmetric solutions via variational methods. In the last decades, a great deal of efforts have
been devoted to the study of existence, multiplicity and properties of the solutions of (1.4). For exam-
ple, in [13], Gao et al. proved the existence and multiplicity of semiclassical states by critical point

Electronic Research Archive Volume 30, Issue 5, 1973–1998.



1975

theory; in [14], Yang established some existence and concentration results of the semiclassical solu-
tions of (1.4) in the whole plane by suppose that the nonlinearity f is critical exponential growth in
R2.

It is worth emphasizing that (P) is more general than (1.1) and (1.4). So it is meaningful to study
(P). Usually, people study the existence of the solution of problem (P) by studying problem (P̄). A
typical way to deal with (P̄) is using the mountain-pass theorem. For this purpose, one usually assumes
that V ≡ 1, is periodic, V(x) = V(|x|), or is coercive while f satisfies one of the following conditions:

(i) Super quadratic condition

(SF) lim|t|→∞
F(x,t)

t2 = ∞ uniformly in x ∈ RN , where F(x, t) =
∫ t

0
f (x, s)ds;

(ii) Ambrosetti-Rabinowitz type condition

(AR) there exists α > 2 such that f (x, t) ≥ αF(x, t) ≥ 0 for all t ∈ R;

(iii) Monotonicity condition

(SI) f (x,t)
t2 is increasing for t ∈ R \ {0}.

Under these conditions, it is easy to get a bounded (PS) sequence and verify the Mountain Pass geom-
etry about the corresponding energy functional of (P̄).

To the authors’ knowledge, in recent paper [15], Yang et al. obtained the existence, multiplicity and
concentration behavior of positive solutions by variational method and the assumption of (SI); in [16],
Li et al. proved that the equation admits a solution by using a constrained minimization argument and
the assumptions of (SF); in [17], Yang et al. got the concentration behavior of ground states via dual
approach and the assumptions of (SF) and (AR). For other related results of (P), we refer the readers
to [18–22] and the references therein.

Different from the existing literature, in the present paper, we shall establish the existence of ground
state solutions of (P̄) and get the existence of solutions of (P) under (F1), (F2) and

(F3) there exists s0 > 0 such that F(s0) , 0, where F(s) =
∫ s

0
f (t)dt.

We know that (F3) is the Berestycki-Lions type assumption which is satisfied by a very wide class of
nonlinearities. These types of nonlinearities were first introduced by Berestycki and Lions in [23] to
get an existence result of the Schrödinger equation

−△v + v = f (v), v ∈ H1(RN).

It is easy to see that (F3) is much weaker than (SF), (AR), (SI) and the others in the related literature.
Such kind of conditions are almost necessary for the existence of nontrivial solutions to autonomous
problem or to the scalar field equation. Compared with autonomous problem, the nonautonomous
problem (P) is much more difficult to study. Motivated by the analysis above, in this paper, our goal is
to study the ground state solution of (P̄) and then get nontrivial solutions of (P) .

In view of (F1), (F2) and Hardy-Littlewood Sobolev inequality, for p ∈ (2, 2∗), any ε > 0 and
u ∈ H1(RN), one have∫

RN

(
|x|−µ ∗ F(u)

)
F(u)dx =

∫
RN

∫
RN

F(u(x))F(u(y))
|x − y|µ

dxdy ≤ C1∥F(u)∥22N/(2N−µ)
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≤ ε
(
∥u∥2(2N−µ)/N

2 + ∥u∥2(2N−µ)/(N−2)
2∗

)
+ Cε∥u∥p(2N−µ)/N

p . (1.6)

It is standard to check that, under (1.6), (V1), (F1) and (F2), the Euler-Lagrange functional associated
with problem (P) in H1(RN) is given by

Ī(u) =
1
2

∫
RN

g2(u)|∇u|2dx +
1
2

∫
RN

V(x)u2dx −
1
2

∫
RN

(
|x|−µ ∗ F(u)

)
F(u)dx. (1.7)

Since the term
∫
RN g2(u)|∇u|2dx may not be well-posed in u ∈ H1(RN), to overcome this obstacle, Shen

and Wang [24] made a substitution of variable as v = G(u) =
∫ u

0
g(t)dt. So for all v ∈ H1(RN), we have∫

RN
g2(u)|∇u|2dx =

∫
RN

g2(G−1(v))|∇G−1(v)|2dx =
∫
RN
|∇v|2dx < +∞.

Therefore, by this change of variable, (1.7) becomes

Ī(u) =
1
2

∫
RN

(
|∇v|2 + V(x)|G−1(v)|2

)
dx −

1
2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx. (1.8)

Furthermore, we can find that if v ∈ C2(RN) is a critical point of (1.8), then u = G−1(v) ∈ C2(RN) is a
corresponding one of (P). Hence, to obtain nontrivial weak solutions of (P), one just need to look for
nontrivial weak solutions of the equation

−∆v + V(x)
G−1(v)

g(G−1(v))
=

(
|x|−µ ∗ F(G−1(v))

)
f (G−1(v))

g(G−1(v))
, x ∈ RN . (P̄)

The energy functional of (P̄) is

I(v) =
1
2

∫
RN

(
|∇v|2 + V(x)|G−1(v)|2

)
dx −

1
2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx. (1.9)

It is evident that v ∈ H1(RN) is a weak solution of (P̄), if it satisfies for all φ ∈ C∞0 (RN)

⟨I′(v), φ⟩ =
∫
RN
∇v∇φdx +

∫
RN

V(x)
G−1(v)

g(G−1(v))
φdx

−

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
f (G−1(v))

g(G−1(v))
φdx = 0. (1.10)

From (g), (V1), (V2), (F1), (F2) and the Appendix B of [25], we have the Pohoz̆aev type functional P
of (P̄) in H1(RN):

P(v) =
N − 2

2

∫
RN
|∇v|2dx +

1
2

∫
RN

(NV(x) + ∇V(x) · x)|G−1(v)|2dx

−
2N − µ

2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx. (1.11)

Define the Pohoz̆aev manifold of I by

M :=
{
v ∈ H1(RN) \ {0} : P(v) = 0

}
.
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Then every nontrivial solution of (P̄) is contained inM. To state our first result, we need to introduce
the following monotonicity condition on V:

(V2) V ∈ C1(RN ,R) and there exists θ ∈ [0, 1) such that t → NV(tx)+∇V(tx)·(tx)
tN−µ +

g2(0)(N−2)3θ

4tN+2−µ |x|2 is nonincreasing
in (0,∞) for every x ∈ RN\{0}.

Theorem 1.1. Assume that (g), (V1), (V2) and (F1)−(F3) hold. Then problem (P̄) has a ground state so-
lution v̄ such that

I(v̄) = inf
v∈M
I(v) = inf

v∈Λ\{0}
max

t>0
I(vt),

and ū = G−1(v̄) is a nontrivial solution of (P), where

vt(x) = v(t−1x) and Λ =
{

v ∈ H1(RN) :
∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx > 0

}
.

Applying Theorem 1.1 to the following “limiting problem” of (P):

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V∞u =
(
|x|−µ ∗ F(u)

)
f (u), x ∈ RN . (P∞)

Similarly, using the same variable v = G(u) =
∫ u

0
g(t)dt. Then (P∞) become the following problem

−∆v + V∞
G−1(v)

g(G−1(v))
=

(
|x|−µ ∗ F(G−1(v))

)
f (G−1(v))

g(G−1(v))
, x ∈ RN . (P̄∞)

One has the following Corollary:

Corollary 1.2. Assume that (g), (F1) − (F3) hold. Then problem (P̄∞) has a ground state solution v∞

such that
I∞(v∞) = inf

v∈M∞
I∞(v) = inf

v∈Λ\{0}
max

t>0
I∞(vt),

and u∞ = G−1(v∞) is a nontrivial solution of (P∞), where

I∞(v) =
1
2

∫
RN

(
|∇v|2 + V∞|G−1(v)|2

)
dx −

1
2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx (1.12)

P∞(v) =
N − 2

2

∫
RN
|∇v|2dx +

N
2

∫
RN

V∞|G−1(v)|2dx

−
2N − µ

2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx (1.13)

and

M∞ :=
{
v ∈ H1(RN) \ {0} : P∞(v) = 0

}
.

To prove the above conclusions, we shall divide our arguments into three steps: (i). Choosing a
minimizing sequence {vn} of I onM, which satisfies

I(vn)→ m := inf
M
I, P(vn) = 0.
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Then showing that {vn} is bounded in H1(RN) and vn → v̄ in H1(RN) \ {0} up to translations and
extractions of a subsequence. (ii). Showing that v̄ ∈ M and I(v̄) = infM I. The difficulties of step
(i) are the lake of global compactness and adequate information on I′(v) = 0. To overcome these
difficulties, for any t > 0 and v ∈ H1(RN), we establish a crucial inequality which related to I(v), I(vt)
and P(v):

I(v) ⩾ I(vt) +
1 − t2N−µ

2N − µ
P(v) +

(1 − θ)h(t)
2(2N − µ)

∥∇v∥22.

With the help of the inequality, we complete step (i) by Lions’ concentration compactness principle,
the least energy sequence approach and some subtle analysis. (iii). Similar to the proof of Lemma 2.14
in [26], we showing that v̄ is a critical point of I.

Remark 1.3. By the Pohožaev type identity related to (P̄∞), it is easy to see that (F3) is necessary and
(F1) − (F3) are almost necessary for the existence of nontrivial solutions of (P).

To admit the other classes of ground state solutions of (P̄), we need to introduce the following decay
assumption on ∇V:
(V3) V ∈ C1(RN ,R), and there exists R̄ > 1 such that

∇V(x) · x ≤


g(0)2(N − 2)2

2|x|2
0 < |x| < R̄,

N − µ
2

V(x) |x| ≥ R̄.

Remark 1.4. There are indeed many functions which satisfy (V1) and (V2). For example
(i). V(x) = α − βe−|x|

(N−µ)
, where α > β > 0;

(ii). V(x) = α − β

|x|(N−µ)+1 , where α > β > 0, Nα ≥ (3N − µ)β.

In particular, when α > β > 0, β(N − µ) ≥ min
{

(n−µ)(2α−β)
4 , (g(0))2(N−2)2

2

}
in (ii), the function of (ii) also

satisfies (V1) and (V3).

Theorem 1.5. Assume that (g), (V1), (V3) and (F1) − (F3) hold. Then problem (P̄) has a ground state
solution v and u = G−1(v) is a nontrivial solution of (P).

To prove Theorem 1.5, we will use the idea from Jeanjean and Tanaka [27], that is an approximation
procedure to obtain a bounded (PS)-sequence of I. Firstly, for λ ∈ [ 1

2 , 1] we consider a family of
functionals Iλ : H1(RN)→ R defined by

Iλ(v) =
1
2

∫
RN

(
|∇v|2 + V(x)|G−1(v)|2

)
dx −

λ

2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx. (1.14)

These functionals have a Mountain Pass geometry. In what follows, we use cλ to express the corre-
sponding Mountain Pass levels of Iλ. Let

A =
1
2

∫
R3

(
|∇v|2 + V(x)|G−1(v)|2

)
dx, B =

1
2

∫
R3

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx.

Unfortunately, B(v) is not sign definite under (F1)− (F3), which prevents us from employing Jeanjean’s
monotonicity trick used in [28]. Thanks to the idea of [27], Iλ still has a bounded (PS)-sequence
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{vn} ⊂ H1(RN) at level cλ for almost every λ ∈ [1
2 , 1]. Secondly, we use the global compactness lemma

to show that the bounded sequence {vn} converges weakly to a nontrivial point of Iλ. Finally, we
choose two sequences {λn} ⊂ (λ∗, 1] and {vλn} ⊂ H1(RN) \ {0} such that λn → 1 and I′λn

(vλn) = 0, where
λ∗ is defined in Lemma 3.5. By Lemmas 3.5–3.9, we get a nontrivial critical point v̄ of I.

Throughout the paper we make use of the following notations:

♣ H1(RN) denotes the usual Sobolev space equipped with the inner product and norm

⟨u, v⟩ =
∫
RN

(∇u · ∇v + uv)dx, ∥u∥ = ⟨u, u⟩
1
2 , ∀ u, v ∈ H1(RN);

♣ Ls(RN) (1 ≤ s < ∞) denotes the Lebesgue space with the norm ∥u∥s =
(∫
RN |u|

s dx
) 1

s ;

♣ for any u ∈ H1(RN), ut(x) := u(t−1x) for t > 0;

♣ for any x ∈ RN and r > 0, Br(x) := {y ∈ RN : |y − x| < r};

♣ C, C1,C2 . . . denote positive constants which are possibly different in different places.

♣ S is the best constant for the embedding of D1,2(RN) ↪→ L2∗(RN), where D1,2(RN) ={
u ∈ L2(RN);∇u ∈ L2(RN)

}
and 2∗ = 2N

N−2 .

The paper is organized as follows: In § 2, we study the existence of ground state solutions of (P̄) by
using the Pohožaev manifold and give the proof of Theorem 1.1. In § 3, based on an approximation
procedure developed by Jeanjean and Tanaka [27], we show the existence of ground state solutions of
(P̄) and complete the proof of Theorem 1.5.

2. Preliminaries

In this section, we present some fundamental lemmas and corollaries, study the existence of ground
state solutions of (P̄) by using the Pohožaev manifold, and give the proof of Theorem 1.1.

Lemma 2.1 (see [5]) Assume that (g) holds. Then the functions G(.) and G−1(.) have the following
properties:

(1) the functions G(.) and G−1(.) are odd and strictly increasing;

(2) for all t ∈ R, |G−1(t)| ≤ 1
g(0) |t| and G−1(t)t

g(G−1(t)) ≤ |G
−1(t)|2;

(3) G−1(t)
t is increasing on (−∞, 0) but decreasing on (0,+∞) and

lim
|t|→0

G−1(t)
t
=

1
g(0)
, lim

|t|→∞

G−1(t)
t
=


1

g(∞)
if g is bounded,

0 if g is unbounded;

(4) lim|t|→0
f (G−1(t))

g(G−1(t))t
N−µ

N
= 0 and lim|t|→0

F(G−1(t))

t
2N−µ

N
= 0;

(5) lim|t|→∞
| f (G−1(t))|

g(G−1(t))|t|
N+2−µ

N−2
= 0 and lim|t|→∞

F(G−1(t))

|t|
2N−µ
N−2
= 0.
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Lemma 2.2 Assume that (g), (V1), (V2), (F1) and (F2) hold. Then, for any t > 0 and v ∈ H1(RN), we
have

I(v) ⩾ I(vt) +
1 − t2N−µ

2N − µ
P(v) +

(1 − θ)h(t)
2(2N − µ)

∥∇v∥22, (2.1)

where h(t) = (2N − µ)(1 − tN−2) − (N − 2)(1 − t2N−µ).

Proof. Note that

I(vt) =
tN−2

2

∫
RN
|∇v|2 dx +

tN

2

∫
RN

V(tx)(G−1(v))2dx

−
t2N−µ

2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx. (2.2)

By simple calculation, we have h(t) > 0 with t ∈ [0, 1)∪ (1,∞). Through (V2) and a simple calculation,
we can verify that

b(x, t) = (N − µ + Nt2N−µ)V(x) − (2N − µ)tNV(tx) − (1 − t2N−µ)∇V(x) · x

≥ −
(N − 2)2g2(0)θh(t)

4|x|2
, ∀ t ≥ 0 and x ∈ RN \ {0}. (2.3)

According to Hardy inequality, we have

∥∇v∥22 ≥
(N − 2)2

4

∫
RN

v2

|x|2
dx, for any v ∈ H1(RN). (2.4)

Using (1.9), (1.11), (2.2)–(2.4) and (2) of Lemma 2.1, it is easy to check that, for any t > 0, we have

I(v) − I(vt)

=
1 − tN−2

2
∥∇v∥22 +

1
2

∫
RN

[V(x) − tNV(tx)]|G−1(v)|2dx

−
1
2

∫
R3

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v)) +

t2N−µ

2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx

=
1 − t2N−µ

2N − µ

{
N − 2

2
∥∇v∥22 +

1
2

∫
RN

[NV(x) + ∇V(x) · x]|G−1(v)|2dx

−
2N − µ

2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx

}
+

h(t)
2(2N − µ)

∥∇v∥22

+
1

2(2N − µ)

∫
RN

b(x, t)|G−1(v)|2dx

≥
1 − t2N−µ

2N − µ
P(v) +

(1 − θ)h(t)
2(2N − µ)

∥∇v∥22.

This shows that (2.1) holds. □
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Corollary 2.3 Assume that (g), (F1) and (F2) hold. Then, for any t > 0 and v ∈ H1(RN), we have

I∞(v) ⩾ I∞(vt) +
1 − t2N−µ

2N − µ
P∞(v) +

h(t)
2(2N − µ)

∥∇v∥22 +
k(t)V∞

2(2N − µ)
∥G−1(v)∥22, (2.5)

where k(t) = (2N − µ)(1 − tN−2) − N(1 − t2N−µ) > 0, ∀ t ∈ [0, 1) ∪ (1,∞).

Corollary 2.4 Assume that (g), (V1), (V2), (F1) and (F2) hold. Then

I(v) = max
t>0
I(vt), ∀v ∈ M.

Lemma 2.5 Assume that (g), (V1), (V2) hold. Then there exist tow constants γ1, γ2 > 0 such that for
all v ∈ H1(RN)

γ1∥∇v∥22 + γ2∥G−1(v)∥22 ≤ ∥∇v∥22 +
∫
RN

[NV(x) + ∇V(x) · x]|G−1(v)|2dx. (2.6)

Proof. Let t → 0, t → ∞ in (2.3) respectively, we have

∇V(x) · x ≤ (N − µ)V(x) +
(N − 2)2(N + 2 − µ)g2(0)θ

4|x|2
, ∀ x ∈ RN\{0} (2.7)

and

∇V(x) · x ≥ −NV(x) −
(N − 2)3g2(0)θ

4|x|2
, ∀ x ∈ RN\{0}. (2.8)

From (2.7), (2.8) and (V1), there exists a constant M0 such that

|∇V(x) · x| ≤ M0, ∀ x ∈ RN\{0}. (2.9)

By (2.3), for ∀ t > 0, x ∈ RN\{0}, one has

NV(x) + ∇V(x) · x ≥ −
(N − 2)3g2(0)θ

4|x|2
+ (2N − µ)V(tx)

−

[
(N − 2)2(N + 2 − µ)g2(0)θ

4|x|2
− ∇V(x) · x + (N − µ)V(x)

]
tµ−2N . (2.10)

According to (V1), there exists t0 > 1 and R0 > 0 such that V(x) ≥ V∞
2 for all |x| ≥ t0R0 > R0 and[

(N − 2)2(N + 2 − µ)g2(0)θ
4|x|2

+ M0 + (N − µ)V∞

]
R−N

0 ≤
(2N − µ)V∞

4
. (2.11)

From (2.10) and (2.11), we have

NV(x) + ∇V(x) · x ≥ −
(N − 2)3g2(0)θ

4|x|2
+

(2N − µ)Rµ−N
0 V∞

4
, |x| ≥ 1. (2.12)

Making use of the Hölder inequality and Sobolev inequality, we get∫
|x|<1

v2dx ≤ ω(2∗−2)/2∗

N

(∫
|x|<1

v2∗dx
)2∗/2

≤ ω(2∗−2)/2∗

N ∥∇v∥22∗ , (2.13)
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where ωN denotes the volume of the unit ball of RN . Then, it follows from (V1), (2.4), (2.12), (2.13),
(2) of Lemma 2.1 and Sobolev inequality that

(N − 2)∥∇v∥22 +
∫
RN

(NV(x) + ∇V(x) · x)|G−1(v)|2dx

≥ (N − 2)∥∇v∥22 +
∫
|x|<1

(NV(x) + ∇V(x) · x)|G−1(v)|2dx

+

∫
|x|≥1

(NV(x) + ∇V(x) · x)|G−1(v)|2dx

≥ (N − 2)∥∇v∥22 −
(N − 2)3θ

4

∫
RN

|G−1(v)g(0)|2

|x|2
dx +

(2N − µ)Rµ−N
0 V∞

4

∫
|x|≥1
|G−1(v)|2dx

≥ (1 − θ)(N − 2)∥∇v∥22 +
(2N − µ)Rµ−N

0 V∞
4

∫
|x|≥1
|G−1(v)|2dx

≥
(1 − θ)(N − 2)

2
∥∇v∥22 +

(1 − θ)(N − 2)S

2ω2/N
N

∫
|x|<1

v2dx +
(2N − µ)Rµ−N

0 V∞
4

∫
|x|≥1
|G−1(v)|2dx

≥
(1 − θ)(N − 2)

2
∥∇v∥22 +min

 (g(0))2(1 − θ)(N − 2)S

2ω2/N
N

,
(2N − µ)Rµ−N

0 V∞
4


∫
RN
|G−1(v)|2dx

:= γ1∥∇v∥22 + γ2∥G−1(v)∥22.

So we completes the proof of the lemma. □

Lemma 2.6 Assume that (V1), (V2) hold. Then

|∇V(x) · x| → 0, as |x| → ∞.

Proof. Arguing by contradiction, we assume that there exist {xn} ⊂ R
N and ε > 0 such that

as |xn| → ∞,we have ∇V(xn) · xn ≥ ε or ∇V(xn) · xn ≤ −ε, ∀ n ∈ N.

Now, we distinguish two case.

Case i) as |xn| → ∞,we have ∇V(xn) · xn ≥ ε, ∀ n ∈ N. In this case, by (2.3), one has

ε ≤ ∇V(xn) · xn

≤
(N − µ + Nt2N−µ)V(xn) − (2N − µ)tNV(txn)

1 − t2N−µ

+
(2N − 2)2(g(0))2θh(t)

4|xn|
2(1 − t2N−µ)

, for ∀ 0 < t < 1. (2.14)

Since

lim
t→1

[(N − µ + Nt2N−µ) − (2N − µ)tN]V∞
1 − t2N−µ = 0, (2.15)
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there exists 0 < t1 < 1 such that

[(N − µ + Nt2N−µ
1 ) − (2N − µ)tN

1 ]V∞
1 − t2N−µ

1

≤
ε

2
. (2.16)

Then it follows from (V1), (2.20) and (2.16) that

ε ≤ ∇V(xn) · xn

≤
[(N − µ + Nt2N−µ

1 ) − (2N − µ)tN]V(xn)

1 − t2N−µ
1

+
(2N − µ)tN

1 (V(xn) − V(t1xn))

1 − t2N−µ
1

+
(2N − µ)2(g(0))2θh(t1)

4|xn|
2(1 − t2N−µ

1 )

≤
ε

2
+

(2N − µ)tN
1 [V(xn) − V(t1xn)]

1 − t2N−µ
1

+
(2N − µ)2(g(0))2θh(t1)

4|xn|
2(1 − t2N−µ

1 )

=
ε

2
+ o(1), (2.17)

which is a contradiction.

Case ii) as |xn| → ∞,we have ∇V(xn) · xn ≤ −ε, ∀ n ∈ N. In this case, by (2.3), one has

−ε ≥ ∇V(xn) · xn

≥
(N − µ + Nt2N−µ)V(xn) − (2N − µ)tNV(txn)

t2N−µ − 1

+
(2N − 2)2(g(0))2θh(t)

4|xn|
2(t2N−µ − 1)

, for ∀ t > 1. (2.18)

From (2.15), there exists t2 > 1 such that

[(N − µ + Nt2N−µ
2 ) − (2N − µ)tN

2 ]V∞
1 − t2N−µ

2

≥ −
ε

2
. (2.19)

Then it follows from (V1), (2.18) and (2.19) that

−ε ≥ ∇V(xn) · xn

≥
[(N − µ + Nt2N−µ

2 ) − (2N − µ)tN
2 ]V(xn)

1 − t2N−µ
2

+
(2N − µ)tN

2 (V(xn) − V(t1xn))

1 − t2N−µ
2

+
(2N − µ)2(g(0))2θh(t2)

4|xn|
2(1 − t2N−µ

2 )

≥ −
ε

2
+

(2N − µ)tN
2 (V(xn) − V(t1xn))

1 − t2N−µ
2

+
(2N − µ)2(g(0))2θh(t2)

4|xn|
2(1 − t2N−µ

2 )

= −
ε

2
+ o(1), (2.20)

which is a contradiction. □
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Lemma 2.7 Assume that (V1), (V2) and (F1) − (F3) hold. Then Λ , ∅ and{
v ∈ H1(RN) \ {0} : P∞(v) ≤ 0 or P(v) ≤ 0

}
⊂ Λ.

Proof. It follows from the proof of Theorem 2 in [23], the properties of g and condition (F3) thatΛ , ∅.
Next, we have two cases to distinguish:

(1) v ∈ H1(RN) \ {0} and P∞(v) ≤ 0, then (1.13) implies v ∈ Λ.

(2) v ∈ H1(RN) \ {0} and P(v) ≤ 0. By (1.11), (2.3) and (2.8), one has

−
2N − µ

2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx

= P(v) −
N − 2

2
∥∇v∥22 −

1
2

∫
RN

[NV(x) + (∇V(x) · x)]|G−1(v)|2dx

≤ −
(1 − θ)(N − 2)

2
∥∇v∥22 < 0,

which implies v ∈ Λ.
From the above two cases, we complete the proof of this lemma. □

Lemma 2.8 Assume that (g), (V1), (V2) and (F1)− (F3) hold. Then for any v ∈ Λ, there exists a unique
tv > 0 such that vtv ∈ M.

Proof. Let v ∈ Λ \ {0} be fixed. Define a function ℵ(t) := I(vt) on (0,∞). Clearly, by (1.9) and (2.2)
we have

ℵ′(t) = 0

⇐⇒
tN−2

2
∥∇v∥22 +

tN

2

∫
RN

[NV(tx) + ∇V(tx) · tx]|G−1(v)|2dx

−
t2N−µ

2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx = 0⇐⇒ P(vt) = 0 ⇐⇒ vt ∈ M.

Using (2.4), (2.8) and (2) of Lemma 2.1, we have ℵ(t) > 0 for t small and ℵ(t) < 0 for t is large enough.
Therefore, maxt∈[0.∞) ℵ(t) is achieved at some tv > 0 such that ℵ′(tv) = 0 and vtv

∈ M. Next, we claim
that tv is unique. In fact, if t1 , t2 > 0 such that vt1

, vt2
∈ M, then P(vt1) = P(vt2) = 0. From (2.1), we

have

I(vt1) ≥ I(vt2) +
t2N−µ
1 − t2N−µ

2

(2N − µ)t2N−µ
1

P(vt1) +
(1 − θ)h( t2

t1
)

2(2N − µ)
∥∇v∥22 ≥ I(vt2)

≥ I(vt1) +
t2N−µ
2 − t2N−µ

1

(2N − µ)t2N−µ
2

P(vt2) +
(1 − θ)h( t1

t2
)

2(2N − µ)
∥∇v∥22 ≥ I(vt1),

which implies t1 = t2. So, we complete the proof. □

Combining Corollary 2.4 with Lemma 2.8, we have the following corollary:

Corollary 2.9 Assume that (g) and (F1) − (F3) hold. Then for any v ∈ Λ, there exists a unique tv > 0
such that vtv ∈ M

∞.
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Lemma 2.10 Assume that (g), (V1), (V2) and (F1) − (F3) hold. Then

inf
v∈M
I(v) := m = inf

v∈Λ\{0}
max

t>0
I(vt).

From Corollaries 2.3 and 2.9, we have the following corollary:

Corollary 2.11 Assume that (g) and (F1) − (F3) hold. Then

inf
v∈M∞

I∞(v) := m∞ = inf
v∈Λ\{0}

max
t>0
I∞(vt).

The following version of Brezis-Lieb lemma for the nonlocal term is useful for our analysis. We
refer to [29] for a proof.

Lemma 2.12 Assume that (g), (F1) and (F2) hold. If un ⇀ u in H1(RN), then∫
RN

(x−µ ∗ F(un))F(un)dx =
∫
RN

(x−µ ∗ F(u))F(u)dx +
∫
RN

(x−µ ∗ F(un − u))F(un − u)dx + o(1).

From the above Lemma 2.12 and Lemma 1.32 of [25], we have the following lemma

Lemma 2.13 Assume that (g), (V1), (V2) and (F1) − (F3) hold. If vn ⇀ v in H1(RN), then

I(vn) = I(v) + I(vn − v) + o(1), P(vn) = P(v) + P(vn − v) + o(1).

Lemma 2.14 Assume that (g), (V1), (V2) and (F1) − (F3) hold. Then there exists some δ > 0 such that

(i) infv∈M

∫
RN [|∇v|2 + |G−1(v)|2]dx ≥ δ for any v ∈ M; (ii) m = infv∈M I(v) > 0.

Proof. (i) Since P(v) = 0 for any v ∈ M, it follows from (F1), (F2), (1.6), (2.6), Sobolev embedding
inequality and Lemma 2.1 that

min{γ1, γ2}

∫
RN

[|∇v|2 + |G−1(v)|2]dx

≤ (N − 2)
∫
RN
|∇v|2dx +

∫
RN

[NV(x) + ∇V(x) · x]|G−1(v)|2dx

= (2N − µ)
∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx

≤

(∫
RN

[|∇v|2 + |G−1(v)|2]dx
) 2(2N−µ)

N

+C1

(∫
RN

[|∇v|2 + |G−1(v)|2]dx
) 2(2N−µ)

N−2

,

which implies ∫
RN

[|∇v|2 + |G−1(v)|2]dx ≥ δ := min

1,
(
min{γ1, γ2}

1 +C1

) N
3N−µ

 , ∀v ∈ M. (2.21)

(ii). Let {vn} ⊂ M be such that I(vn)→ m as n→ ∞. There are two possible case:

Electronic Research Archive Volume 30, Issue 5, 1973–1998.



1986

Case i) infn∈N ∥∇vn∥
2
2 ≥ ϱ > 0. Let t → 0 in (2.1), we find

m + o(1) = I(vn) ≥
(1 − θ)(N + 2 − µ)

2(2N − µ)
∥∇vn∥

2
2 ≥

(1 − θ)(N + 2 − µ)
2(2N − µ)

ϱ > 0.

Case ii) infn∈N ∥∇vn∥
2
2 = 0. From (2.21), passsing to a subsequence, we have

∥∇vn∥
2
2 → 0 and ∥G−1(vn)∥22 ≥

1
2
δ. (2.22)

Together with (1.6), (4), (5) of Lemma 2.1 and the Sobolev inequality, for v ∈ H1(RN)∫
RN

(x−µ ∗ F(G−1(v)))F(G−1(v))dx

≤ C2(∥G−1(v)∥2(2N−µ)/N
2 + S −(2N−µ)/(N−2)∥∇v∥2(2N−µ)/(N−2)

2 ). (2.23)

From (V1), there exists R > 0 such that V(x) ≥ V∞
2 for |x| ≥ R, and we have∫

|tx|≥R
V(tx)(G−1(v))2dx ≥

V∞
2

∫
|tx|≥R

(G−1(v))2dx, ∀ t > 0 and v ∈ H1(RN). (2.24)

Making use of the Sobolev inequality and Hölder inequality, for all t > 0 and v ∈ H1(RN), we have∫
|tx|<R

(G−1(v))2dx ≤
(
ωNRN

tN

)(2∗−2)/2∗ (∫
|tx|<R

(G−1(v))2∗dx
)2/2∗

≤
ω2/N

N R2

S g2(0)t2 ∥∇v∥22. (2.25)

Let

δ0 = min
{
V∞, S g2(0)R−2ω−2/N

N

}
and tn =

(
δ0

4C2

)1/(N−µ)

∥G−1(vn)∥−2/N
2 . (2.26)

Then (2.22) shows {tn} is bounded. Finally combine (V1), (2.1), (2.23)–(2.26) and Corollary 2.4, to
discover

m + o(1) = I(vn) ⩾ I((vn)tn)

=
tN−2
n

2
∥∇vn∥

2
2 +

tN
n

2

∫
RN

V(tnx)(G−1(vn))2dx −
t2N−µ
n

2

∫
RN

(x−µ ∗ F(G−1(vn)))F(G−1(vn))dx

≥
S tN

2(g(0))2R2ω2/N
N

∫
|tn x|<R

(G−1(vn))2dx +
V∞tN

n

4

∫
|tn x|≥R

(G−1(vn))2dx

−
C1t2N−µ

n

2
∥G−1(vn)∥2(2N−µ)/N

2 −
C2t2N−µ

n

2S (2N−µ)/N−2 ∥∇vn∥
2(2N−µ)
2

≥
δ0tN

n

4
∥G−1(vn)∥22 −

C3t2N−µ
n

2
∥G−1(vn)∥2(2N−µ)/N

2 + o(1)

=
tN
n

4
∥G−1(vn)∥22

(
δ0 − 2C2tN−µ

n ∥G−1(vn)∥2(N−µ)/N
2

)
+ o(1) =

δ0

8

(
δ0

4C2

)N/N−µ

+ o(1).

From the above analysis we know that m = infu∈M I(u) > 0. □
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Note that since V(x) ≡ V∞ satisfies (V1) and (V2), all above conclusions on I are still true for I∞.

Lemma 2.15 Assume that (g), (V1), (V2) and (F1) − (F3) hold. Then

m∞ = inf
M∞
I∞ ≥ m.

Proof. In view of Corollary 2.9, we haveM∞ , ∅. Arguing indirectly, we assume that m∞ < m. Let
ε = m − m∞. Then there exists v∞ε such that

v∞ε ∈ M
∞ and m∞ +

ε

2
> I∞(v∞ε ). (2.27)

In view of Lemma 2.8, there exists tε > 0 such that (v∞ε )tε ∈ M. Thus, it follows from (V1), (1.9),
(1.12), (2.1) and (2.27) that

m∞ +
ε

2
> I∞((v∞ε )tε) ≥ I((v∞ε )tε) ≥ m = m∞ + ε.

This contradiction shows that m∞ ≥ m. □

Lemma 2.16 Assume that (g), (V1), (V2) and (F1) − (F3) hold. Then m is achieved.

Proof. From Lemmas 2.8, and 2.14, we know that M , ∅ and m > 0. Let {vn} ⊂ M be a sequence
verifying I(vn)→ m. From P(vn) = 0, (1.9) and (1.11), we have

m + o(1) = I(vn) ≥
(1 − θ)(N + 2 − µ)

2(2N − µ)
∥∇vn∥

2
2. (2.28)

This shows that {∥∇vn∥2} is bounded. Next, we need to prove {vn} is also bounded in L2(RN). Firstly, we
claim that {G−1(vn)} is bounded in L2(RN). Arguing by contradiction, suppose that ∥G−1(vn)∥2 → ∞.
Combine (1.6), Lemma 2.1 and the Sobolev inequality, we get∫

RN
(|x|−µ ∗ F(G−1(v)))F(G−1(v))dx

≤
δ0

4

(
δ0

16m

)(N−µ)/N

∥G−1(v)∥2(2N−µ)/N
2 + C4S −(2N−µ)∥∇v∥2(2N−µ)

2 (2.29)

for ∀ v ∈ H1(RN), where δ0 is given by (2.26). Let t̂n =
(

16m
δ0

)1/(N−µ)
∥G−1(vn)∥−2/N

2 , then t̂n → 0 as
n→ ∞. Thus, from (2.2), (2.29), (V1) and Corollary 2.4, we have

m + o(1) = I(vn) ≥ I
(
(vn)t̂n

)
=

t̂N−2
n

2
∥∇vn∥

2
2 +

t̂N
n

2

∫
RN

V(t̂nx)v2
ndx −

t̂2N−µ
n

2

∫
RN

(|x|−µ ∗ F(G−1(vn)))F(G−1(vn)))dx

≥
S t̂N

n

2R2ω2/N
N

∫
|x|≤R

(G−1(vn))2dx +
V∞t̂N

n

4

∫
|x|>R

(G−1(vn)))2dx

−
δ0t̂2n−µ

n

8

(
δ0

16m

)(N−µ)/N

∥G−1(v))∥2(2N−µ)/N
2 −

C4t̂2N−µ
n

2S 2N−µ ∥∇vn∥
2(2N−µ)
2
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≥
δ0

4
t̂N
n ∥G

−1(vn))∥22 −
δ0t̂2N−µ

n

8

(
δ0

16m

)(N−µ)/3

∥G−1(vn))∥2(2N−µ)/N
2 + o(1)

=
δ0

4
t̂N
n ∥G

−1(vn))∥22

1 − 1
2

(
δ0t̂N

n ∥G
−1(vn))∥22

16m

)(N−µ)/N + o(1) = 2m + +o(1). (2.30)

This contradiction shows that {∥G−1(vn))∥2} is bounded. Secondly, we show that {∥vn∥2} is also bounded.
Note that (3) of Lemma 2.1 implies that

s2 ≤ |G−1(1)|−2|G−1(s)|2, |s| ≤ 1. (2.31)

So, we have ∫
RN

v2
ndx =

∫
|vn |≤1

v2
ndx +

∫
|vn |>1

v2
ndx

≤ |G−1(1)|−2
∫
|vn |≤1
|G−1(vn)|2dx +

∫
|vn |>1

v2∗
n dx

≤ |G−1(1)|−2∥G−1(vn)∥22 + S −2∗/2∥∇vn∥
2∗
2 . (2.32)

Combine with (2.28) and (2.32), we know that {vn} is bounded in H1(RN). Passing to a subsequence,
there exists v̄ ∈ H1(RN)\{0} such that vn ⇀ v̄, in H1(RN); vn → v̄, on Ls

loc(R
N), ∀s ∈ (2, 2∗) and

vn → v̄, a.e. on RN . There are tow cases: (i) v̄ = 0 and (ii) v̄ , 0.

Case i). v̄ = 0, i.e., vn ⇀ 0 in H1(RN). By (V1) and Lemma 2.6, it is easy to show that

lim
n→∞

∫
RN

[V∞ − V(x)]v2
ndx = lim

n→∞

∫
RN

(∇V(x) · x)v2
ndx = 0 (2.33)

It follows from (1.9) and (2.33) that

I∞(vn)→ m and P∞(vn)→ 0. (2.34)

Since P(un) = 0, from (1.6), (2.6) and Sobolev embedding inequality, one has

min{γ1, γ2}δ ≤ ∥∇vn∥
2
2 +

∫
RN

(NV(x) + ∇V(x) · x)(G−1(vn)))2dx

= (2N − µ)
∫
RN

(x|−µ ∗ F(G−1(vn))F(G−1(vn))dx

≤ ε∥vn∥
2(2N−µ)/N
2 +Cε∥∇vn∥

2(2N−µ)
2 (2.35)

Together with (2.35) and Lions’ concentration compactness principle [25], one can easily verify that
there exist δ1 > 0 and {yn} ⊂ R

N such that
∫

B(yn,1)
|vn|

2dx > δ12 . Let v̂n(x) = vn(x + yn), we have

∥v̂n(x)∥ = ∥vn∥ and
∫

B(0,1)
v̂2

ndx >
δ1

2
, (2.36)

and there exists v̂ ∈ H1(RN)\{0} such that v̂n ⇀ v̂, in H1(RN); v̂n → v̂, on Ls
loc(R

N), ∀s ∈ (2, 2∗) and
v̂n → v̂, a.e. on RN . By (2.34) and (2.36), one has

I∞(v̂n)→ m, P∞(v̂n)→ 0. (2.37)

Electronic Research Archive Volume 30, Issue 5, 1973–1998.



1989

Let ωn = v̂n − v̂. From Lemma 2.13, we deserve

I∞(v̂n) = I∞(v̂) + I∞(ωn) + o(1), P∞(v̂n) = P∞(v̂) + P∞(ωn) + o(1). (2.38)

For any v ∈ H1(RN), set

Ψ∞(v) = I∞(v) −
1

2N − µ
P∞(v) =

N + 2 − µ
2(2N − µ)

∥∇v∥22 +
(N − µ)V∞
2(2N − µ)

∥G−1(v)∥22. (2.39)

From (2.37)–(2.39), it is easy to check that

Ψ∞(ωn) = m − Ψ∞(v̂) + o(1) and P∞(ωn) = −P∞(v̂) + o(1). (2.40)

If there is some subsequence {ωni} of {ωn} such that ωni = 0, then for this subsequence, there holds

I∞(v̂) = m, P∞(v̂) = 0. (2.41)

Next, we show that ωn , 0. We assert that P∞(v̂) ≤ 0. On the contrary, if P∞(v̂) > 0, then (2.40)
indicates that for sufficiently large n, P∞(ωn) < 0. Because of Lemma 2.7 and Corollary 2.9, there
exists tn > 0 such that (ωn)tn ∈ M

∞. (1.12), (1.13),(2.37), (2.39) and(2.40) tell us that

m − Ψ∞(v̂) + o(1) ≥ Ψ∞(ωn) = I∞(ωn) −
1

2N − µ
P∞(ωn)

≥ I∞((ωn)tn) −
t2N−µ
n

2N − µ
P∞(ωn) ≥ m∞ −

t2N−µ
n

2N − µ
P∞(ωn) ≥ m∞,

which implies P∞(v̂) ≤ 0 due to m ≤ m∞. Hence, as v̂ , 0, in view of Corollary 2.9, there exists
t∞ > 0 such that v̂t∞ ∈ M

∞. According to (1.12), (1.13), (2.37), (2.39), (2.40), Corollary 2.3 and
Fatou’s lemma, we find

m = lim
n→∞

[I∞(v̂n) −
1

2N − µ
P∞(v̂n)] = lim

n→∞
Ψ∞(v̂n)

≥ Ψ∞(v̂) = I∞(v̂) −
1

2N − µ
P∞(v̂)

≥ I∞(v̂t∞) −
t2N−µ
∞

2N − µ
P∞(v̂) ≥ m∞ −

t2N−µ
∞

2N − µ
P∞(v̂) ≥ m,

which implies (2.41). In view of Lemma 2.8, there exists t̂ > 0 such that v̂t̂ ∈ M. By (1.9), (1.12),
(2.41), (V1), Corollaries 2.4, we obtain

m ≤ I(v̂t̂) ≤ I∞(v̂t̂) ≤ I∞(v̂) = m.

This shows that m is achieved at v̂t̂ ∈ M.

Case ii). v̄ , 0. Let un = vn − v̄. Then Lemma 2.13 yields

I(vn) = I(v̄) + I(un) + o(1), P(vn) = P(v̄) + P(un) + o(1). (2.42)
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Through (1.9), (1.11), (2.4) and (2.8), we obtain

Ψ(v) = I(v) −
1

2N − µ
P(v)

=
N + 2 − µ
2(2N − µ)

∥∇v∥22 +
1

2(2N − µ)

∫
RN

[(2N − µ)V(x) − (∇V(x) · x)](G−1(v))2dx

≥
(1 − θ)(N + 2 − µ)

2(2N − µ)
∥∇u∥22, ∀ v ∈ H1(RN). (2.43)

Since
I(un)→ m, P(un) = 0, (2.44)

it follows from (2.42)–(2.44) that

Ψ(un) = m − Ψ(v̄) + o(1) and P(un) = −P(v̄) + o(1). (2.45)

If there is some subsequence {uni} of {un} such that uni = 0, then for this subsequence, there holds

I(v̄) = m, P(v̄) = 0. (2.46)

Next, we show that un , 0. We assert that P(v̄) ≤ 0. On the contrary, if P(v̄) > 0, then (2.45) indicates
that for sufficiently large n, P(un) < 0. Because of Lemma 2.8, there exists tn > 0 such that (un)tn ∈ M.
From (1.9), (1.11), (2.43) and (2.45), we have

m − Ψ(v̄) + o(1) ≥ Ψ(un) = I(un) −
1

2N − µ
P(un)

≥ I((un)tn) −
t2N−µ
n

2N − µ
P(un) ≥ m −

t2N−µ
n

2N − µ
P(un) ≥ m,

which implies P(v̄) ≤ 0 due to Ψ(v̄) > 0. Hence, as v̄ , 0, in view of Lemma 2.8, there exists a
t̄ > 0 such that v̄t̄ ∈ M. From (1.9), (1.11), (2.11), (2.43), (2.45) and Fatou’s lemma, one has

m = lim
n→∞

[I(vn) −
1

2N − µ
P(vn)] = lim

n→∞
Ψ(vn)

≥ Ψ(v̄) = I(v̄) −
1

2N − µ
P(v̄) ≥ I(v̄t̄) −

t̄2N−µ

2N − µ
P(v̄) ≥ m −

t̄2N−µ

2N − µ
P(v̄) ≥ m,

which implies (2.46). This implies that the desired conclusion holds. □

Lemma 2.17 Assume that (g), (V1), (V2) and (F1) − (F3) hold. If v̄ ∈ M and I(v̄) = m, then v̄ is a
critical point of I.

Proof. From (g), (V1), (V2) and (F1) − (F3) (1.11), there exist T1 ∈ (0, 1) and T2 ∈ (1,∞) such that

P(v̄T1) > 0 and P(v̄T2) < 0.

Similar to the proof Lemma 2.13 in [26], we can prove this lemma only by using

I(v̄t) ≤ I(v̄) −
1 − t2N−µ

2N − µ
P(v̄) −

(1 − θ)h(t)
2(2N − µ)

∥∇v̄∥22 = m −
(1 − θ)h(t)
2(2N − µ)

∥∇v̄∥22 (2.47)
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for any t > 0 and

ε := min
{

(1 − θ)h(T1)∥∇v̄∥22
6(2N − µ)

,
(1 − θ)h(T2)∥∇v̄∥22

6(2N − µ)
, 1,
ϱδ

8

}
(2.48)

respectively, instead of (2.40) and ε in [26]. □

Proof of Theorem 1.1. In view of Lemmas 2.10, 2.16 and 2.17, there exists v̄ ∈ M such that

I(v̄) := m = inf
v∈Λ\{0}

max
t>0
I(v̄t), I′(v̄) = 0. (2.49)

This shows that v̄ is a ground state solution of (P̄) such that I(v̄) = infv∈M I(v) and ū = G−1(v̄) is a
nontrivial solution of (P).

3. Proof of Theorem 1.5

In this section, we assume that V(x) . V∞ and give the proof of Theorems 1.5. In order to find
a bounded (PS)-sequence of I, we use the idea employed by Jeanjean and Tanaka [27] which is an
approximation procedure.

Proposition 3.1 [27] Let X be a Banach space and Ω ⊂ R+ be an interval, and

Jλ(v) = A(v) − λB(v), λ ∈ Ω,

be a family of C1-functional on X such that

i) either A(v)→ ∞ or B(v)→ ∞, as ∥v∥ → ∞;

ii) B maps every bounded set of X into a set of R bounded below;

iii) there are two points v1, v2 in X such that

cλ := inf
γ∈Γ

max
t∈[0,1]
Jλ(γ(t)) > max {Jλ(v1),Jλ(v2)}

where Γ = {γ ∈ C ([0, 1], X) : γ(0) = v1, γ(1) = v2}. Then, for almost every λ ∈ Ω, there is a bounded
(PS)-sequence for cλ, that is, there exists a sequence such that

(i) {vn(λ)} is bounded in X; (ii) Jλ(vn(λ))→ cλ;
(iii) J ′λ(vn(λ))→ 0 in X∗, where X∗ is the dual of X.

Lemma 3.2 (see [25], Appendix B). Assume that (g), (V1), (V3), (F1) and (F2) hold. Let v be a critical
point of Iλ in H1(RN), then for λ ∈ [1

2 , 1], we have the following Pohožaev type identity:

Pλ(v) : =
N − 2

2
∥∇v∥22 +

1
2

∫
RN

[NV(x) + (∇V(x) · x)]|G−1(v)|2dx

−
2N − µ

2
λ

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx = 0. (3.1)

Let

Mλ :=
{
v ∈ H1(RN) \ {0} : Pλ(v) = 0

}
and mλ = inf

Mλ

Iλ. (3.2)
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We also let

I∞λ (v) =
1
2
∥∇v∥22 +

V∞
2
∥G−1(v)∥22 −

λ

2

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx. (3.3)

Similarly, the Pohožaev type identity of I∞λ is

P∞λ (v) : =
N − 2

2
∥∇v∥22 +

NV∞
2
∥G−1(v)∥22

−
2N − µ

2
λ

∫
RN

(
|x|−µ ∗ F(G−1(v))

)
F(G−1(v))dx = 0 (3.4)

and

M∞λ :=
{
v ∈ H1(RN) \ {0} : P∞λ (v) = 0

}
and m∞λ = inf

M∞λ

I∞λ . (3.5)

By Corollary 2.3, we have the following lemma:

Lemma 3.3 Assume that (g), (F1) and (F3) hold. Then, for any t > 0 and v ∈ H1(RN), we have

I∞λ (v) ⩾ I∞λ (vt) +
1 − t2N−µ

2N − µ
P∞λ (v) +

h(t)
2(2N − µ)

∥∇v∥22 +
k(t)V∞

2(2N − µ)
∥G−1(v)∥22, (3.6)

where k(t) = (2N − µ)(1 − tN−2) − N(1 − t2N−µ) > 0, ∀ t ∈ [0, 1) ∪ (1,∞).

In view of Corollary 1.2, I∞1 = I
∞ has a minimizer v∞1 , 0 onM∞1 =M

∞, i.e.,

v∞1 ∈ M
∞
1 , (I∞1 )′(v∞1 ) = 0 and m∞1 = I

∞
1 (v∞1 ), (3.7)

where m∞1 is defined by (3.5). From (V1) and V(x) ≤ V∞ but V(x) . V∞, there exist x̄ ∈ RN and r̄ > 0
such that

V∞ − V(x) > 0, a.e. |x − x̄| ≤ r̄. (3.8)

Lemma 3.4 Assume that (g), (V1) and (F1) − (F3) hold. Then

(i) there exists T > 0 such that Iλ((v∞1 )T ) < 0, for all λ ∈ [ 1
2 , 1];

(ii) there exists a positive constant k̃, independent of λ, such that for all λ ∈ [ 1
2 , 1], we have

cλ := inf
γ∈Γ

max
t∈[0,1]
Iλ(γ(t)) ≥ k̃ > max

{
Iλ(0),Iλ((v∞1 )T )

}
,

where Γ =
{
γ ∈ C([0, 1],H1(RN)) : γ(0) = 0, γ(1) = (v∞1 )T

}
;

(iii) cλ is bounded for λ ∈ [ 1
2 , 1];

(iv) m∞λ is non-increasing on λ ∈ [ 1
2 , 1];

(v) lim supλ→λ0
cλ ≤ cλ0 , for all λ0 ∈ [ 1

2 , 1].

Proof. Since m∞λ = I
∞
λ (v∞λ ) and

∫
RN

(
|x|−µ ∗ F(G−1(v∞λ ))

)
F(G−1(v∞λ ))dx > 0, (i)-(iv) of Lemma 3.4 are

standard and (v) can be proved similar to Lemma 2.3 of [28], so we omit it. □
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Lemma 3.5 Assume that (g), (V1) and (F1)− (F3) hold. Then there exists λ∗ ∈ [1
2 , 1) such that cλ < m∞λ

for λ ∈ (λ∗, 1].

Proof. It is easy to see that Iλ(v∞t ) is continuous on t ∈ [0,+∞). Hence for any λ ∈ [1
2 , 1], we can

choose tλ ∈ (0,T ) such that Iλ(v∞tλ ) = maxt∈[0,T ] Iλ(v∞t ). Setting γ0(t) = (v∞1 )tT for t > 0 and γ0(t) = 0
for t = 0. Then γ0 ∈ Γ defined by (ii) of Lemma 3.4. Moreover, one has

Iλ((v∞1 )tλ) = max
t∈[0,1]
Iλ(γ0(t)) ≥ cλ. (3.9)

Let

ζ0 := min
{

3r̄
8(1 + |x̄|)

,
1
4

}
. (3.10)

Then it follows from (3.8) and (3.10) that

|x − x̄| ≤
r̄
2

and s ∈ [1 − ζ0, 1 + ζ0]⇒ |sx − x̄| ≤ r̄. (3.11)

Since P∞λ (v∞1 ) = 0 and v∞1 , 0, then
∫
RN

(
|x|−µ ∗ F(G−1(v∞1 ))

)
F(G−1(v∞1 ))dx > 0. Let

λ∗ = max

1
2
, 1 −

(1 − ζ0)N mins∈[1−ζ0,1+ζ0]

∫
RN (V∞ − V(sx))|G−1(v∞1 )|2dx

T 2N−µ
∫
RN

(
|x|−µ ∗ F(G−1(v∞1 ))

)
F(G−1(v∞1 ))dx

,

1 −
2 min {β(1 − ζ0), β(1 + ζ0)} ∥∇v∞1 ∥

2
2

T 2N−µ
∫
RN

(
|x|−µ ∗ F(G−1(v∞1 ))

)
F(G−1(v∞1 ))dx

 , (3.12)

where β(t) = h(t)
2(2N−µ) . Then (3.8), (3.11) and (3.12) imply that λ∗ ∈ [ 1

2 , 1). We have two cases to
distinguish:

Case (i). tλ ∈ [1 − ζ0, 1 + ζ0]. From (1.14), (3.3)–(3.8), (3.11), (3.12) and (iv) of Lemma 3.4, we have

m∞λ ≥ m∞1 = I
∞
1 (v∞1 ) ≥ I1((v∞1 )tλ)

= Iλ((v∞1 )tλ) −
(1 − λ)t2N−µ

λ

2

∫
RN

(
|x|−µ ∗ F(G−1(v∞1 ))

)
F(G−1(v∞1 ))dx

+
tN
λ

2

∫
RN

(V∞ − V(tλx))|G−1(v∞1 )|2dx

≥ cλ −
(1 − λ)T 2N−µ

2

∫
RN

(
|x|−µ ∗ F(G−1(v∞1 ))

)
F(G−1(v∞1 ))dx

+
(1 − ζ0)N

2
min

s∈[1−ζ0,1+ζ0]

∫
R3

(V∞ − V(sx))|G−1(v∞1 )|2dx

> cλ.

Case (ii). tλ ∈ (0, 1−ζ0)∪(1+ζ0,T ). Since V∞ ≥ V(x) for all x ∈ RN , it follows from (1.14), (3.3)–(3.8),
(3.11), (3.12) and (iv) of Lemma 3.4 that

m∞λ ≥ m∞1 = I
∞
1 (v∞1 ) ≥ I1((v∞1 )tλ) + β(t)∥∇v∞1 ∥

2
2
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= Iλ((v∞1 )tλ) −
(1 − λ)t2N−µ

λ

2

∫
RN

(
|x|−µ ∗ F(G−1(v∞1 ))

)
F(G−1(v∞1 ))dx

+
tN
λ

2

∫
RN

(V∞ − V(tλx))|G−1(v∞1 )|2dx + β(t)∥∇v∞1 ∥
2
2

≥ cλ −
(1 − λ)T 2N−µ

2

∫
RN

(
|x|−µ ∗ F(G−1(v∞1 ))

)
F(G−1(v∞1 ))dx

+ min {β(1 − ζ0), β(1 + ζ0)} ∥∇v∞1 ∥
2
2

> cλ.

In both cases, we obtain that cλ < m∞λ for λ ∈ (λ∗, 1]. □

In order to prove that the functional Iλ(v) satisfies (PS )cλ condition for a.e. λ ∈ [ 1
2 , 1], we need

the following new version of global compactness lemma, which is suitable for quasilinear Schrödinger
equation with nonlocal term.

Lemma 3.6 Assume that (g), (V1), (V3) and (F1) − (F3) hold. For any cλ > 0, λ ∈ [ 1
2 , 1], if {vn(λ)} ⊂

H1(RN) is a bounded (PS )cλ sequence of Iλ, then there exist a subsequence of {vn(λ)}, still denoted by
{vn(λ)}, vλ ∈ H1(RN) such that

(i) vn(λ)→ vλ in H1(RN);

(ii) there exist l ∈ N ∪ {0}, {yk
n} ⊂ R

N with |yk
n| → ∞ and nonzero ωk

λ for each 1 ≤ k ≤ l satisfy
(I∞λ )′(ωk

λ) = 0;

(iii) ∥vn(λ) − vλ −
∑l

k=1 ω
k
λ(· − yk

n)∥ → 0;

(iv) Iλ(vn)→ Iλ(v) +
∑l

k=1 I
∞
λ (ωk).

Proof. With the aid of Brézis-Lieb lemma in [30], P. L. Lions vanishing lemma in [31], and using the
idea of Lemma 4.2 in [32], we can verify this lemma. □

Lemma 3.7 Assume that (V1) and (V3) hold. Then for any v ∈ H1(RN), there exists γ3 > 0 such that

(N + 2 − µ)∥∇v∥22 +
∫
RN

[(N − µ)V(x) − ∇V(x) · x](G−1(v))2dx

≥ γ3

∫
RN

[|∇v|2 + (G−1(v))2]dx. (3.13)

Proof. From (2.4) and (V1) and (V3), we have

(N + 2 − µ)∥∇v∥22 +
∫
RN

[(N − µ)V(x) − ∇V(x) · x](G−1(v))2dx

= (N + 2 − µ)∥∇v∥22 −
(N − 2)2

2

∫
RN

(g(0)G−1(v))2

|x|2
dx

+

∫
RN

[
(N − µ)V(x) − ∇V(x) · x

]
(G−1(v))2dx +

∫
RN

(N − 2)2

2|x|2
(g(0)G−1(v))2dx

≥ (N − µ)∥∇v∥22 +
(N − µ)

2

∫
RN

(G−1(v))2dx
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≥ γ3

∫
RN

[|∇v|2 + (G−1(v))2]dx

where γ3 due to µ and (V1). □

Lemma 3.8 Assume that (V1), (V3) and (F1) − (F3) hold. Then for every λ ∈ (λ∗, 1], there exists
vλ ∈ H1(RN) \ {0} such that

I′λ(vλ) = 0, Iλ(vλ) = cλ > 0. (3.14)

Proof. According to Proposition 3.1, Lemmas 3.4 and 3.6. For almost every λ ∈ (λ∗, 1], there exist
a subsequence of {v1

n} (for simplicity, we still denoted by {vn}) of {vn(λ)} ⊂ H1(RN) and vλ ∈ H1(RN)
satisfying

Iλ(vn)→ cλ > 0, ∥I′λ(vn)∥ → 0 as n→ ∞. (3.15)

and vn ⇀ vλ in H1(RN), I′λ(vλ) = 0, an integer l ∈ N ∪ {0} and ω1
λ, ..., ω

l
λ ∈ H1(RN) \ {0} such that

cλ = Iλ(vλ) +
l∑

k=1

I∞λ (ωk
λ) and (I∞λ )′(ωk

λ) = 0 for 1 ≤ k ≤ l. (3.16)

Since (Iλ)′(vλ) = 0, we have the Pohožaev identity of the functional Iλ

Pλ(uλ) : =
N − 2

2
∥∇vλ∥22 +

1
2

∫
RN

[NV(x) + (∇V(x) · x)](G−1(vλ))2dx

−
λ(2N − µ)

2

∫
RN

(|x|−µ ∗ F(G−1(vλ))F(G−1(vλ))dx = 0. (3.17)

Since ∥vn∥↛ 0, we deduce from (3.16) that if vλ = 0 then l ≥ 1 and

cλ = Iλ(vλ) +
l∑

k=1

I∞λ (ωk
λ) ≥ m∞λ ,

which conditions with Lemma 3.5. Thus vλ , 0,. It follows from (3.13) and (3.17), we have

Iλ(vλ) = Iλ(vλ) −
1

2N − µ
Pλ(vλ)

=
N + 2 − µ
2(2N − µ)

∥∇vλ∥22 +
1

2(2N − µ)

∫
RN

[(N − µ)V(x) − ∇V(x) · x](G−1(vλ)2dx

≥
γ3

2(2N − µ)

∫
RN

[|∇vλ|2 + (G−1(vλ))2]dx > 0. (3.18)

For λ ∈ (λ∗, 1], from (3.19) and (3.18), we have

cλ = Iλ(vλ) +
l∑

k=1

I∞λ (ωk
λ) ≥ lm∞λ .

which contradicts with Lemma 3.5. One gets l = 0, Iλ(vλ) = cλ and I′λ(vλ) = 0. Obviously, vλ , 0 and
we complete the proof. □
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Set

K :=
{
v ∈ H1(RN) \ {0},I′(v) = 0

}
, m∗ = inf

v∈K
I(v).

Lemma 3.9 Assume that (V1), (V3), (F1)-(F3) hold. Then there exists v̂ ∈ H1(RN)\{0} such that

I′(v̂) = 0 and 0 < I(v̂) ≤ c1. (3.19)

Proof. In view of Lemmas 3.4, 3.5 and 3.8, there exist a sequence {λn} ⊂ (λ∗, 1] and {vλn} ⊂ H1(RN)\{0}
(for the sake of convenience, we denote the latter by {vn}) such that

λn → 1, cλn → c∗ ∈ (0, c1] as n→ ∞,

I′λn
(vn) = 0, Iλn(vn) = cλn for all n ∈ N. (3.20)

It follows from (V3), (1.9), (3.1), (3.16) and Lemmas 3.4, 3.5 and 3.8 that

c1 ≥ cλn = Iλn(vn) −
1

2N − µ
Pλn(vn)

=
N + 2 − µ
2(2N − µ)

∥∇vn∥
2
2 +

1
2(2N − µ)

∫
RN

[(N − µ)V(x) − (∇V(x) · x)](G−1(vn)2dx

≥ γ4

∫
RN

[|∇vn|
2 + (G−1(vn))2]dx, (3.21)

which combine with (2.32) yields that {vn} is bounded in H1(RN). From (iv) of Lemma 3.4, we have
limn→∞ cλn = c∗ ≤ c1. Then, it follows from (1.9) and (3.20) that I(vn)→ c∗ ≤ c1, I

′(vn)→ 0. Similar
to the proof of (3.14), we get that there exists v̂ ∈ H1(RN) \ {0} such that (3.19) holds. □

Proof of Theorem 1.5. From Lemma 3.9, we know that K , ∅ and m∗ ≤ c1. For any v ∈ K , Lemma
3.2 implies P(v) = P1(v) = 0. Hence, as the proof of (3.19), we have I(v) = I1(v) > 0 for any v ∈ K ,
and so m∗ ≥ 0. Let {vn} ⊂ K such that I′(vn) = 0 for all n ∈ N and I(vn) → m∗ as n → ∞. In view
of Lemmas 3.4 and 3.9, m∗ ≤ c1 < m∞. By a similar argument as in the proof of Lemma 3.8, we can
prove that there exists v̄ ∈ H1(RN) \ {0} such that I′(v̄) = 0 and I(v̄) = m∗. So, v̄ is a least energy
solution of (P̄) and ū = G−1(v̄) is a nontrivial solution of (P). □
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