Research article Special Issues

Perturbation properties of fractional strongly continuous cosine and sine family operators


  • Received: 28 November 2021 Revised: 10 March 2022 Accepted: 28 April 2022 Published: 31 May 2022
  • Perturbation theory has long been a very useful tool in the hands of mathematicians and physicists. The purpose of this paper is to prove some perturbation results for infinitesimal generators of fractional strongly continuous cosine families. That is, we impose sufficient conditions such that $ A $ is the infinitesimal generator of a fractional strongly continuous cosine family in a Banach space $ X $, and $ B $ is a bounded linear operator in $ X $, then $ A+B $ is also the infinitesimal generator of a fractional strongly continuous cosine family in $ X $. Our results coincide with the classical ones when $ \alpha = 2 $. Furthermore, depending on commutativity condition of linear bounded operators, we propose the elegant closed-form formulas for uniformly continuous perturbed fractional operator cosine and sine functions. Finally, we present an example in the context of one-dimensional perturbed fractional wave equation to demonstrate the applicability of our theoretical results and we give some comparisons with the existing literature.

    Citation: Ismail T. Huseynov, Arzu Ahmadova, Nazim I. Mahmudov. Perturbation properties of fractional strongly continuous cosine and sine family operators[J]. Electronic Research Archive, 2022, 30(8): 2911-2940. doi: 10.3934/era.2022148

    Related Papers:

  • Perturbation theory has long been a very useful tool in the hands of mathematicians and physicists. The purpose of this paper is to prove some perturbation results for infinitesimal generators of fractional strongly continuous cosine families. That is, we impose sufficient conditions such that $ A $ is the infinitesimal generator of a fractional strongly continuous cosine family in a Banach space $ X $, and $ B $ is a bounded linear operator in $ X $, then $ A+B $ is also the infinitesimal generator of a fractional strongly continuous cosine family in $ X $. Our results coincide with the classical ones when $ \alpha = 2 $. Furthermore, depending on commutativity condition of linear bounded operators, we propose the elegant closed-form formulas for uniformly continuous perturbed fractional operator cosine and sine functions. Finally, we present an example in the context of one-dimensional perturbed fractional wave equation to demonstrate the applicability of our theoretical results and we give some comparisons with the existing literature.



    加载中


    [1] W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace transforms and Cauchy problems, in Monographs in Mathematics, Birkhauser Basel, (2001), 65–240. https://doi.org/10.1007/978-3-0348-5075-9
    [2] K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
    [3] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, (1983). https://doi.org/10.1007/978-1-4612-5561-1
    [4] H. O. Fattorini, Ordinary differential equations in linear topological spaces, I, J. Differ. Equations, 5 (1968), 72–105. https://doi.org/10.1016/0022-0396(69)90105-3 doi: 10.1016/0022-0396(69)90105-3
    [5] H. O. Fattorini, Ordinary differential equations in linear topological spaces, II, J. Differ. Equations, 6 (1969), 50–70. https://doi.org/10.1016/0022-0396(69)90117-X doi: 10.1016/0022-0396(69)90117-X
    [6] C. C. Travis, G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Hungarica, 32 (1978), 75–96. https://doi.org/10.1007/BF01902205 doi: 10.1007/BF01902205
    [7] S. I. Piskarev, V. V. Vasil'ev, Differential equations in Banach spaces II. theory of Cosine-operator functions, J. Math. Sci., 122 (2004), 3055–3174. https://doi.org/10.1023/B:JOTH.0000029697.92324.47 doi: 10.1023/B:JOTH.0000029697.92324.47
    [8] V. V. Vasil'ev, S. G. Krein, S. I. Piskarev, Operator semigroups, cosine operator functions, and linear differential equations, Matematicheskii Analiz, 28 (1990), 87–202.
    [9] A. Ahmadova, N. I. Mahmudov, Langevin differential equations with general fractional orders and their applications to electric circuit theory, J. Comput. Appl. Math., 388 (2021), 113299. https://doi.org/10.1016/j.cam.2020.113299 doi: 10.1016/j.cam.2020.113299
    [10] I. Dassios, G. Tzounas, F. Milano, Perturbed singular systems of Robust stability criterion for linearized differential equations, J. Comput. Appl. Math., 381 (2021), 113032. https://doi.org/10.1016/j.cam.2020.113032 doi: 10.1016/j.cam.2020.113032
    [11] I. Dassios, G. Tzounas, F. Milano, Generalized fractional controller for singular systems of differential equations, J. Comput. Appl. Math., 378 (2020), 112919. https://doi.org/10.1016/j.cam.2020.112919 doi: 10.1016/j.cam.2020.112919
    [12] G. Tzounas, I. Dassios, M. A. A. Murad, F. Milano, Theory and implementation of fractional order controllers for power system applications, IEEE Trans. Power Syst., 35 (2020), 4622–4631. https://doi.org/10.1109/TPWRS.2020.2999415 doi: 10.1109/TPWRS.2020.2999415
    [13] I. T. Huseynov, N. I. Mahmudov, A class of Langevin time-delay differential equations with general fractional orders and their applications to vibration theory, J. King Saud Univ. Sci., 33 (2021), 101596. https://doi.org/10.1016/j.jksus.2021.101596 doi: 10.1016/j.jksus.2021.101596
    [14] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, University Press Facilities, Eindhoven University of Technology, 2001.
    [15] C. Lizama, Abstract linear fractional evolution equations, Fract. Differ. Equations, (2019), 465–498. https://doi.org/10.1515/9783110571660-021
    [16] P. Jigen, L. Kexue, A novel characteristic of solution operator for the fractional abstract Cauchy problem, J. Math. Anal. Appl., 385 (2012), 786–796. https://doi.org/10.1016/j.jmaa.2011.07.009 doi: 10.1016/j.jmaa.2011.07.009
    [17] L. Kexue, P. Jigen, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 25 (2012), 808–2012. https://doi.org/10.1016/j.aml.2011.10.023 doi: 10.1016/j.aml.2011.10.023
    [18] L. Kexue, P. Jigen, Fractional abstract Cauchy problems, Integr. Equations Oper. Theory, 70 (2011), 333–361. https://doi.org/10.1007/s00020-011-1864-5 doi: 10.1007/s00020-011-1864-5
    [19] Z. D. Mei, J. Peng, J. H. Gao, General fractional differential equations of order $\alpha\in (1, 2) $ and Type $\beta\in [0, 1] $ in Banach spaces, Semigroup Forum, 94 (2017), 712–737. https://doi.org/10.1007/s00233-017-9859-4 doi: 10.1007/s00233-017-9859-4
    [20] Z. D. Mei, J. G. Peng, J. X. Jia, A new characteristic property of Mittag-Leffler functions and fractional cosine functions, Stud. Math., 220 (2014), 119–140. https://doi.org/10.4064/sm220-2-2 doi: 10.4064/sm220-2-2
    [21] J. Mei, C. Chen, M. Li, A novel algebraic characteristic of fractional resolvent families, Semigroup Forum, 99 (2019), 293–302. https://doi.org/10.1007/s00233-018-9964-z doi: 10.1007/s00233-018-9964-z
    [22] A. Ahmadova, N. I. Mahmudov, J. J. Nieto, Exponential stability and stabilization of fractional stochastic degenerate evolution equations in a Hilbert space: Subordination principle, Evol. Equations Control Theory, (2022). https://doi.org/10.3934/eect.2022008
    [23] E. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal., 3 (2000), 213–230.
    [24] E. Bazhlekova, I. Bazhlekov, Subordination approach to multi-term time-fractional diffusion-wave equation, J. Comput. Appl. Math., 339 (2018), 179–192. https://doi.org/10.1016/j.cam.2017.11.003 doi: 10.1016/j.cam.2017.11.003
    [25] E. Bazhlekova, Subordination in a class of generalized time-fractional diffusion-wave equations, Fract. Calc. Appl. Anal., 21 (2018), 869–900. https://doi.org/10.1515/fca-2018-0048 doi: 10.1515/fca-2018-0048
    [26] C. Eck, H. Garcke, P. Knabber, Mathematische Modellierung, Springer-Verlag, Berlin Heidelberg, 2008.
    [27] R. S. Phillips, Perturbation theory for semigroups of linear operators, Trans. Am. Math. Soc., 74 (1954), 199–221. https://doi.org/10.1090/S0002-9947-1953-0054167-3 doi: 10.1090/S0002-9947-1953-0054167-3
    [28] C. C. Travis, G. F. Webb, Perturbation of strongly continuous cosine family generators, Colloquium Math., 45 (1981), 277–285. https://doi.org/10.4064/cm-45-2-277-285 doi: 10.4064/cm-45-2-277-285
    [29] D. Lutz, On bounded time-dependent perturbations of operator cosine functions, Aequationes Math., 23 (1981), 197–203. https://doi.org/10.1007/BF02188032 doi: 10.1007/BF02188032
    [30] M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Soliton. Fract., 14 (2002), 433–440. https://doi.org/10.1016/S0960-0779(01)00208-9 doi: 10.1016/S0960-0779(01)00208-9
    [31] E. Bazhlekova, Perturbation properties for abstract evolution equations of fractional order, Fract. Cal. Appl. Anal., 2 (1999) 359–366.
    [32] A. Ahmadova, I. T. Huseynov, N. I. Mahmudov, Perturbation theory for fractional evolution equations in a Banach space, preprint, arXiv: 2108.13188.
    [33] K. Li, Fractional order semilinear Volterra integrodifferential equations in Banach spaces, Topol. Method. Nonlinear Anal., 47 (2016) 439–455.
    [34] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 204 (2006).
    [35] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [36] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin, 2014. https://doi.org/10.1007/978-3-662-43930-2
    [37] C. C. Travis, G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar., 32 (1978), 75–96. https://doi.org/10.1007/BF01902205 doi: 10.1007/BF01902205
    [38] I. T. Huseynov, A. Ahmadova, N. I. Mahmudov, On a study of Sobolev type fractional functional evolution equations, Math. Method. Appl. Sci., 45 (2022). https://doi.org/10.1002/mma.8090
    [39] N. I. Mahmudov, A. Ahmadova, I. T. Huseynov, A new technique for solving Sobolev type fractional multi-order evolution equations, preprint, arXiv: 2102.10318. https://doi.org/10.1007/s40314-022-01781-x
    [40] H. Jiang, F. Liub, I. Turner, K. Burrage, Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Comput. Math. Appl., 64 (2012), 3377–3388. https://doi.org/10.1016/j.camwa.2012.02.042 doi: 10.1016/j.camwa.2012.02.042
    [41] H. Serizawa, M. Watanabe, Perturbation for cosine families in Banach spaces, Houst. J. Math., 12 (1986), 117–124.
    [42] I. T. Huseynov, N. I. Mahmudov, Construction of solutions for delay evolution equations in a Banach space: A delayed Dyson-Phillips series, preprint, arXiv: 2110.12515.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1596) PDF downloads(76) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog