This paper investigates the continuous dependence of solutions to layered composite materials in binary mixtures on perturbation parameters defined in a semi-infinite cylinder. Due to the fact that the base of the cylinder is easily disturbed by compression, this causes disturbances to the data at the entrance. By introducing auxiliary functions related to the solution of the equations, this article analyzes the impact of these disturbances on the solutions of the binary heat conduction equations and obtains the continuous dependence of the solutions on the base.
Citation: Yuanfei Li. A study on continuous dependence of layered composite materials in binary mixtures on basic data[J]. Electronic Research Archive, 2024, 32(10): 5577-5591. doi: 10.3934/era.2024258
This paper investigates the continuous dependence of solutions to layered composite materials in binary mixtures on perturbation parameters defined in a semi-infinite cylinder. Due to the fact that the base of the cylinder is easily disturbed by compression, this causes disturbances to the data at the entrance. By introducing auxiliary functions related to the solution of the equations, this article analyzes the impact of these disturbances on the solutions of the binary heat conduction equations and obtains the continuous dependence of the solutions on the base.
[1] | M. W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, New York, 1974. |
[2] | M. M. Freitas, M. L. Santos, J. A. Langa, Porous elastic system with nonlinear damping and sources terms, J. Differ. Equations, 264 (2018), 2970–3051. https://doi.org/10.1016/j.jde.2017.11.006 doi: 10.1016/j.jde.2017.11.006 |
[3] | L. E. Payne, B. Straughan, Structural stability for the Darcy equations of flow in porous media, Proc. R. Soc. A, 454 (1998), 1691–1698. https://doi.org/10.1098/rspa.1998.0227 doi: 10.1098/rspa.1998.0227 |
[4] | N. L. Scott, Continuous dependence on boundary reaction terms in a porous medium of Darcy type, J. Math. Anal. Appl., 399 (2013), 667–675. https://doi.org/10.1016/j.jmaa.2012.10.054 doi: 10.1016/j.jmaa.2012.10.054 |
[5] | Y. F. Li, X. J. Chen, J. C. Shi, Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid, Appl. Math. Optim., 84 (2021), 979–999. https://doi.org/10.1007/s00245-021-09791-7 doi: 10.1007/s00245-021-09791-7 |
[6] | Y. Liu, Continuous dependence for a thermal convection model with temperaturedependent solubitity, Appl. Math. Comput., 308 (2017), 18–30. https://doi.org/10.1016/j.amc.2017.03.004 doi: 10.1016/j.amc.2017.03.004 |
[7] | Y. Liu, S. Z. Xiao, Y. W. Lin, Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain, Math. Comput. Simul., 150 (2018), 66–82. https://doi.org/10.1016/j.matcom.2018.02.009 doi: 10.1016/j.matcom.2018.02.009 |
[8] | F. Franchi, R. Nibbi, B. Straughan, Continuous dependence on boundary and Soret coefficients in double diffusive bidispersive convection, Math. Methods Appl. Sci., 43 (2020), 8882–8893. https://doi.org/10.1002/mma.6581 doi: 10.1002/mma.6581 |
[9] | Y. F. Li, S. Z. Xiao, Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics, Appl. Math., 67 (2022), 103–124. https://doi.org/10.21136/AM.2021.0076-20 doi: 10.21136/AM.2021.0076-20 |
[10] | J. B. Han, R. Z. Xu, C. Yang, Continuous dependence on initial data and high energy blow-up time estimate for porous elastic system, Commun. Anal. Mech., 15 (2023), 214–244. https://doi.org/10.3934/cam.2023012 doi: 10.3934/cam.2023012 |
[11] | Y. F. Li, C. H. Lin, Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201–208. https://doi.org/10.1016/j.amc.2014.06.082 doi: 10.1016/j.amc.2014.06.082 |
[12] | Z. Q. Li, W. B. Zhang, Y. F. Li, Structural stability for Forchheimer fluid in a semi-infinite pipe, Electron. Res. Arch., 31 (2023), 1466–1484. https://doi.org/10.3934/era.2023074 doi: 10.3934/era.2023074 |
[13] | Y. F. Li, X. J. Chen, Structural stability for temperature-dependent bidispersive flow in a semi-infinite pipe, Lith. Math. J., 63 (2023), 337–366. https://doi.org/10.1007/s10986-023-09600-4 doi: 10.1007/s10986-023-09600-4 |
[14] | R. J. Knops, L. E. Payne, Continuous dependence on base data in an Elastic prismatic cylinder, J. Elast., 64 (2001), 179–190. https://doi.org/10.1023/A:1015214420596 doi: 10.1023/A:1015214420596 |
[15] | A. H. Nayfeh, A continuum mixture theory of heat conduction in laminated composite, ASME J. Appl. Mech., 42 (1975), 399–404. https://doi.org/10.1115/1.3423589 doi: 10.1115/1.3423589 |
[16] | D. Iesan, A theory of mixtures with different constituent temperatures, J. Therm. Stresses, 20 (1997), 147–167. https://doi.org/10.1080/01495739708956096 doi: 10.1080/01495739708956096 |
[17] | D. Iesan, R. Quintanilla, On the problem of propagation of heat in mixtures, Appl. Mech. Eng., 4 (1999), 529–551. |
[18] | R. Quintanilla, Study of the solutions of the propagation of heat in mixtures, Dyn. Contin. Discrete Impulsive Syst. - Ser. B, 8 (2001), 15–28. |
[19] | G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1952. |