This research presents an adaptive synchronization approach crafted to facilitate exact lag synchronization between a pair of unidirectionally linked Hindmarsh-Rose (HR) neurons, taking into account both explicit propagation delays and the existence of uncertain parameters. The precise condition for lag synchronization is deduced analytically, utilizing the Laplace transform and convolution theorem, alongside the iterative approach within the framework of Volterra integral equations theory. The established criterion guarantees robust stability irrespective of the propagation delay's magnitude, facilitating the realization of approximate lag and anticipating synchronization in a pair of HR neurons. The approximate synchronizations are realized in the absence of direct time-delay coupling, with the Taylor series expansion serving as an alternative to the precise time-delay component. Numerical simulations are executed to validate the effectiveness of the suggested approximate synchronization approach. The research demonstrates that employing the current state of an HR neuron, despite having uncertain parameters, enables the accurate prediction of future states and the reconstruction of past states. This study provides a novel perspective for comprehending neural processes and the advantageous attributes inherent in nonlinear and chaotic systems.
Citation: Bin Zhen, Ya-Lan Li, Li-Jun Pei, Li-Jun Ouyang. The approximate lag and anticipating synchronization between two unidirectionally coupled Hindmarsh-Rose neurons with uncertain parameters[J]. Electronic Research Archive, 2024, 32(10): 5557-5576. doi: 10.3934/era.2024257
This research presents an adaptive synchronization approach crafted to facilitate exact lag synchronization between a pair of unidirectionally linked Hindmarsh-Rose (HR) neurons, taking into account both explicit propagation delays and the existence of uncertain parameters. The precise condition for lag synchronization is deduced analytically, utilizing the Laplace transform and convolution theorem, alongside the iterative approach within the framework of Volterra integral equations theory. The established criterion guarantees robust stability irrespective of the propagation delay's magnitude, facilitating the realization of approximate lag and anticipating synchronization in a pair of HR neurons. The approximate synchronizations are realized in the absence of direct time-delay coupling, with the Taylor series expansion serving as an alternative to the precise time-delay component. Numerical simulations are executed to validate the effectiveness of the suggested approximate synchronization approach. The research demonstrates that employing the current state of an HR neuron, despite having uncertain parameters, enables the accurate prediction of future states and the reconstruction of past states. This study provides a novel perspective for comprehending neural processes and the advantageous attributes inherent in nonlinear and chaotic systems.
[1] | J. L. Hindmarsh, R. M. Rose, A model of neuronal bursting using three coupled first-order differential equations, Proc. Roy. Soc. Lond. B, 221 (1984), 87–102. https://doi.org/10.1098/rspb.1984.0024 doi: 10.1098/rspb.1984.0024 |
[2] | R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466. https://doi.org/10.1016/S0006-3495(61)86902-6 doi: 10.1016/S0006-3495(61)86902-6 |
[3] | M. L. Rosa, M. I. Rabinovich, R. Huerta, H. D. I. Abarbanel, L. Fortuna, Slow regularization through chaotic oscillation transfer in an unidirectional chain of Hindmarsh-Rose models, Phys. Lett. A, 266 (2000), 88–93. https://doi.org/10.1016/S0375-9601(00)00015-3 doi: 10.1016/S0375-9601(00)00015-3 |
[4] | D. M. Semenov, A. L. Fradkov, Adaptive synchronization in the complex heterogeneous networks of Hindmarsh-Rose neurons, Chaos, Solitons Fractals, 150 (2021), 111170. https://doi.org/10.1016/j.chaos.2021.111170 doi: 10.1016/j.chaos.2021.111170 |
[5] | D. N. Hajian, J. Ramadoss, H. Natiq, F. Parastesh, K. Rajagopal, S. Jafari, Dynamics of Hindmarsh–Rose neurons connected via adaptive memristive synapse, Chin. J. Phys., 87 (2024), 311–329. https://doi.org/10.1016/j.cjph.2023.11.001 doi: 10.1016/j.cjph.2023.11.001 |
[6] | X. Q. Wu, X. Q. Wu, C. Y. Wang, B. Mao, J. A. Lu, J. H. L$\ddot{u}$, et al., Synchronization in multiplex networks, Phys. Rep., 1060 (2024), 1–54. https://doi.org/10.1016/j.physrep.2024.01.005 doi: 10.1016/j.physrep.2024.01.005 |
[7] | S. Ansarinasab, F. Parastesh, F. Ghassemi, K. Rajagopal, S. Jafari, D. Ghosh, Synchronization in functional brain networks of children suffering from ADHD based on Hindmarsh-Rose neuronal model, Comput. Biol. Med., 152 (2023), 106461. https://doi.org/10.1016/j.compbiomed.2022.106461 doi: 10.1016/j.compbiomed.2022.106461 |
[8] | E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore, Lag synchronization in time-delayed systems, Phys. Lett. A, 292 (2002), 320–324. https://doi.org/10.1016/S0375-9601(01)00824-6 doi: 10.1016/S0375-9601(01)00824-6 |
[9] | Z. L. Wang, X. R. Shi, Chaotic bursting lag synchronization of Hindmarsh–Rose system via a single controller, Appl. Math. Comput., 215 (2009), 1091–1097. https://doi.org/10.1016/j.amc.2009.06.039 doi: 10.1016/j.amc.2009.06.039 |
[10] | R. Smidtaite, L. Saunoriene, M. Ragulskis, Detection of lag synchronization based on matrices of delayed differences, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106864. https://doi.org/10.1016/j.cnsns.2022.106864 doi: 10.1016/j.cnsns.2022.106864 |
[11] | Q. Y. Wang, Q. S. Lu, G. R. Chen, Ordered bursting synchronization and complex wave propagation in a ring neuronal network, Physica A, 374 (2007), 869–878. https://doi.org/10.1016/j.physa.2006.08.062 doi: 10.1016/j.physa.2006.08.062 |
[12] | H. U. Voss, Anticipating Chaotic synchronization, Phys. Rev. E, 61 (2000), 5115–5119. https://doi.org/10.1103/physreve.61.5115 doi: 10.1103/physreve.61.5115 |
[13] | H. U. Voss, Dynamic long-term anticipation of chaotic states, Phys. Rev. Lett., 87 (2001), 014102. https://doi.org/10.1103/PhysRevLett.87.014102 doi: 10.1103/PhysRevLett.87.014102 |
[14] | M. Ciszak, C. Mayol, C. R. Mirasso, R. Toral, Anticipated synchronization in coupled complex Ginzburg-Landau systems, Phys. Rev. E, 92 (2015), 032911. https://doi.org/10.1103/PhysRevE.92.032911 doi: 10.1103/PhysRevE.92.032911 |
[15] | E. E. Mahmoud, M. Higazy, T. M. Al-Harthi, A new nine-dimensional chaotic lorenz system with quaternion variables: Complicated dynamics, electronic circuit design, anti-anticipating synchronization, and chaotic masking communication application, Mathematics, 7 (2019), 877. https://doi.org/10.3390/math7100877 doi: 10.3390/math7100877 |
[16] | K. Srinivasan, G. Sivaganesh, T. F. Fozin, I. R. Mohamed, Analytical studies on complete, lag and anticipation synchronization in cascaded circuits with numerical and experimental confirmation, AEU Int. J. Electron. Commun., 159 (2023), 154491. https://doi.org/10.1016/j.aeue.2022.154491 doi: 10.1016/j.aeue.2022.154491 |
[17] | M. G. Rosenblum, A. S. Pikovsky, J. Kurths, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78 (1997), 4193–4196. https://doi.org/10.1103/PhysRevLett.78.4193 doi: 10.1103/PhysRevLett.78.4193 |
[18] | T. Heil, I. Fischer, W. Els$\ddot{a}$sser, J. Mulet, C. R. Mirasso, Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers, Phys. Rev. Lett., 86 (2001), 795–798. https://doi.org/10.1103/PhysRevLett.86.795 doi: 10.1103/PhysRevLett.86.795 |
[19] | C. Masoller, Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback, Phys. Rev. Lett., 86 (2001), 2782–2785. https://doi.org/10.1103/PhysRevLett.86.2782 doi: 10.1103/PhysRevLett.86.2782 |
[20] | N. J. Corron, J. N. Blakely, S. D. Pethel, Lag and anticipating synchronization without time-delay coupling, Chaos, 15 (2005), 023110. https://doi.org/10.1063/1.1898597 doi: 10.1063/1.1898597 |
[21] | T. Pyragien$\dot{e}$, K. Pyragas, Anticipating spike synchronization in nonidentical chaotic neurons, Nonlinear Dyn., 74 (2013), 297–306. https://doi.org/10.1007/s11071-013-0968-7 doi: 10.1007/s11071-013-0968-7 |
[22] | T. Pyragien$\dot{e}$, K. Pyragas, Anticipating synchronization in a chain of chaotic oscillators with switching parameters, Phys. Lett. A, 379 (2015), 3084–3088. https://doi.org/10.1016/j.physleta.2015.10.030 doi: 10.1016/j.physleta.2015.10.030 |
[23] | D. H. Ji, S. C. Jeong, J. H. Park, S. M. Lee, S. C. Won, Adaptive lag synchronization for uncertain complex dynamical network with delayed coupling, Appl. Math. Comput., 218 (2012), 4872–4880. https://doi.org/10.1016/j.amc.2011.10.051 doi: 10.1016/j.amc.2011.10.051 |
[24] | Y. C. Liu, C. D. Li, T. W. Huang, X. Wang, Robust adaptive lag synchronization of uncertain fuzzy memristive neural networks with time-varying delays, Neurocomputing, 190 (2016), 188–196. https://doi.org/10.1016/j.neucom.2016.01.018 doi: 10.1016/j.neucom.2016.01.018 |
[25] | Z. K. Sun, W. Xu, X. L. Yang, Adaptive scheme for time-varying anticipating synchronization of certain or uncertain chaotic dynamical systems, Math. Comput. Modell., 48 (2008), 1018–1032. https://doi.org/10.1016/j.mcm.2007.12.009 doi: 10.1016/j.mcm.2007.12.009 |
[26] | H. D. I. Abarbanel, N. F. Rulkov, M. M. Sushchik, Generalized synchronization of chaos: The auxiliary system approach, Phys. Rev. E, 53 (1996), 4528–4535. https://doi.org/10.1103/PhysRevE.53.4528 doi: 10.1103/PhysRevE.53.4528 |
[27] | J. A. Nohel, Some problems in nonlinear Volterra integral equations, Bull. Amer. Math. Soc., 68 (1962), 323–329. https://doi.org/10.1090/S0002-9904-1962-10790-3 doi: 10.1090/S0002-9904-1962-10790-3 |