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Abstract: This research presents an adaptive synchronization approach crafted to facilitate exact
lag synchronization between a pair of unidirectionally linked Hindmarsh-Rose (HR) neurons, taking
into account both explicit propagation delays and the existence of uncertain parameters. The
precise condition for lag synchronization is deduced analytically, utilizing the Laplace transform
and convolution theorem, alongside the iterative approach within the framework of Volterra integral
equations theory. The established criterion guarantees robust stability irrespective of the propagation
delay’s magnitude, facilitating the realization of approximate lag and anticipating synchronization
in a pair of HR neurons. The approximate synchronizations are realized in the absence of direct
time-delay coupling, with the Taylor series expansion serving as an alternative to the precise time-
delay component. Numerical simulations are executed to validate the effectiveness of the suggested
approximate synchronization approach. The research demonstrates that employing the current state
of an HR neuron, despite having uncertain parameters, enables the accurate prediction of future states
and the reconstruction of past states. This study provides a novel perspective for comprehending neural
processes and the advantageous attributes inherent in nonlinear and chaotic systems.

Keywords: lag synchronization; anticipating synchronization; Hindmarsh-Rose neuron; Volterra
integral equations

1. Introduction

The Hindmarsh-Rose (HR) neuron model [1] continues to be among the most widely used
mathematical representations for characterizing the dynamics of an individual neuron. It is an
enhancement of Fitzhugh’s B.V.P. model [2], distinguished by the feature that each neuronal firing is
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followed by an extended interspike interval, a characteristic that closely mirrors the behavior observed
in actual neurons. The HR model adeptly encapsulates the quintessential features of neuronal activity,
encompassing both the genesis of action potentials and the manifestation of oscillations. Additionally,
the model incorporates nonlinear components that elucidate the gradual recovery and adaptive
processes witnessed in authentic neuronal functioning. Rosa et al. [3] examined a series of
unidirectional coupled HR neurons, each exhibiting periodic spiking behavior. They observed that the
initial periodic oscillations of certain neurons evolved into localized spiking-bursting chaos along the
network, which later transitioned into regular slow oscillations, despite the ongoing chaotic nature of
the spiking activity. The HR neuron model can exhibit complex dynamical behaviors, and therefore it
has been broadly applied to investigate the dynamics of individual neurons and their reciprocal
influences within neural networks [4, 5].

Synchronization is characterized by the alignment or unison of oscillations or behaviors within
separate systems or components. It materializes when a pair or more of oscillators or dynamical
systems synchronize their operations to achieve a state of phase-locking or to maintain a coherent
relationship as time progresses. Synchronization is a key phenomenon that manifests in a variety of
natural and man-made systems, with a wide array of applications spanning diverse domains [6]. The
synchronization of neuronal activity is integral to the processing of information and the execution of
cognitive functions within the brain. Grasping the principles of synchronization in neural systems
offers significant insights into brain functionality, cognitive mechanisms, and the nature of
neurological disorders. It holds significance for the innovation of new therapeutic approaches, the
evolution of brain-inspired computational models, and the progression of brain-machine interface
technologies [7].

Lag synchronization and anticipating synchronization are two specialized types of synchronization
phenomena that emerge in the context of dynamical systems. Traditional synchronization is
characterized by the real-time concordance of dynamical behaviors, whereas lag synchronization and
anticipating synchronization entail a temporal offset in the synchronization between the systems
involved. Lag synchronization is characterized by the synchronization of two interconnected systems’
states, albeit with a temporal delay or lag in their alignment. In this scenario, one system precedes or
follows the other by a consistent time delay [8]. The synchronization observed is not instantaneous,
but maintains a reliable relationship characterized by a constant phase discrepancy. The phenomenon
of lag synchronization is evident in a wide array of both natural and engineered systems, ranging from
systems of coupled oscillators and chaotic systems to biological systems, including but not limited to
neural networks [9–11]. Anticipating synchronization is distinguished by the capacity of one system
to project or foretell the forthcoming dynamics of its counterpart [12, 13]. In this instance, the
synchronizing system replicates the dynamics of the reference system, albeit with a temporal lead.
The system engaged in anticipating synchronization not only tracks the target system, but also
projects its forthcoming states. The occurrence of anticipating synchronization has been identified in
setups that incorporate time-delayed feedback within the context of neural networks, as well as in
predictive control systems. In the field of neuroscience, the study of anticipating synchronization has
been pursued to shed light on the brain’s neural coding processes and the mechanisms underlying
prediction [14, 15]. The phenomena of lag synchronization and anticipating synchronization exhibit
captivating behaviors and have been harnessed in a multitude of fields. They offer profound
understanding into the inner workings of intricate systems and pave the way for the creation of
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innovative technologies that leverage synchronization principles.
Exact synchronization, both in lag and anticipation forms, between a pair of oscillators can be

achieved through the application of explicit time delay coupling [11, 14]. Alternatively, approximate
lag synchronization can be instigated in reciprocally coupled oscillators that exhibit a disparity in
parameters [16]. Specifically, both intermittent and continuous lag synchronizations have manifested
as transitional stages en route from phase synchronization to full synchronization as the coupling
strength is augmented [17–19]. Anticipating synchronization has also been detected in systems that
do not incorporate time delays. This type of phenomenon was initially documented through the
classical Voss scheme, which substitutes the actual time-delay term with its first-order
approximation [20]. The research has substantiated the feasible existence of a real-time predictor for
chaotic dynamics in systems devoid of inherent delays. The Voss scheme facilitates the adjustment of
the anticipation time without necessitating any changes to the dynamics of the drive system. However,
the synchronization achieved in this manner is not perfectly precise. Pyragienė and Pyragas [21]
demonstrated that anticipating synchronization can emerge in unidirectionally coupled chaotic
systems that are not identical, possess significantly disparate parameters, and operate without
self-feedback of time-delay in the slave system. To transcend the constraint of a brief anticipation
time, Pyragienė and Pyragas introduced an innovative coupling scheme devoid of time-delay. This
scheme comprises a master system and two slave systems arranged in series, with the use of switching
parameters to accomplish anticipating synchronization over an extended anticipation period [22]. In
each of the aforementioned scenarios, it is imperative to have prior knowledge of all the parameters of
the interconnected systems to ascertain the conditions for lag and anticipating synchronization. Ji et
al. [23], Liu et al. [24], and Sun et al. [25] developed adaptive control mechanisms aimed at realizing
lag and anticipating synchronization in systems with time delays and uncertain parameters, leveraging
the Lyapunov stability theory. However, the synchronization conditions obtained using the Lyapunov
method are usually too conservative, which is not conducive to their practical implementation in
real-world applications. Actually, relatively few studies have been made available in the literature
concerning the approximate lag and anticipating synchronization of interconnected oscillators that
encompass uncertain parameters in the absence of time delay.

In this manuscript, we introduce an innovative coupling strategy devoid of time delays tailored for
a pair of HR neurons characterized by uncertain parameters, facilitating the achievement of
approximate lag and anticipating synchronization. Initially, we devise an adaptive control mechanism
and formulate the precise condition for lag synchronization between two HR neurons, factoring in
time-delayed coupling and the presence of uncertain parameters. Divergent from other studies, lag
synchronization is regarded here as a distinct variant of generalized synchronization, which can be
explored through the application of the auxiliary system methodology [26]. We did not use the
Lyapunov method, even though there are unknown parameters in the coupled systems. Numerical
simulations are conducted to affirm the stability of the synchronization condition across a range of
time delay values. A broad spectrum of approximate lag and anticipating synchronization can be
attained by substituting the actual time delay term with its Taylor series expansion. This research
provides a method that utilizes the present condition of an HR neuron with uncertain parameters and
facilitates the precise forecasting of subsequent states and the reconstitution of antecedent states.

The structure of the paper is outlined as follows. In Section 2, we elucidate our proposed coupling
scheme, while Section 3 is dedicated to the derivation of analytical conditions for precise lag
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synchronization. Section 4 focuses on the formulation of parameter update laws, along with
numerical illustrations of exact lag synchronization between a pair of HR neurons featuring time
delay coupling and an examination of its resilience to variations in time delay. Section 5 delves into
the achievements of approximate lag and anticipating synchronization. Finally, Section 6 presents our
concluding remarks.

2. A scheme for exact lag synchronization

The form of the HR neuron system is given by

u̇ = v − au3 + bu2 − w + Iext,

v̇ = c − du2 − v,

ẇ = rs0(u − x0) − rw,

(2.1)

where u is the membrane potential, v is a recovery variable associated with fast current of N+a or K+

ions, and w represents a slowly changing adaptation current of, for example, C+a ions. a, b, c, d, s0, r,
and x0 are uncertain parameters to be identified, and Iext is the external current input.

The HR neuronal model is a widely utilized mathematical framework for depicting the intricate
dynamics of neuronal activity. It employs a set of three interconnected first-order differential
equations to mimic the fluctuating membrane potentials of neurons, which can result in diverse
neuronal activities such as quiescence, spiking, and bursting. However, in real-world scenarios, the
HR model’s parameters can be subject to uncertainty due to a range of influences, including errors in
measurement, simplifications made in the model, and the natural variation present within biological
systems. Investigating the synchronization of HR neuronal systems with uncertain parameters is
essential for gaining insights and exerting control over the chaotic dynamics of neurons. For
system (2.1), we consider all parameters to be uncertain. By implementing an adaptive control
strategy and establishing the parameter update laws, we aim to realize in this section exact lag
synchronization between a pair of HR neurons, all without the need for precise knowledge of the
system’s parameters.

If the true values of the uncertain parameters of system (2.1) are chosen as a = 1.0, b = 3.0,
c = 1.0, d = 5.0, r = 0.006, s0 = 4.0, x0 = −1.6, and Iext = 3.0, system (2.1) is chaotic bursting. For
convenience, by moving the equilibrium of system (2.1) to the origin, it can be rewritten as

ẋ1 = −ϕ1x3
1 + ϕ5x2

1 + ϕ6x1 + x2 − x3,

ẋ2 = −ϕ2x2
1 + ϕ7x1 − x2,

ẋ3 = ϕ3(ϕ4x1 − x3),
(2.2)

where ϕ1 = a, ϕ2 = d, ϕ3 = r, ϕ4 = s0, ϕ5 = −3au0 + b, ϕ6 = −3au2
0 + 2bu0, ϕ7 = −2du0, and u0 is the

unique real root to equation

au3
0 + (d − b)u2

0 + s0u0 − (s0x0 + c + Iext) = 0. (2.3)

In the following, we consider ϕ j, j = 1, 2, · · · , 7, as uncertain parameters in system (2.2) to be
identified. The true values of the uncertain parameters ϕ j, j = 1, 2, · · · , 7, are taken as (ϕ4,5,6 are
obtained on basis of Eq (2.3))

ϕ01 = 1.0, ϕ02 = 5.0, ϕ03 = 0.006, ϕ04 = 4.0, ϕ05 = 5.3646, ϕ06 = −6.5931, ϕ07 = 7.8822. (2.4)
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System (2.2) is chosen as the drive system, and the response HR neuron system is described
as follows:

ẏ1 = −ψ11y3
1 + ψ15y2

1 + ψ16y1 + y2 − y3 + kδ1,

ẏ2 = −ψ12y2
1 + ψ17y1 − y2,

ẏ3 = ψ13(ψ14y1 − y3),
(2.5)

where ψ1 j, j = 1, 2, · · · , 7, are the estimated values of uncertain parameters ϕ j, respectively, k is the
control parameter, and δ1 = x1(t − τ) − y1, τ is the time delay in the signal transmission. If there exists

lim
t→∞
||xi(t − τ) − yi|| = 0, i = 1, 2, 3, (2.6)

then lag synchronization is said to be reached for two HR neurons in systems (2.2) and (2.5).
To determine the uncertain parameters in systems (2.2) and (2.5), the parameter update laws are

designed as follows:
ψ̇1 j = g j(ψ1 j − ϕ j, δ1), j = 1, 2, · · · , 7, (2.7)

where g j : R → R are functions satisfying g j(0, 0) = 0, j = 1, 2, · · · , 7. Our objective is to identify
suitable expressions for g j, j = 1, 2, · · · , 7, in Eq (2.7) and to select an appropriate range for k within
Eq (2.5). This selection is intended to facilitate lag synchronization between the systems described by
Eqs (2.2) and (2.5). Concurrently, ψ1 j in Eqs (2.5) and (2.7) should converge to their respective values
ϕ j, j = 1, 2, · · · , 7.

Indeed, the lag synchronization occurring between systems (2.2) and (2.5) can be classified as a
distinct variant of generalized synchronization. This phenomenon can be identified by employing
the method of an auxiliary system, as referenced in [26]. Let us contemplate the scenario where
systems (2.5) and (2.7) are identical replicas, both being influenced by an identical signal emanating
from system (2.2),

ż1 = −ψ21z3
1 + ψ25z2

1 + ψ26z1 + z2 − z3 + kδ2,

ż2 = −ψ22z2
1 + ψ27z1 − z2,

ż3 = ψ23(ψ24z1 − z3),
ψ̇2 j = g j(ψ2 j − ϕ j, δ2), j = 1, 2, · · · , 7,

(2.8)

where ψ2 j, j = 1, 2, · · · , 7, are the estimated values of uncertain parameters ϕ j, respectively, and
δ2 = x1(t − τ)− z1. From the auxiliary system approach, lag synchronization in systems (2.2) and (2.5)
can be reached, and ψ1 j adapt themselves to the true values ψ1 j = ϕ j, j = 1, 2, · · · , 7, respectively, if
the following conditions are satisfied:

lim
t→∞
||yi − zi|| = 0, i = 1, 2, 3,

lim
t→∞
||ψ1 j − ψ2 j|| = 0, j = 1, 2, · · · , 7.

(2.9)

3. Identification of the exact lag synchronization condition

By letting

e1 =
y1 − z1

2
, e2 =

y2 − z2

2
, e3 =

y3 − z3

2
, e4 j =

ψ1 j − ψ2 j

2
,

e5 =
y1 + z1

2
, e6 =

y2 + z2

2
, e7 =

y3 + z3

2
, e8 j =

ψ1 j + ψ2 j

2
, j = 1, 2, · · · , 7,
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systems (2.2), (2.5), (2.7), and (2.8) are given as

ė1 = (e86 − k)e1 + e2 − e3 + (2e85e5 − 3e81e2
5)e1 + (e45 − 3e41e5)e2

1 − e81e3
1 + e46e5 + e45e2

5 − e41e3
5,

ė2 = (e87 − 2e82e5)e1 − e2 + e47e5 − e42(e2
1 + e2

5),

ė3 = (e43e44 + e83e84)e1 − e83e3 + (e43e84 + e44e83)e5 − e43e7,

ė4 j =
1
2

[g j(e8 j + e4 j − ϕ j, x1(t − τ) − e5 − e1) − g j(e8 j − e4 j − ϕ j, x1(t − τ) − e5 + e1)],

ė5 = e46e1 + e85e2
1 − e41e3

1 + (e86 + 2e1e45 − 3e81e2
1)e5 + (e85 − 3e1e41)e2

5 − e81e3
5 + e6 − e7 + k(x1(t − τ) − e5),

ė6 = e47e1 + (e87 − 2e42e1)e5 − e6 − e82(e2
1 + e2

5),

ė7 = (e43e44 + e83e84)e5 + (e84e1 − e3)e43 + e83(e44e1 − e7),

ė8 j =
1
2

[g j(e8 j + e4 j − ϕ j, x1(t − τ) − e5 − e1) + g j(e8 j − e4 j − ϕ j, x1(t − τ) − e5 + e1)], j = 1, 2, · · · , 7.

(3.1)

Condition (2.9) becomes
lim
t→∞
||ei|| = 0, i = 1, 2, 3,

lim
t→∞
||e4 j|| = 0, j = 1, 2, · · · , 7.

(3.2)

If condition (3.2) is satisfied, then it is evident that e8 j → ϕ j, j = 1, 2, · · · , 7, holds. For sufficiently
small e1,2,3 and e4 j, j = 1, 2, · · · , 7, e8 j can be expressed as e8 j = ϕ j + U8 j(t), j = 1, 2, · · · , 7.
Simultaneously, near the origin, the right-hand side of the first four equations in system (3.1) can be
written as

ė1 = (ϕ6 − k)e1 + e2 − e3 + P1,

ė2 = ϕ7e1 − e2 + P2,

ė3 = ϕ3ϕ4e1 − ϕ3e3 + P3,

ė4 j = γ1 je1 + γ2 je4 j + F j, j = 1, 2, · · · , 7,

(3.3)

where

P1 = (2e85e5 − 3e81e2
5)e1 + (e45 − 3e41e5)e2

1 − e81e3
1 + e46e5 + e45e2

5 − e41e3
5 + U86(t)e1,

P2 = −2e82e5e1 + e47e5 − e42(e2
1 + e2

5) + U87(t)e1,

P3 = e43e44e1 + (e43e84 + e44e83)e5 − e43e7 + U83(t)U84(t) − U83(t)e3,

γ1 j = −
∂g j(0, 0)
∂δ1

, γ2 j =
∂g j(0, 0)
∂(ψ1 j − ϕ j)

,

F j =
1

(2n + 1)!

∞∑
n=1

[
∂(2n+1)g j(0, 0)
∂(ψ1 j − ϕ j)(2n+1) e(2n+1)

4 j −
∂(2n+1)g j(0, 0)

∂δ(2n+1)
1

e(2n+1)
1 ], j = 1, 2, · · · , 7.

Consider the following definition of the Laplace transform pair:

Ei(s) = L[ei] =
∫ +∞

0
ei(t)e−stdt, E4 j(s) = L[e4 j] =

∫ +∞

0
e4 j(t)e−stdt,

ei(t) = L−1[Ei] =
1

2πi

∫ σ+i∞

σ−i∞
Ei(s)estds, e4 j(t) = L−1[E4 j] =

1
2πi

∫ σ+i∞

σ−i∞
E4 j(s)estds,

i = 1, 2, 3; j = 1, 2, · · · , 7.

(3.4)
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Taking the Laplace transforms on both sides of system (3.3), one has

(S − M)[E1, E2, E3, E4 j]T = [e10, e20, e30, e4 j0]T + [W1,W2,W3,W4 j]T , (3.5)

where

S =


s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 sI7

 , M =


ϕ6 − k 1 −1 0
ϕ7 −1 0 0
ϕ3ϕ4 0 −ϕ3 0
γ1 0 0 γ2

 ≡ ï M1 M2

M3 γ2

ò
, (3.6)

I7 is the 7× 7 real identity matrix; γ1 = [γ11, γ12, · · · , γ17]T , γ2 = diag{γ21, γ22, · · · , γ27}; ei0, i = 1, 2, 3,
and e4 j0, j = 1, 2, · · · , 7, are given initial values of system (3.3); and W1,2,3 and W4 j, j = 1, 2, · · · , 7, are
the Laplace transforms of the nonlinear parts P1,2,3 and F j, j = 1, 2, · · · , 7, in Eq (3.3), respectively,
i.e.,

Wi = L[Pi], i = 1, 2, 3; W4 j = L[F j], j = 1, 2, · · · , 7.

Solving Eq (3.5) using Cramer’s rule yields

E1 =
e10s2 + β4s + β5

D1(s)
+

[s2 + (ϕ3 + 1)s + ϕ3]W1

D1(s)
+

(s + ϕ3)W2

D1(s)
−

(s + 1)W3

D1(s)
,

E2 =
e20s2 + β6s + β7

D1(s)
+
ϕ7(s + ϕ3)W1

D1(s)
+

[s2 + (β1 − 1)s + β8]W2

D1(s)
−
ϕ7W3

D1(s)
,

E3 =
e30s2 + β9s + β10

D1(s)
+
ϕ3ϕ4(s + 1)W1

D1(s)
+
ϕ3ϕ4W2

D1(s)
+

[s2 + (β1 − ϕ3)s + (k − ϕ6 − ϕ7)]W3

D1(s)
,

E4 j =
e4 j0

s − γ2 j
+
γ1 jE1 +W4 j

s − γ2 j
, j = 1, 2, · · · , 7,

(3.7)

where D1(s) = s3 + β1s2 + β2s + β3, which is the characteristic polynomial of matrix M1 in Eq (3.6);
β1 = k+ϕ3+1−ϕ6, β2 = (k+ϕ4+1−ϕ6)ϕ3+k−ϕ6−ϕ7, β3 = (k+ϕ4−ϕ6−ϕ7)ϕ3, β4 = e10(ϕ3+1)+e20−e30,
β5 = ϕ3(e10 + e20) − e30, β6 = e10ϕ7 + e20(k + ϕ3 − ϕ6), β7 = e20ϕ3(k + ϕ4 − ϕ6) + (e10ϕ3 − e30)ϕ7,
β8 = ϕ3(k + ϕ4 − ϕ6), β9 = e30(k + 1 − ϕ6) + e10ϕ3ϕ4, β10 = e30(k − ϕ6 − ϕ7) + ϕ3ϕ4(e10 + e20).

Taking the inverse Laplace transforms of Eq (3.7) and applying the convolution theorem produces

e1 = Γ1(t) +
∫ t

0
Γ2(t − τ)P1(τ)dτ +

∫ t

0
Γ3(t − τ)P2(τ)dτ −

∫ t

0
Γ4(t − τ)P3(τ)dτ,

e2 = Γ5(t) + ϕ7

∫ t

0
Γ3(t − τ)P1(τ)dτ +

∫ t

0
Γ6(t − τ)P2(τ)dτ − ϕ7

∫ t

0
Γ7(t − τ)P3(τ)dτ,

e3 = Γ8(t) + ϕ3ϕ4

∫ t

0
Γ4(t − τ)P1(τ)dτ + ϕ3ϕ4

∫ t

0
Γ7(t − τ)P2(τ)dτ +

∫ t

0
Γ9(t − τ)P3(τ)dτ,

e4 j = e4 j0eγ2 jt + γ1 j

∫ t

0
eγ2 j(t−τ)e1(τ)dτ +

∫ t

0
eγ2 j(t−τ)F j(τ)dτ, j = 1, 2, · · · , 7,

(3.8)
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in which

Γ1(t) = L−1[
e10s2 + β4s + β5

D1(s)
], Γ2(t) = L−1[

s2 + (ϕ3 + 1)s + ϕ3

D1(s)
], Γ3(t) = L−1[

s + ϕ3

D1(s)
],

Γ4(t) = L−1[
s + 1
D1(s)

], Γ5(t) = L−1[
e20s2 + β6s + β7

D1(s)
], Γ6(t) = L−1[

s2 + (β1 − 1)s + β8

D1(s)
],

Γ7(t) = L−1[
1

D1(s)
], Γ8(t) = L−1[

e30s2 + β9s + β10

D1(s)
], Γ9(t) = L−1[

s2 + (β1 − ϕ3)s + (k − ϕ6 − ϕ7)
D1(s)

].

Theorem 3.1. The necessary condition for ei → 0, e4 j → 0, i = 1, 2, 3, j = 1, 2, · · · , 7, with t → ∞ in
Eq (3.8) is that all eigenvalues of matrix M1 defined in Eq (3.6) have negative real parts, and

γ2 j =
∂g j(0, 0)
∂(ψ1 j − ϕ j)

< 0, j = 1, 2, · · · , 7. (3.9)

Proof. Without loss of generality, consider the inverse Laplace transform of the true fraction

A1s2 + A2s + A3

D1(s)

where Ai, i = 1, 2, 3, are constants, and D1(s) is the characteristic polynomial of matrix M1 in Eq (3.6).
There exist the following four cases:

• D1(s) has 3 distinct real roots: s1, s2, s3
A1 s2+A2 s+A3

D1(s) = B1
s−s1
+ B2

s−s2
+ B3

s−s3
,

where Bi =
A1 s2+A2 s+A3

D1(s) (s − si)
∣∣∣∣

s=si

, i = 1, 2, 3.

L−1[ A1 s2+A2 s+A3
D1(s) ] = B1es1t + B2es2t + B3es3t.

• D1(s) has a pair of conjugate complex roots s1,2 = ω1 ± jω2 and a real root s3 = ω3
A1 s2+A2 s+A3

D1(s) = A1 s2+A2 s+A3
(s−ω1− jω2)(s−ω1+ jω2)(s−ω3) =

B1
s−ω1− jω2

+ B2
s−ω1+ jω2

+ B3
s−ω3

,

where B1,2 =
A1 s2+A2 s+A3

D′1(s)

∣∣∣∣
s=ω1± jω2

, B3 =
A1 s2+A2 s+A3

D1(s) (s − ω3)
∣∣∣∣

s=ω3

,

L−1[ A1 s2+A2 s+A3
D1(s) ] = B1e(ω1+ jω2)t + B2e(ω1− jω2)t + B3eω3t.

• D1(s) has two repeated real roots s1,2 = s0 and one simple real root s3 = sk
A1 s2+A2 s+A3

D1(s) = B1
s−s0
+ B2

(s−s0)2 +
B3

s−sk
,

where B1 =
1
2

d2

ds2 [ A1 s2+A2 s+A3
D1(s) (s − s0)2]

∣∣∣∣
s=s0

, B2 =
A1 s2+A2 s+A3

D1(s) (s − s0)2

∣∣∣∣
s=s0

,

B3 =
A1 s2+A2 s+A3

D1(s) (s − sk)
∣∣∣∣

s=sk

,

L−1[ A1 s2+A2 s+A3
D1(s) ] = (B1 + B2t)es0t + B3eskt.

• D1(s) has a triple real root: s1,2,3 = s0
A1 s2+A2 s+A3

D1(s) = B1
s−s0
+ B2

(s−s0)2 +
B3

(s−s0)3 ,

where B(3−i) =
1
i!

di

dsi [ A1 s2+A2 s+A3
D1(s) (s − s0)3]

∣∣∣∣
s=s0

, i = 1, 2,
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B3 = [ A1 s2+A2 s+A3
D1(s) (s − s0)3]

∣∣∣∣
s=s0

,

L−1[ A1 s2+A2 s+A3
D1(s) ] = (B1 + B2t + B3t2)es0t.

Clearly, from the first three equations in Eq (3.8), the necessary condition for ei → 0, i = 1, 2, 3,
is that all roots of D1(s) = 0 have negative real parts. That is, all eigenvalues of matrix M1 defined
in Eq (3.6) have negative real parts. From the fourth equation in Eq (3.8), it is obvious that γ2 j < 0,
j = 1, 2, · · · , 7, is necessary for e4 j → 0, j = 1, 2, · · · , 7.

Under the conditions given in Theorem 3.1, system (3.8) becomes

e1 =

∫ t

0
Γ2(t − τ)P1(τ)dτ +

∫ t

0
Γ3(t − τ)P2(τ)dτ −

∫ t

0
Γ4(t − τ)P3(τ)dτ,

e2 = ϕ7

∫ t

0
Γ3(t − τ)P1(τ)dτ +

∫ t

0
Γ6(t − τ)P2(τ)dτ − ϕ7

∫ t

0
Γ7(t − τ)P3(τ)dτ,

e3 = ϕ3ϕ4

∫ t

0
Γ4(t − τ)P1(τ)dτ + ϕ3ϕ4

∫ t

0
Γ7(t − τ)P2(τ)dτ +

∫ t

0
Γ9(t − τ)P3(τ)dτ,

e4 j = γ1 j

∫ t

0
eγ2 j(t−τ)e1(τ)dτ +

∫ t

0
eγ2 j(t−τ)F j(τ)dτ, j = 1, 2, · · · , 7,

(3.10)

Theorem 3.2. ei = 0, e4 j = 0, i = 1, 2, 3, j = 1, 2, · · · , 7, are the unique continuous solutions to
Eq (3.10).

Proof. In fact, system (3.10) comprises a collection of Volterra integral equations which can be
resolved through the method of successive approximations, as outlined in [27]. Consider the integral
equation of the form

y(t) = Φ(t) +
∫ t

0
H(t − τ) f (τ, y(τ))dτ, (3.11)

where y(t) ∈ Rn, H is an n× n matrix, and Φ(t) and f (t, y(t)) are vectors with n components. Moreover,
the following conditions are satisfied:

• |y(t)| < ∞;
• Φ(t) and f are continuous for 0 < t < t0, in which 0 < t0 < +∞;
• |H| ∈ L[0, ϵ] holds for any 0 < ϵ < t0;
• For any η > 0, there must exist a constant ρ(η) > 0 such that

| f (t, y1) − f (t, y2)| ≤ ρ(η)|y1 − y2|, (|y1|, |y2| ≤ η).

From the results given by Nohel [27], the successive approximations

ξ0(t) = 0, ξn+1(t) = Φ(t) +
∫ t

0
H(t − τ) f (τ, ξn(τ))dτ, n = 0, 1, 2, · · · ,

will uniformly converge to the unique continuous solution y(t) = ξ(t) of Eq (3.11).
Upon juxtaposing equations (3.10) and (3.11), it becomes straightforward to verify that ei = 0,

e4 j = 0, i = 1, 2, 3, j = 1, 2, · · · , 7, are the unique continuous solutions to Eq (3.10).

If condition (3.2) is met, it implies that condition (2.6) is also fulfilled. Meanwhile, ψ1 j in Eqs (2.5)
and (2.7) converge to their respective values ϕ j, j = 1, 2, · · · , 7, respectively. From Theorems 3.1
and 3.2, we have the following result.
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Theorem 3.3. Lag synchronization can be accomplished between systems (2.2) and (2.5) with
parameter update laws (2.7), and the variables ψ1 j within Eqs (2.5) and (2.7) will adjust to align with
the values of ϕ j for j = 1, 2, · · · , 7, provided that every eigenvalue of the matrices γ2 and M1 (as
specified in Eq (3.6)) possesses a negative real component.

Remark 1. The condition stipulated in Theorem (3.3) is independent of the time delay τ, indicating
its universal applicability regardless of the time delay’s magnitude. As a result, the stability of lag
synchronization between systems (2.2) and (2.5), when governed by the parameter update laws (2.7),
is maintained for any time delay value.

4. The design of parameter update laws and numerical demonstrations

According to the expressions of γ1 j and F j, j = 1, 2, · · · , 7, given in Eq (3.3), if one chooses
appropriate parameter update laws so that

∂ng j(0, 0)
∂δn

1
= 0, n = 1, 3, 5, · · · , (4.1)

then under the above circumstances, e4 j, j = 1, 2, · · · , 7, is independent of e1,2,3. At this juncture,
provided that condition (3.9) is met, the estimated values of the uncertain parameters, denoted by
ψ1 j for j = 1, 2, · · · , 7 in Eq (2.5), will invariably converge to their respective true values of ϕ j over
time. This convergence is assured, irrespective of whether lag synchronization is achieved between the
systems represented by Eqs (2.2) and (2.5). To elucidate the aforementioned discoveries, we consider
that the parameter update laws in Eq (2.7) have the following form:

ψ̇1 j = g j(ψ1 j − ϕ j, δ1) = −(ψ j − ϕ j) + 1 − cos(δ1), j = 1, 2, · · · , 7. (4.2)

From Eq (3.3), one can check that γ2 j = −1 < 0, for j = 1, 2, · · · , 7. Additionally,

∂ng j(ψ1 j − ϕ j, δ1)
∂δn

1
=

{
(−1)

n−1
2 sin(δ1), n = 1, 3, 5, · · ·

(−1)
n+2

2 cos(δ1), n = 2, 4, 6, · · ·
. (4.3)

Obviously, the parameter update laws designed in Eq (4.2) satisfy condition (4.1). Let us assume
that in system (4.2) the values of ψ1 j individually converge to ψ1 j0 for each j ranging from 1 to 7 after
an adequate duration has passed. Based on Theorem 3.3, lag synchronization between systems (2.2)
and (2.5) will be achieved if all eigenvalues of the following matrix have negative real parts

M1 =

 ψ160 − k 1 −1
ψ170 −1 0

ψ130ψ140 0 −ψ130

 . (4.4)

On the basis of the Routh-Hurwitz criterion, the range of k can be determined through the
following inequality:
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k > ψ160 − ψ130 − 1, k >
(−ψ140 + ψ160 − 1)ψ130 + ψ160 + ψ170

1 + ψ130
,

k > −ψ140 + ψ160 + ψ170, (ψ130 + 1)k2 + θ1k + θ2 > 0,
(4.5)

where

θ1 = ψ130
2 + (ψ140 − 2ψ160 + 2)ψ130 − 2ψ160 − ψ170 + 1,

θ2 = (ψ140 − ψ160 + 1)ψ130
2 + (ψ160

2 − (ψ140 + 2)ψ160) + 1)ψ130 + ψ160
2 + (ψ170 − 1)ψ160 − ψ170.

(a) τ = 0 (b) τ = 1

(c) τ = 5 (d) τ = 10

Figure 1. Lag synchronization between systems (2.2) and (2.5) with parameter update laws
(4.2) can not be achieved for any value of τ when the control parameter is set to k = 0.5
(a) τ = 0 (b) τ = 1 (c) τ = 5 (d) τ = 10. The initial conditions are taken as x1(t) = 0.1,
x2(t) = 0.2, x3(t) = 0.3 for t ∈ (−τ, 0], and y1(0) = 0.1, y2(0) = 0.2, y3(0) = 0.2, ψ2i(0) = 2.0,
i = 1, 2, · · · , 7. x1,2,3 (solid line −), y1,2,3 (dot dash line −.).
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Figure 2. The estimates of the uncertain parameters of systems (2.2) and (2.5) with parameter
update laws (4.2). The initial conditions are chosen as x1(t) = 0.1, x2(t) = 0.2, x3(t) = 0.3
for t ∈ (−τ, 0] and y1(0) = 0.1, y2(0) = 0.2, y3(0) = 0.2, ψ1 j(0) = 2.0, j = 1, 2, · · · , 7. The
control parameter is set to k = 0.5.

We conduct numerical simulations on systems (2.2) and (2.5) employing the parameter update laws
specified in Eq (4.2) to validate the accuracy of the aforementioned analytical findings. The true values
of the uncertain parameters ϕ j, j = 1, 2, · · · , 7, are presented in Eq (2.4). The initial conditions are
chosen as x1(t) = 0.1, x2(t) = 0.2, x3(t) = 0.3 for t ∈ (−τ, 0] and y1(0) = 0.1, y2(0) = y3(0) = 0.2,
ψ1i(0) = 2.0, i = 1, 2, · · · , 7. The control parameter is arbitrarily set to k = 0.5. Despite the absence of
lag synchronization between systems (2.2) and (2.5), as depicted in Figure 1, the estimated parameters
ψ1 j within these systems continue to align with the true values of ϕ j, for j = 1, 2, · · · , 7, i.e., ψ110 = 1.0,
ψ120 = 5.0, ψ130 = 0.006, ψ140 = 4.0, ψ150 = 5.3646, ψ160 = −6.5931, and ψ170 = 7.8822, as shown in
Figure 2.

To fulfill the requirement of condition (4.5), we opt for k = 1.5 and proceed with the numerical
simulations for systems (2.2) and (2.5), utilizing the parameter update laws as outlined in Eq (4.2). The
parameters and initial conditions, aside from the value of k being adjusted, are consistent with those
depicted in Figure 1. The numerical findings, as illustrated in Figure 3, substantiate the effectiveness
of the lag synchronization criteria established in the preceding section.
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(a) τ = 0 (b) τ = 1

(c) τ = 5 (d) τ = 10

Figure 3. Lag synchronization between systems (2.2) and (2.5) with parameter update laws
(4.2) can be achieved for any value of τ when the control parameter is set to k = 1.5 (a)
τ = 0 (b) τ = 1 (c) τ = 5 (d) τ = 10. The initial conditions are taken as x1(t) = 0.1,
x2(t) = 0.2, x3(t) = 0.3 for t ∈ (−τ, 0] and y1(0) = 0.1, y2(0) = 0.2, y3(0) = 0.2, ψ1 j(0) = 2.0,
j = 1, 2, · · · , 7. x1,2,3 (solid line −), y1,2,3 (dot dash line −.).

5. The approximation of lag and anticipating synchronization

In this section, we delve into the investigation of approximate lag and anticipating synchronization
phenomena between systems (2.2) and (2.5), considering a scenario without an explicit time delay. In
the preceding section, we examined the stability of lag synchronization between systems (2.2) and (2.5)
under parameter update laws (4.2), which is maintained for all values of τ. To achieve approximate lag
and anticipating synchronization, we propose substituting the actual time-delay term x1(t − τ) with its
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Taylor series expansion. Near τ = 0, x1(t − τ) in system (2.5) can be approximately expanded as

x1(t − τ) = x1 −
dx1

dt
τ +

1
2!

d2x1

dt2 τ
2 −

1
3!

d3x1

dt3 τ
3 + · · · , (5.1)

where dix1/dti, i = 1, 2, 3, can be determined by taking the derivatives with respect to t on both sides
of the first equation in system (2.2), in which the uncertain parameters ϕi are replaced by using their
estimated values ψ1 j, i = 1, 2, · · · , 7, respectively,

dx1

dt
= −ψ110x3

1 + ψ150x2
1 + ψ160x1 + x2 − x3,

d2x1

dt2 = (−3ψ110x2
1 + 2ψ150x1 + ψ160)

dx1

dt
− ψ120x2

1 + ψ170x1 − x2 − ψ130(ψ140x1 − x3),

d3x1

dt3 = (−3ψ110x2
1 + 2ψ150x1 + ψ160)

d2x1

dt2 + 2(ψ150 − 3ψ110x1)(
dx1

dt
)2 + (ψ170 − 2ψ120x1 − ψ130ψ140)

dx1

dt
+ ψ2

130(ψ140x1 − x3) + ψ120x2
1 − ψ170x1 + x2.

(5.2)

Define the following functions of τ:

Q1(τ) = x1 −
dx1

dt
τ,

Q2(τ) = x1 −
dx1

dt
τ +

1
2!

d2x1

dt2 τ
2,

Q3(τ) = x1 −
dx1

dt
τ +

1
2!

d2x1

dt2 τ
2 −

1
3!

d3x1

dt3 τ
3.

(5.3)

Q1,2,3 are the first, second, and third-order approximate expressions of x1(t − τ), respectively. From
the analysis in previous sections, for small time delay τ the response of system (2.5) with
x1(t − τ) = Qi, i = 1, 2, 3, allows an approximate time-shifted synchronization that lags or anticipates
the drive of system (2.2) with the lag τ. Actually, system (2.5) with x1(t − τ) = Qi, i = 1, 2, 3, is an
intentionally mismatched response system that yields lag (τ > 0) and anticipating (τ < 0)
synchronization. Numerical simulations are conducted for systems (2.2) and (2.5), incorporating
parameter update laws (4.2) and the approximations x1(t − τ) = Qi, for i = 1, 2, 3. These simulations
are presented in Figures 4 and 5, showcasing the approximate time-shifted synchronizations achieved
without the use of time delay coupling. The control parameter is taken as k = 1.5 and the initial
conditions are chosen as x1(0) = y1(0) = 0.1, x2(0) = y2(0) = y3(0) = 0.2, x3(0) = 0.3, and
ψ1 j(0) = 2.0, j = 1, 2, · · · , 7.

Figures 4 and 5 demonstrate that a broad spectrum of approximate lag and anticipation
synchronization is attainable in the two HR neurons, even in the absence of time delay coupling.
Overall, employing a higher-order approximation for the actual time delay x1(t − τ) can enhance the
precision of the approximation. Consequently, the scope of approximate lag and anticipation can be
expanded by incorporating additional higher-order derivatives from the Taylor series expansion. The
investigation presented in this section suggests that an HR neuron is capable of precisely
approximating both past and future signals based solely on its current signal.
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(a) replace x1(t − τ) with Q1, τ = 0.1, 0.3, 0.5 (b) replace x1(t − τ) with Q1, τ = 0.6, 0.8, 1

(c) replace x1(t − τ) with Q2, τ = 0.1, 0.3, 0.5 (d) replace x1(t − τ) with Q2, τ = 0.6, 0.8, 1

(e) replace x1(t − τ) with Q3, τ = 0.1, 0.3, 0.5 (f) replace x1(t − τ) with Q3, τ = 0.6, 0.8, 1

Figure 4. The approximate lag synchronization between systems (2.2) and (2.5) with the
parameter update laws (4.2) for different values of τ. x1(t−τ) in system (2.5) is replaced with
Qi, i = 1, 2, 3, respectively. The control parameter is set to k = 1.5. The initial conditions
are taken as x1(0) = y1(0) = 0.1, x2(0) = y2(0) = y3(0) = 0.2, x3(0) = 0.3, and ψ1 j(0) = 2.0,
j = 1, 2, · · · , 7. x1 (solid line −), y1 (dot dash line −.).
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(a) replace x1(t − τ) with Q1, τ = −0.1,−0.3,−0.5 (b) replace x1(t − τ) with Q1, τ = −0.6,−0.8,−1

(c) replace x1(t − τ) with Q2, τ = −0.1,−0.3,−0.5 (d) replace x1(t − τ) with Q2, τ = −0.6,−0.8,−1

(e) replace x1(t − τ) with Q3, τ = −0.1,−0.3,−0.5 (f) replace x1(t − τ) with Q3, τ = −0.6,−0.8,−1

Figure 5. The approximate anticipating synchronization between systems (2.2) and (2.5)
with parameter update laws (4.2) for different values of τ. x1(t − τ) in system (2.5) is
replaced with Qi, i = 1, 2, 3, respectively. The control parameter is set to k = 1.5. The
initial conditions are taken as x1(0) = y1(0) = 0.1, x2(0) = y2(0) = y3(0) = 0.2, x3(0) = 0.3,
and ψ1 j(0) = 2.0, j = 1, 2, · · · , 7. x1 (solid line −), y1 (dot dash line −.).
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6. Conclusions

In this manuscript, we introduce an adaptive control scheme and a synchronization technique
aimed at achieving lag synchronization between two unidirectionally coupled HR neurons. This
approach is applicable even with explicit propagation delays and in the presence of complete
uncertainty regarding the system parameters. Utilizing this approach, the response system can
accurately track the driver system with a time lag, while simultaneously enabling the identification of
the unknown parameters. Distinguished from prior research, the lag synchronization condition is
derived here by employing the auxiliary system methodology, recognizing that lag synchronization
can be considered a unique form of generalized synchronization. Ultimately, an analytical criterion is
formulated to ascertain the emergence of lag synchronization in the two HR neurons. This
formulation is grounded in the Laplace transform and the convolution theorem, alongside the iterative
techniques within Volterra integral equation theory. The principal benefit of the lag synchronization
scheme introduced in this paper is the ability to devise straightforward controllers and parameter
update laws, circumventing the need to construct Lyapunov functions, which simplifies its physical
implementation. Numerical simulations are employed to substantiate the efficacy of the proposed lag
synchronization strategy.

The precise lag synchronization criteria established herein demonstrate robust stability for any
magnitude of propagation delay. This breakthrough introduces a pioneering strategy that harnesses
the Taylor series expansion for the intrinsic time-delay component. By employing this technique, it
becomes feasible to achieve approximate lag synchronization and predictive synchronization in a pair
of HR neurons that are interconnected in a one-way manner, eliminating the necessity for direct
time-delay linkage. Numerical simulations confirm the feasibility of attaining a broad spectrum of
approximate lag and anticipation synchronization in two unidirectionally coupled HR neurons
through the application of this approach. Furthermore, the precision of the approximation can be
enhanced by incorporating higher-order derivatives from the Taylor series expansion of the actual
time-delay term. This paper introduces a straightforward, memoryless method for achieving
approximate lag and anticipating synchronization between two unidirectionally coupled HR neurons,
even in the presence of uncertain parameters. For an HR neuron characterized by uncertain
parameters, it is feasible to accurately anticipate future states or reconstruct past states based solely on
the current state information. The approach outlined herein offers an innovative perspective on
understanding the dynamics of neural processes, as well as the beneficial attributes of systems that
exhibit nonlinearity and chaos. Our findings additionally present a straightforward method to mitigate
the adverse impacts of time delays in signal transmission between the two interconnected
HR neurons.

Biological neural networks consist of an extensive array of neurons intricately linked together,
which underscores the significance of studying neuronal synchronization phenomena at the network
scale. The self-organizing capability of multiple neurons refers to the ability of a group of neurons to
spontaneously form patterns and structures without external guidance. This phenomenon is a key
aspect of complex systems in neuroscience, where the interactions between neurons can lead to
emergent properties that are not present in individual neurons. One of our future research priorities is
to explore how our proposed method can be adapted for analyzing synchronization among a large
ensemble of neurons. It has been observed that anticipating synchronization can sometimes be
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characterized by the more fundamental notion of negative group delay in a filter, which could
potentially be generalized to lag synchronization or positive group delay. In this context, the driven
system or its linear approximation serves as a filter, and every stable filter exhibits both positive and
negative group delays for specific frequencies. It would be intriguing to interpret the large scale
system in this broader framework, especially considering that the group delay approach does not
inherently require explicit coupling delays.
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