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Abstract: This paper investigates the continuous dependence of solutions to layered composite mate-
rials in binary mixtures on perturbation parameters defined in a semi-infinite cylinder. Due to the fact
that the base of the cylinder is easily disturbed by compression, this causes disturbances to the data
at the entrance. By introducing auxiliary functions related to the solution of the equations, this article
analyzes the impact of these disturbances on the solutions of the binary heat conduction equations and
obtains the continuous dependence of the solutions on the base.
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1. Introduction

Since Hirsch and Smale [1] proposed the necessity of structural stability, this topic has received
sufficient attention from scholars. This type of research focuses on whether small disturbances in the
coeflicients, initial data, and geometric models in the equations will cause significant disturbances in
the solutions. At the beginning, people were mainly keen on dealing with the continuous dependence
and convergence of fluid in porous media defined in two-dimensional or three-dimensional bounded
regions. Freitas et al. [2] studied the long-term behavior of porous-elastic systems and proved that
solutions depend continuously on the initial data. Payne and Straughan [3] established a prior bounds
and maximum principles for the solutions and obtained the structural stability of Darcy fluid in porous
media, where they assumed that the temperature satisfies Newton’s cooling conditions at the boundary.
Scott [4] considered the situation where Darcy fluid undergoes exothermic reactions at the boundary
and obtained the continuous dependence of the solutions on the boundary parameters. Li et al. [5]
studied the interface connection between Brinkman—Forchheimer fluid and Darcy fluid in a bounded
region, and obtained the continuous dependence on the heat source and Forchheimer coefficient. For
more papers, on can see [6—10].

With the continuous development of technology and progress in the field of engineering, the ne-
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cessity of studying the structural stability of fluid equations on a semi-infinite cylinder is even more
urgent. The semi-infinite cylinder refers to a cylinder whose generatrix is parallel to the coordinate
axis and its base is located on the coordinate plane, i.e.,

R = {(Xl,xz,x3)‘(xl,xz) €D, x3 > 0},

where D is a bounded domain on x;Ox,.

Li et al. have already done some work on this topic. Li and Lin [11] proved the continuous de-
pendence on the Forchheimer coeflicient of the Brinkman—Forchheimer equations in R. Papers [12]
and [13] obtained structural stability for Forchheimer fluid and temperature-dependent bidispersive
flow in R, respectively.

In this paper, we introduce a new cylinder with a disturbed base, which has been considered in [14].
Let D(f) represent the disturbed base, i.e.,

D(f) = {(xl,x2’x3)‘x3 = f(x1, %) 20, (x1,x) € D},
where the given function f satisfies
|f(x1,x2)| <€, €>0.
€ is called the perturbation parameter. The cylinder with a disturbed base is defined as
R(f) = {(xl,XZaXB)‘(xl,xz) €D, x3 2 f(x1,x2) 2 0}-

Different from [14], we study the heat conduction equation applicable to the study of layered com-
posite materials in binary mixtures [15]

biu;, = kysu—y(u—v), in R x {t > 0}, (L.1)
byv, = ko Av +y(u —v), in R X {t > 0}, (1.2)
u=v=0, ondD X {x3 >0} x{t > 0}, (1.3)
u=v=0, inRx {t =0}, (1.4)

where ki, k>, b1, b, and 7y are positive constants. u# and v are the temperature fields in each constituent.
Papers [16—18] further discussed and generalized the application of Eqs (1.1) and (1.2).
In this paper, we shall also use the notations

R(@) = {(x1, %, x3)| (1, 22) € D, 33 2 22 0},

D(@) = {(x1, 32, %3)|(x1, 12) € D, x3 = 2 > 0},

The main work of this article investigates the continuous dependence of solutions to Eqs (1.1)-
(1.4) on perturbation parameters and base data. Due to many practical constraints, it is very common
for the base of the cylinder to experience minor disturbance. Therefore, studying the effects of these
disturbances is essential. To this end, we assume that u* and v* are perturbed solutions of Eqs (1.1)—
(1.4) on R(f), and then prove that the difference between the unperturbed solutions and the perturbed
solutions satisfies a first-order differential inequality. By solving this inequality, we can obtain the
continuous dependence of the solution.
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2. A priori bounds

On the finite end D, we assume that the solutions to (1.1)—(1.4) satisfy

u(t,x) = Li1(t, x1, x2), v(t,x) = Li2(t, x1,x2),t > 0, x3 =0, (x1,x) € D(0),

u'(t,x) = Ly (8, x1, x2), v'(t,x) = Ln(t, x1, X2),t > 0, x3 = f(x1, x2), (x1,x2) € D(0).

2.1)
(2.2)

In (2.1) and (2.2), the known functions L;;(i, j = 1, 2) satisfy the compatibility conditions on dD.
We let that H(t,x) and H,(z,x) are specific functions who have the same boundary conditions as

u* and v*, respectively. That is

7‘{1 (I,X) = Lz](f, X1, )Cz) exp{—O'(x3 - f)}, 7’(2(1‘,)6) = Lzz(l, X1, )Cz) exp{—O'(x3 — f)},

where o > 0.
We now derive some lemmas.
Lemma 2.1. If L,;, Ly, € H'([0, 00) x D(f)), then

!
f eXp{ an}[klllvu (T)||L2(R(f)) + k2||VV (T)”LZ(R(f))]dT < dl(t)’
0

where

!
dy(1) = f expl=m T KilIVHI1 1 + RIVHI g ) |dT
0

+ exp{=m A} DUHL O 2z ) + DAL s |
1 2 2
+ 5 L eXp{_an} [blnl ||7_(1’T(T)||L2(R(f)) + b2n1 ||7—{2,T(T)||L2(R(f)):|d7-
2
Proof. Using (1.1)—(1.4), we begin with

1 !
b 57 [ el =~ HOI
0

!
f f exp{—mT}[blui — kAt +y(u* — v*)]u*dxdT =0,
0 JR(f)

f
f f expl=m7){b2v; —katv" =y’ ~v")|y"dxdr = 0.
o)
We compute
1 % 2 % 2
3 exP{—mt}[blﬂu (f)||L2(R(f)) + bollv (t)||L2(R(f))]
!
’ f eXP{—mT}[blm||”*(T)”12<R(f>> + bz’“”V*(T)"iZ(R(f»]dT
0

!
+f exp{- mT}[kllqu (T)||L2(R(f)) + kol VY7 (T)”LZ(R(f))]
0

!
+ 7[ exp{-mtill(u" - V*)(T)HEZ(R(f))dT
0
ov*

t au*
- exp{—-mt}Hk * V' |dAdT.
‘fo\ fD(f) pt=in [ : 0X3 (9)(:3 ]

(2.3)

(2.4)

(2.5)
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On the other hand, we use (2.3) to compute

ou” o
k dAd
f f(f) CXp 7]1T 1(9 (9 ] T

_ff exp{—mr} kla Ov Wz]dAdT

0 JD() 0x3 0x3
t

= f f expl-m 7}k V - (V' H, ) + ko V - (Vo' H, )dxdr
0 JR()

!
= f f exp(—m )|k Vu" - VH, + koW - VH, |dxdz
R(f)

+ exp{—mt} f [blu*?(l + bzv*ﬂg]dx
R(f)
3
+n1f f exp{—mr}[blu*?{u +b2v*7{2’T]dxdT
0 JR()

+ 7f f exp{-m7}u" —v)(H, — H>)dxdt
0 JR(f)
= Fi+Fo+Fs+ Fa (2.6)

An application of the Schwarz inequality leads to

1 t
Fi < Efo | LT GOl AR S GO A

1

!
+3 fo expl—m T ki IV g 1) + KNI VH I g ) | AT 2.7)

T2 < 5 expl=m)|bull’ Ol ey, + D2llV Ol |

1
2
1
+ 5 expl=mt) Bl H Ol e, + bHAO 2 | (2.8)
!
3 < f exp{=m T bl @\ Fage ) + L2V @I [T
0
1 ' 2 2
+ Z \fOV eXp{_an}[blnl ”WLT(T)”LZ(R(f)) + b2771 ||7_{2,T(T)||L2(R(f)):|d‘r7 (29)

!
Fa<ly L exp{-m7ill(u" - V*)(T)”iz(R(f))dT

1

+ Z’)/j(; exp{_an}”(ﬂl 7-‘{2)(‘l-)||142(1g(f)) (210)

Inserting Eqs (2.7)—(2.10) into (2.6) and combining (2.5), it can be obtained

Electronic Research Archive Volume 32, Issue 10, 5577-5591.



5581

!
f expl—m T i IVi (DI g ) + KallVV Ol a7
0

!
gfexp{ an}[klllvq{llle(R(f))+k2||V7—{2”L2(R(f))]
0
+ exp{—mntH BullHI (O g ) + DAHL O]

+ E fo exp{ an}[blnl||7{l T(T)llLZ(R(f)) + b2r]1||7{2,T(T)”L2(R(f)):|d7-

1 !
+ EYL exp{_an}”(wl 7_{2)(7-)”L2(R(f)) (21 1)

From (2.11), we can conclude that Lemma 2.1 holds.

We not only need a prior bounds for v and v*, but also for u and u*. Since u and u* are undisturbed
solutions of Eqgs (1.1)—(1.4), in Lemma 2.1 we only need to set f = 0 and replace L,; and Ly, with Ly,
and L,,, respectively, and then we can obtain the a prior bounds for u and u".

Lemma 2.2. If L;;, L, € H'([0, 00) X D), then

!
f eXP{—UlT}[kl||VM(T)||L2(R) + k2||VV(T)||L2(R)]dT < dy(1),
0
where

!
(1) = f expl—m T ki IVFGI , + kol VHul 2 g | T
0

+ expl{=m 1} DGO g, + DAHLOI 2|
1

!
+3 f eXp{—UlT}[blm||7‘(3,T(T)||22(R) + b2U1||7‘(4,T(T)||i2(R)]dT
0

1

+ 57\[ exp{-mTHI(Hs = Ha)(Oll}25,dT
0

and
H(t,x) = L1 (t, x1, x2) exp{—ox3}, Ha(t,x) = Lia(t, X1, x2) exp{—ox3}.

Remark 2.1. Lemmas 2.1 and 2.2 will provide a priori estimates for the proof of the lemmas in the
next section.

3. Auxiliary functions

Let w and s represent the difference between the perturbed solutions and the unperturbed solutions,
1.e.,

w=u-u, s=v-y, (3.1
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then w and s satisfy

biw; = kiyaw —y(w — ), in R(e) X {t > 0}, 3.2)
bys; = koAs + y(w — ), in R(€) X {t > 0}, 3.3)
w=s5s=0,0on90D X {x3 > €} X {t > 0}, (3.4
w=ys=0,in R(e) X {r = 0}. 3.5

To obtain the continuous dependence of the solution on the perturbation parameter, we establish a
new energy function

!
V(t, x3) = f (IR iy + ISRy [ 23 2 € (3.6)
) \ \

Noting the definition of R(x3), we can obtain the derivative of V(¢, x3) as follows:

(9 ' 2 2
g V) = fo [IWOIE 2 ey + 15O 2 iy |-

We introduce two auxiliary functions ¢ and ¢ such that

bio: + kipp = —w, by + ko = —s,1in R(x3),0 < 7 < ¢, (3.7)
o(T, X1, X2, X3) = Y(T, X1, X2, x3) = 0, 0n D X {x3},0 < 7 < 1, (3.8)
o(T, X1, X2, X3) = W(T, X1, X2, x3) = 0, (x1,x2) € D,0 <7 <1, 3.9)

e(t,x) = yY(t,x) = 0, in R(x3), (3.10)
©, Vo, ¥, Vi — O(uniformly in x;, x,, T) as x3 — oo, (3.11)

where x3 > €.
Next, we will derive some necessary properties of the auxiliary functions, which will play a crucial
role in proving the continuous dependence of the solutions.

Lemma 3.1. If ¢, € H'([0, ] X R(x3)), then

!
f |illee (O iy + D22 ey AT < @1 V(8 33), 3 2 €,
; : :

where a; = max{b;',b;'}.
Proof. We begin with

!
f f goT[blgoT + ki1 A@ + w]dxdT =0,
0 JR(x3)

!
f wT[waT + kZA’,b + S]dXdT =0.
0 JR(x3)

Using the divergence theorem féR(m Fds = fR(xg) divFdx and (3.8)—(3.11), we have
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t
blf ”"DT(T)”LZ(R()Q)) klllng(O)HI}(R(x )) v[(; f];( )W(PTdXdT
X3

! 1
<| f e (O ey T f WO ey (3.12)
0 0
and

1
b, f 1 (OIPa e @7 f (G f 1SN 7] (3.13)
Using the Schwarz inequality, (3.12) and (3.13), Lemma 3.1 can be obtained

Lemma 3.2. If ¢, € H'(R(x3)), then

!
f [V gy + Rl VIO s g [T < @2V (2 x5)
0

where a, = 1 max{k;', k;"'}
Proof. We begin with

t
f f ga[bl(p, + kiA@ + w]dxd‘r =0,
0 JR(x3)
!
f f (p[bzzﬁT + ko Ay + s]dxdr =
0 JR(x3)

Using the divergence theorem and Lemma 2.2, we have

kl f ||V(’0(T)”L2(R(xx)) bl”‘P(O)”Lz(R(x )) f f W(dedT
R(x3)
2 3
fllSD(T)”LZ(R()Q))de ||W(T)||L2(R(X3)) T]
0

1 1
2 2 2
S \//_l £||V2¢(T)||L2(R(x3))d7-£ ||W(T)||L2(R(X’§)) ]
and

(3.14)
ky f VYOI ey f IV (I g AT f O] G15)
Using the following inequality
Vab + Ved < \J(a+ c)(b + d), for a,b,c,d >0, (3.16)
the Young inequality and Lemma 3.1, we can have from (3.14) and (3.15)

Electronic Research Archive
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!
f [KulIVe R sy + KlIVEOIE gy |7
O | \

!
7{ f IV 20N 2y + KIV2U D o AT

f [ 1”W(T)”Lzue(m))+k21”S(T)HL2<R<x>>]dT}'

From (3.17) we can obtain Lemma 3.2.

D=

Lemma 3.3. If ¢, € H'(R(x3)), then

kl f || ( )”LZ(D(X ))dT + ka || (T)||L2(D(x ))dT < a3V(t, X3),

where a3 is a positive constant.
Proof. Letting 6 be a positive constant. We compute

f f — —0¢; [bl(pT + kiAo + w]dxdT =0,
R(x3) 8)63

f f —— = 8| |[bae + ks + s|dxdr = 0.

) 8X3
Using the divergence theorem and (3.8)—(3.10) in (3.18) and (3.19), we obtain

1 2 t 2 1 " op 2
Ekléllv‘p(o)”LZ(R(xS))dT + bléf ||‘10T(T)||L2(R(x§))dT + _kl f ||_(T)||L2(D(x3))dT

f f (pdedT + f f — - 6(pT wdxdT
Rexs) 0%3 R(x3) ‘9)“

Using the Schwarz inequality, we obtain

192 2 l 2 3
ff(m 6_x3%dxd7'< f()”@_)@(T)”LZ(R(%»deO‘ ||(,DT(T)||L2(R(X3))dT] ’
f f —wdxdT < ft”a—gD(T)Hi?(R(x ,dT ft||W(T)||iz(R(x »dT] ,

R(x3) X3 0 ﬁx3 3 0 X

f . )

_6ff (pTWdXdTS(s[f ||¢T(T)||i2(R(x3))de ”W(T)lliz(R(m)dT]z-
0 Jra) 0 ;

D=

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Inserting (3.21)—(3.23) into (3.20) and dropping the first two terms in the left of (3.20), we have

690 4 1
f ” (T)||L2(D(X3)) S f ” (T)llLZ(R(x3))dT f ||QDT(T)||%2(R(X3))dT:|2

[ IFE O e [ O ]

+4| f e (D22 T f WD AT ].

D=

(3.24)
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Similar, we can also have from (3.19)

o 5 oY t 2 :
=k L ||a_x3(T)”L2(D(x3))dTS f ||_(T)||L2(R(x3))dT ; ”‘ﬁT(T)HLZ(R(xg))dT]
t 1
f” (T)”LZ(R(xs))de ||S(T)lliz(R(Xs))dT]2
0

t 1
o f”wT(T)HLZ(R(n))de ”S(T)”%z(R(&))dT]z'
0

(3.25)
Using (3.16) and Lemmas 3.1 and 3.2, we obtain
;. Loy
kl L ”6_-:(7-)”22([)()63))617- + k2‘£ ”6_(7-)”%2(1)()“))617-
!
< 2a1a0 f |b 1|| (r>||Lz(Rm» ball o= o (T)HLZ(M]dT
0
t 1
3 [k1||<pr<r)||iz(,«x3» ol (O )
' oy
+ 2| f DAL O + DA O
t 1
2
: f [”W(T)” (R(X3)) + ||S(T)||L2(R(x3))]dT}
0
+ zala{‘fo I:klllgOT(T)”Lz(R()g)) + k2||wT(T)||L2(R(X3)):|
! 1
: f ) N [RTC)
o : :
< a;V(t, x3), (3.26)
where a3 = 2a%a; + 2a; + 2a’.
In the next section, we will use Lemma 3.3 to derive the continuous dependence of the solutions
4. Main results
In this section, we first derive a bound for V(t, €). To do this, we define
u(t’x) = Lll(t’ X1, x2)a V(t,x) = LIZ(ta X1, -x2)9 —€=< X3 < 09 (-xl’-XZ) € D9t € [05 +OO) (41)
u (t,x) = Ly (t, X1, X2), V'(t,X) = Lyo(t, X1, X2), —€ < x3 < f(x1, %), (x1,x2) € D, 1 € [0, +00). (4.2)
When —€ < x3 < €, we let

w(t,x) = u(t,x) —u*(t,x), s(t,x) =v(t,x) —v'(t,x),(x1,x2) € D,t € [0, +00)

4.3)
In view of (3.1) and (4.3), using the triangle inequality, it can be obtained that

Electronic Research Archive
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ki fo t fR (_)(S—Z)zdxdr+k2 f t f )(ﬁ)zdxdr
oV \2
f f = [k (5 0x3 +k2( a)g)]dxdT
2 ovi\2
f f E) k1 0x3 k( axg) ]dxdr. (4.4)

Using Lemmas 2.1 and 2.2, (4 1) and (4.2), from (4.4), we obtain

klf f dxd‘r+k2f f dxdT
R(—€) e) 5)63
ffk +k av)]dxdr
1 8x3 2 6X3
2 ov*\2
k +k dxdr.
f j];(f) ! (9X3 2(0)(:3) ]

< e™'[di(1) + da (D] = ds(1). (4.5)

Now, we write the main theorem as:
Theorem 4.1. If L;,, L, € H'([0,00) X R), Ly, Ly, € H'([0,00) X R(f)) and ¢ < ﬁ, then

32 I 1
Vit,33) < expl=da(xs = ON 7= max{=, =lds()e

!
+ ds f [ICL11 = L)@y + 1Lz = L)@ 2 [T} 63 > €
0

d471' 2

holds, where d, = a;' max{k;,k,}™' and d5s = <% + i
Proof. Let x; > € be a fixed point on the coordmate axis x3. Using (3.7)—(3.11) and the divergence
theorem, we can have

t !
V(xs, 1) = —f f w[blgoT + klAgo]dxdT - f f s[bztﬁT + szw]dxdT
0 JR(x3) 0 JR(x3)
! !
- f f |b1oew + byres|dxdr + f f |1 Vw - Vo + ko Vs - Vy|dixde
R(x3) 0 R(x3)
0
k — + kys— |dAdrt
ff(m 1Wax3 " 2sax3]
= —f f [b1907w+b2¢17 dxdr—f f klAwg0+k2As1//]dxdT
R(x3) R(x3)
W
k w— + kos— |dAdTt
f f D(x3) : 0x3 ? 6x3]
= —f f [b1g07w+b2wT dxdT f f bl(pr +b21//sT]dxdT
R(x3) R(x3)
f f klw—+k2s— |dAdr -y f f )(w - s)dxdx. (4.6)
Dy - OX3 R(xs)
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In light of (1.4) and (3.10), it is clear that

! !
f f [bupfw + blgowr]dxdr =0, f f [bzwrs + bzwsT]dxdT =0. “4.7)
0 JR(x3) 0 JR(x3)

A combination of the Holder inequality, (3.16) and Lemma 3.3 leads to

9
f f klw—+k2s—w]dAdT
D(x3) X3 0x3
1

Ay 2 t 2 z
_hLﬁnagﬁmmmmﬂ{LHWﬁmwmmﬂﬂ
! al// 5 ! 5 %
+w4£na;ﬁmwmm]WMﬂmwmm]
< max{ vki, vkal| f (kln Ol + K ‘”<T>||L2(D(x3)))dr]§
[IWMﬂMWDHMﬂMWQhF
9 }
< Vaymax( Vi, Nl V(e )| - 7=V x| (4.8)

For the fourth term in the right of (4.6), we compute
1
—)/ff o —y)\w - s)dxdr
[ e-ue-)
t
swamﬂﬂmwmﬁwwﬂ@wmyh
o 3

!
o R R R i “9)
0

Using the inequality (see p182 in [19])

D=

1 1
fo $*dx < 7% fo (¢")?dx, for ¢(0) =0, (4.10)

-y f f - s)dxdT
R(x3)

< ’y_[fov (llSOT(T)”LZ(R(xg)) + ”wT(T)”LZ(R(x )))dTV(t X3)]

we have from (4.9)

D=

2t
< 7’;611‘7(% X3), 4.11)

we can have

1 0
V(t, x3) < —d—46—3V(t ,X3), X3 > €. 4.12)

Electronic Research Archive Volume 32, Issue 10, 5577-5591.
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Integrating (4.12) from € to x3, we have

V(t, x3) < V(t,€)exp{—ds(x3 — €)}, x3 > €.

(4.13)

Equation (4.13) only indicates that the solutions to (1.1)—(1.4) decay exponentially as x3 — oco. This
decay result is not rigorous because we do not yet know whether V(z, €) depends on the perturbation

parameter €. Therefore, we derive the explicit bound of V(¢, €) in terms of € and L;;(ij = 1, 2).

After letting x;3 = € in (4.12), we have

1
V(e 1) < d_f [”W(T M2y + 18O ))]dAdT

ow
— + s— |dxd
ff f(x) "o, sax3] o
[||(L11 — L)@ + I(L12 = Lzz)(r)lliz(D)]dT
f ||W(T)||L2(D(xg)><[ €€l f ” (T)”LZ(D(xz)X[ €,€]) ]
= f ||S(T)”L2(D(x3)><[ Ee])de I=— (T)”LZ(D(xz)X[ cendT ]

i

[||(L11 = L)@y + I Liz = L)@ a |l

d4

1

=

d4
Using (4.10) again, we have

16€? ow
f ”W(T)”Lz(D(xg)X[ ee])d f || (T)”LZ(D(xg)X[ ee])d

+ fo I(L11 — L21)(T)||iz(D)dT,

16€ Os
f 1SN e e p@T < f 5 ()”LZ(D(M)X[ eepdT

+ fo I(L12 — L22)(T)||iz(D)dT-
0

Inserting (4.15) into (4.16) and combining the Schwarz inequality, we obtain

32 ow ds o
V(E t) < Eef [”8 (T)”Lz(D(xg)X[ .€]) ” X3 (T)||L2(D(x3)><[—6,€])]d7-

dymt 2

|5+ 7] fo (L1 = La) @y + 1Ltz = Ln)(r)niz(m]m
32 1 1 !

< a max{k_], k_z} ﬁ [klll (T)HLZ(R( ) + kZ” (T)||L2(R( E))]d
dyt 2 ! L L ) . . 5 p

+ [7 + d_4] ; [||( 11 = LoDl ) + 11(L12 = 22)(T)||L2(D)] T

In view of (4.5) and (4.13), from (4.17) we have Theorem 4.1.

(4.14)

(4.15)

(4.16)

(4.17)
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Remark 4.1. Theorem 4.1 indicates that V(z, x3) continuously depends on € and the base data. That is,
when € approaches 0, then u(¢, x3) and v(z, x3) approach 0. If € = 0, Theorem 4.1 is the Saint-Venant’s
principle type decay result.

Remark 4.2. In any cross-section of R, the continuous dependence result can still be obtained.
We compute

f G N [RTC [ 2
0
= —2f f w—w + s—]dxdr
(X3) 8X3 8)63
ds :
V()| f [fall 2 (r)an(R( o+ Rl =l oldt]- (4.18)
Using (4.18) and Theorem 4.1, we can obtain the continuous dependence result.
5. Conclusions

This article adopts the methods of the a prior estimates and energy estimate to obtain the continuous

dependence of the solution on the base. This method can be further extended to other linear partial
differential equation systems, such as pseudo-parabolic equation

= Au + 5Aut,

where ¢ is a positive constant. However, for nonlinear equations (e.g., the Darcy equations), due to the
inability to control nonlinear terms and derive a prior bounds for nonlinear terms, Lemma 3.3 will be
difficult to obtain. This is a difficult problem we need to solve next.
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