Let $ \left(u_n\right)_{n\geq0} $ be the special Lucas $ u $-sequence defined by
$ u_{n+2} = Au_{n+1}-Bu_n,\quad u_0 = 0,\, u_1 = 1, $
where $ n\geq0 $, $ B = \pm1 $, and $ A $ is an integer such that $ A^2-4B > 0 $. Let
$ a_k = \frac{1}{u_{mk}^s},\,\frac{1}{u_{mk}+u_{mk+l}},\,\frac{1}{\sum\nolimits_{i = 0}^l u_{mk+i}},\,\frac{1}{u_{mk}u_{mk+2l}},\,\frac{1}{u_{mk}u_{mk+2l-1}},\,\frac{1}{u_{mk}+C}, $
where $ m, \, l $ are positive integers, $ s = 1, 2, 3, 4 $, and $ C $ is any constant. The aim of this paper is to find a form $ g_n $ such that
$ \underset{n\to\infty}{\lim}\left(\left(\sum\limits_{k = n}^\infty a_k\right)^{-1}-g_n\right) = 0. $
For example, we show that
$ \underset{n\to\infty}{\lim}\left(\left( \sum\limits_{k = n}^\infty \frac{1}{u_{mk}}\right)^{-1}-\left(u_{mn}-u_{m(n-1)}\right)\right) = 0. $
Citation: Hongjian Li, Kaili Yang, Pingzhi Yuan. The asymptotic behavior of the reciprocal sum of generalized Fibonacci numbers[J]. Electronic Research Archive, 2025, 33(1): 409-432. doi: 10.3934/era.2025020
Let $ \left(u_n\right)_{n\geq0} $ be the special Lucas $ u $-sequence defined by
$ u_{n+2} = Au_{n+1}-Bu_n,\quad u_0 = 0,\, u_1 = 1, $
where $ n\geq0 $, $ B = \pm1 $, and $ A $ is an integer such that $ A^2-4B > 0 $. Let
$ a_k = \frac{1}{u_{mk}^s},\,\frac{1}{u_{mk}+u_{mk+l}},\,\frac{1}{\sum\nolimits_{i = 0}^l u_{mk+i}},\,\frac{1}{u_{mk}u_{mk+2l}},\,\frac{1}{u_{mk}u_{mk+2l-1}},\,\frac{1}{u_{mk}+C}, $
where $ m, \, l $ are positive integers, $ s = 1, 2, 3, 4 $, and $ C $ is any constant. The aim of this paper is to find a form $ g_n $ such that
$ \underset{n\to\infty}{\lim}\left(\left(\sum\limits_{k = n}^\infty a_k\right)^{-1}-g_n\right) = 0. $
For example, we show that
$ \underset{n\to\infty}{\lim}\left(\left( \sum\limits_{k = n}^\infty \frac{1}{u_{mk}}\right)^{-1}-\left(u_{mn}-u_{m(n-1)}\right)\right) = 0. $
[1] |
H. Ohtsuka, S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Quart., 46 (2008), 153–159. https://doi.org/10.1080/00150517.2008.12428174 doi: 10.1080/00150517.2008.12428174
![]() |
[2] |
T. Wang, Infinite sums of reciprocal Fibonacci numbers (in Chinese), Acta Math. Sin., 55 (2012), 517–524. https://doi.org/10.12386/A2012sxxb0048 doi: 10.12386/A2012sxxb0048
![]() |
[3] |
W. Hwang, J. D. Park, K. Song, On the reciprocal sum of the fourth power of Fibonacci numbers, Open Math., 20 (2022), 1642–1655. https://doi.org/10.1515/math-2022-0525 doi: 10.1515/math-2022-0525
![]() |
[4] |
H. Li, Y. He, The reciprocal sums of the cubes of odd and even terms in the Fibonacci sequence, Acta Math. Sin., 67 (2024), 926–938. https://doi.org/10.12386/A20210193 doi: 10.12386/A20210193
![]() |
[5] | T. Komatsu, On the nearest integer of the sum of reciprocal Fibonacci numbers, Aportaciones Mat. Investig., 20 (2011), 171–184. |
[6] |
G. Choi, Y. Choo, On the reciprocal sums of products of Fibonacci and Lucas numbers, Filomat, 32 (2018), 2911–2920. https://doi.org/10.2298/FIL1808911C doi: 10.2298/FIL1808911C
![]() |
[7] |
Z. Xu, T. Wang, The infinite sum of the cubes of reciprocal Pell numbers, Adv. Differ. Equations, 2013 (2013), 184. https://doi.org/10.1186/1687-1847-2013-184 doi: 10.1186/1687-1847-2013-184
![]() |
[8] |
Z. Wu, H. Zhang, On the reciprocal sums of higher-order sequences, Adv. Differ. Equations, 2013 (2013), 189. https://doi.org/10.1186/1687-1847-2013-189 doi: 10.1186/1687-1847-2013-189
![]() |
[9] |
X. Lin, Partial reciprocal sums of the Mathieu series, J. Inequal. Appl., 2017 (2017), 1–8. https://doi.org/10.1186/s13660-017-1327-x doi: 10.1186/s13660-017-1327-x
![]() |
[10] | T. Komatsu, V. Laohakosol, On the sum of reciprocals of numbers satisfying a recurrence relation of order $s$, J. Integer Seq., 13 (2010), 1–9. |
[11] |
H. H. Lee, J. D. Park, The limit of reciprocal sum of some subsequential Fibonacci numbers, AIMS Math., 6 (2021), 12379–12394. https://doi.org/10.3934/math.2021716 doi: 10.3934/math.2021716
![]() |
[12] |
D. Marques, P. Trojovský, The proof of a formula concerning the asymptotic behavior of the reciprocal sum of the square of multiple-angle Fibonacci numbers, J. Inequal. Appl., 2022 (2022), 21. https://doi.org/10.1186/s13660-022-02755-7 doi: 10.1186/s13660-022-02755-7
![]() |
[13] |
H. H. Lee, J. D. Park, Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers, J. Inequal. Appl., 2020 (2020), 91. https://doi.org/10.1186/s13660-020-02359-z doi: 10.1186/s13660-020-02359-z
![]() |
[14] |
Z. Pan, Z. Wu, The inverses of tails of the generalized Riemann zeta function within the range of integers, AIMS Math., 8 (2023), 28558–28568. https://doi.org/10.3934/math.20231461 doi: 10.3934/math.20231461
![]() |
[15] |
P. Trojovsky, On the sum of reciprocal of polynomial applied to higher order recurrences, Mathematics, 7 (2019), 638. https://doi.org/10.3390/math7070638 doi: 10.3390/math7070638
![]() |
[16] | P. Yuan, Z. He, J. Zhou, On the sum of reciprocal generalized Fibonacci numbers, Abstr. Appl. Anal., 2014 (2014). http://dx.doi.org/10.1155/2014/402540 |
[17] | Z. Sun, Fibonacci Numbers and Hilbert's Tenth Problem, Harbin Institute of Technology Press, Harbin, 2024. |