Ex. 1 | Ex. 2 | |
|
||
(4.6) & (4.7) | (4.6) & (4.8) | |
This paper formulates a general framework for a space-time finite element method for solving Richards Equation in one spatial dimension, where the spatial variable is discretized using the linear finite volume element and the temporal variable is discretized using a discontinuous Galerkin method. The actual implementation of a particular scheme is realized by imposing certain finite element space in temporal variable to the variational equation and appropriate "variational crime" in the form of numerical integrations for calculating integrations in the formulation. Once this is in place, adjoint-based error estimators for the approximate solution from the scheme is derived. The adjoint problem is obtained from an appropriate linearization of the nonlinear system. Numerical examples are presented to illustrate performance of the methods and the error estimators.
Citation: Victor Ginting. An adjoint-based a posteriori analysis of numerical approximation of Richards equation[J]. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045
[1] | Victor Ginting . An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045 |
[2] | Hao Wang, Wei Yang, Yunqing Huang . An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28(2): 961-976. doi: 10.3934/era.2020051 |
[3] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu .
Convergence and quasi-optimality of |
[4] | Hsueh-Chen Lee, Hyesuk Lee . An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29(4): 2755-2770. doi: 10.3934/era.2021012 |
[5] | Shuhao Cao . A simple virtual element-based flux recovery on quadtree. Electronic Research Archive, 2021, 29(6): 3629-3647. doi: 10.3934/era.2021054 |
[6] | Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang . A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29(3): 2375-2389. doi: 10.3934/era.2020120 |
[7] | Jun Pan, Yuelong Tang . Two-grid $ H^1 $-Galerkin mixed finite elements combined with $ L1 $ scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365 |
[8] | Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang . Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29(1): 1859-1880. doi: 10.3934/era.2020095 |
[9] | Fenglin Huang, Yanping Chen, Tingting Lin . An error estimator for spectral method approximation of flow control with state constraint. Electronic Research Archive, 2022, 30(9): 3193-3210. doi: 10.3934/era.2022162 |
[10] | Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072 |
This paper formulates a general framework for a space-time finite element method for solving Richards Equation in one spatial dimension, where the spatial variable is discretized using the linear finite volume element and the temporal variable is discretized using a discontinuous Galerkin method. The actual implementation of a particular scheme is realized by imposing certain finite element space in temporal variable to the variational equation and appropriate "variational crime" in the form of numerical integrations for calculating integrations in the formulation. Once this is in place, adjoint-based error estimators for the approximate solution from the scheme is derived. The adjoint problem is obtained from an appropriate linearization of the nonlinear system. Numerical examples are presented to illustrate performance of the methods and the error estimators.
The subject of investigation in this paper is numerical solutions of the Richards Equation [23]. This equation is a governing mathematical principle for modeling the water flow in an unsaturated porous medium that is driven by the gravity and capillarity that disregards air flow. Since ability to construct closed form solutions to this equation is very limited (see for example [25,18,22,24] for some related effort on the subject), a reliance on numerical approximations is a necessity. However, even with the emergence of many advances of computing technology, this equation remains one of the most challenging problems in porous media flow and transport. Recent review on its numerical solutions can be found in [17].
There are several outstanding issues attributed to the challenge. Richards Equation is strongly nonlinear, which appears as the dependence of the soil unsaturated hydraulic conductivity (
The mixed-form (or coupled-form) of Richards Equation in one dimensional soil column is written as follows:
{∂tϑ(u)−∂z(κ(u)∂z(u−z))=0,in(a,b)×(0,T),u(z,0)=u0(z),z∈(a,b),BoundaryConditions:Bau=ga(t),Bb=gb(t). | (1.1) |
Two typical boundary conditions are
{Bau=κ(u)∂z(u−z)|(a,t),Bbu=u(b,t)}or{Bau=u(a,t),Bbu=u(b,t)}. |
Here we assume that
The major theme in this paper is two-fold. One aspect centers on the development of a numerical approximation of Richards Equation in space-time finite element methods obtained from an appropriate variational formulation. Space-time finite element methods have been previously used for parabolic equations (see for example [20]) and for reaction-diffusion system (see for example [15]). A recent work on application of control volume finite element in combination with method of lines for solving Richards Equation is recorded in [10]. To the best of the author's knowledge, there has not been any attempt to apply space-time finite element methods technique to Richards Equation. In particular, a finite volume element spatial discretization (with linear finite element) is employed due to its inherent local mass conservation property. This is an important trait commonly desired and in some cases imperative in order to produce reliable numerical simulations of flow and transport in porous media (see for example [5,8,16]). The space-time variational formulation in combination with a certain variational crime in the form of numerical integration techniques would in turn yield implementable time marching schemes for approximate solution of Richards Equation.
The other aspect is concerned with an a posteriori error estimation of the resulting numerical approximation. In this regard, some investigations on a posteriori error analysis of numerical methods for Richards Equation are already available. Bause and Knabner [3] use adaptive mixed hybrid finite element discretizations to solve Richards Equation, where the adaptivity is performed under an a posteriori error indicator that is based on either superconvergence or residual of the approximation. Baron et al. [2] employ Discrete Duality Finite Volume (DDFV) scheme along with second-order backward differentiation formula to solve the equation. They derive an a posteriori error bound of the approximation using the equilibrated fluxes method. Bernardi et al. [4] perform a semi discretization of Richards Equation by finite element method and apply Backward Euler scheme to get the full discretization. Then a posteriori error bounds are derived that aim at distinguishing components of contribution of spatial discretization from temporal discretization.
In many practical situations, it may not be necessary to measure global property of the approximate solution. More often, an accuracy is desired only for some specified quantities of interest associated with the numerical approximation, which is usually expressed as a functional of the approximate solution. For this purpose, a suitable a posteriori analysis is based on duality, adjoint operators governing the generalized Green's function, and a variational formulation. This approach is adopted in this paper. It is also suitable because, as mentioned before, the numerical approximation of Richards Equation is based on certain variational equations. Utilizations of adjoint equations are not new (see for example [21] for an extensive exposition on their applications). On various roles of adjoint methodologies in performing a posteriori error estimations of numerical methods for differential equations, one can consult [19,15,11,13,12,14,1] and references therein.
The rest of this paper is organized as follows. A space-time variational equation governing the numerical approximation of Richards Equation is derived in Section 2. The description includes examples of application of numerical integration to produce the time marching schemes. Section 3 carries out the formulation of an adjoint-based a posteriori error analysis of the quantities of interest calculated using the approximate solution. Since the variational equation of the solution is nonlinear, an appropriate linearization is conducted that would make construction of the corresponding adjoint equation amenable. Some numerical examples to demonstrate performance of the numerical methods and the error estimators are shown in Section 4. Here much of the effort is devoted to illustrate global accuracy of numerical methods and reliability of the error estimators in terms of their capability to decompose the total error into relevant components. A comparison to the actual error in some specified quantities of interest is conducted. Finally, the conclusion and future work is discussed in Section 5.
In what follows, we assume that
{Bau=κ(u)∂z(u−z)|(a,t)=ga(t),Bbu=u(b,t)=0}. | (2.1) |
are supplied to (1.1). Denoting
H1D={w:[a,b]→R:w∈L2(a,b),w′∈L2(a,b),w(b)=0}, |
the solution of (1.1) supplied with (2.1) satisfies
{⟨∂tϑ(u),v⟩+A(u;u,v)+ga(t)v(a)=0,∀v∈H1D,⟨u(⋅,0),v⟩=⟨u0,v⟩,∀v∈H1D. | (2.2) |
Here
A(w;u,v)=⟨κ(w)∂z(u−z),∂zv⟩. |
The spatial domain
Xh={w∈H1D : winτj islinear ∀τj∈Th}=span{ϕj}M−1j=0, |
where
The finite volume approximations rely on a local conservation property associated with the governing equation, in particular with respect to the second order differential operator in (1.1). To fix the idea, consider
∫τ∗−∂z(κ(u)∂z(u−z))dz=−κ(u)∂z(u−z)|∂τ∗:=−κ(u)∂z(u−z)|zrzl. | (2.3) |
The above
Yh={η∈L2(a,b) : ηinτ∗ isconstant ∀τ∗j∈T∗h}=span{ϕ∗j}M−1j=0, |
where
‖Jhv−v‖≤h2‖∂zv‖,forv∈H1D, | (2.4) |
where
⟨χ,Jhv−v⟩≤h2‖χ‖‖∂zv‖,forχ∈L2(a,b),v∈H1D. | (2.5) |
To express (2.3) in a variational setting, define
Ah(w;u,v)=∑τ∗j∈T∗h−κ(w)∂z(u−z)|∂τ∗j∖a[Jhv](zj). |
Exclusion of
Proposition 2.1. Let
A(w;u,v)=Ah(w;u,v)+εA(w;u,v), | (2.6) |
where
εA(w;u,v)=∑τj∈Th∫τj∂z(κ(w)∂z(u−z))(Jhv−v)dz. | (2.7) |
Furthermore, when
|εA(w;u,v)|≤Cκ2h‖∂zw∂z(u−z)‖‖∂zv‖, | (2.8) |
where
Proof. For any
∫τj−∂z(κ(w)∂z(u−z))vdz=∫τjκ(w)∂z(u−z)∂zvdz−κ(w)∂z(u−z)v|∂τj, |
which when applied to
A(w;u,v)=∑τj∈Th∫τjκ(w)∂z(u−z)∂zvdz=∑τj∈Th(∫τj−∂z(κ(w)∂z(u−z))vdz+κ(w)∂z(u−z)v|∂τj∖a). | (2.9) |
For
∫Ke−∂z(κ(w)∂z(u−z))Jhvdz=−κ(w)∂z(u−z)|∂Ke[Jhv](zj), | (2.10) |
for
∂zu|∂τ∗j=∑e=j,j+1∂zu|∂Ke+∂zu|x+jx−j, |
we may apply (2.10) in
Ah(w;u,v)=∑τj∈Th(∫τj−∂z(κ(w)∂z(u−z))Jhvdz+κ(w)∂z(u−z)Jhv|∂τj∖a). | (2.11) |
Subtraction of (2.9) from (2.11) and recalling that
Furthermore, when
∂z(κ(w)∂z(u−z))=κ′(w)∂zw∂z(u−z)+0, |
so using this identity and the Cauchy-Schwarz inequality,
|εA(w;u,v)|=|∑τj∈Th∫τjκ′(w)∂zw∂z(u−z)(Jhv−v)dz|≤Cκ∑τj∈Th‖∂zw∂z(u−z)‖L2(τj)‖Jhv−v‖L2(τj)≤Cκ‖∂zw∂z(u−z)‖‖Jhv−v‖≤Cκ2h‖∂zw∂z(u−z)‖‖∂zv‖. |
This completes the proof.
Remark 2.1. The foregoing exposition gives an indication that
In a similar fashion to the spatial variable, we partition
Wqh(In)={v:[a,b]×In→R:w(z,t)=q∑j=0tjvj,n(z),withvj,n∈Xh}. | (2.12) |
We denote by
{N∑n=1Rh,n(˜u;˜u,w)=0foreveryw∈Wqh,⟨˜u−0,χ⟩=⟨u0,χ⟩foreveryχ∈Xh, | (2.13) |
where
Rh,n(˜u;˜u,w)=∫In(⟨∂tϑ(˜u),Jhw⟩+Ah(˜u;˜u,w)+ga(t)w(a,t))dt+⟨[ϑ(˜u)]n−1,Jhw+n−1⟩. | (2.14) |
Notice that the first equation in (2.13) is a global formulation in that the integration is over
Rh,n(˜u;˜u,v)=0foreveryv∈Wqh(In). | (2.15) |
In what follows, we describe two specific examples that transform (2.15) into computable algebraic schemes.
Here
˜u|In=˜u+n−1=˜u−n=v0,n∈Xh, | (2.16) |
which for every
knAh(v0,n;v0,n,w0)+w0(a)∫Inga(t)dt+⟨ϑ(v0,n)−ϑ(˜u−n−1),Jhw0⟩=0, | (2.17) |
for
v0,n=M−1∑j=0Uj,nϕj, | (2.18) |
then
G(Un)=0, | (2.19) |
where
Here
˜u|In=v0,n+tv1,n,t∈In,v0,n,v1,n∈Xh, | (2.20) |
which implies that
˜u|In=tn−tkn˜u+n−1+t−tn−1kn˜u−n,t∈In,˜u+n−1,˜u−n∈Xh. | (2.21) |
Choosing
∫In⟨∂tϑ(˜u),Jhw⟩dt+⟨[ϑ(˜u)]n−1,Jhw+n−1⟩=k−1n∫In⟨ϑ(˜u)−ϑ(˜u−n−1),Jhψ+n−1⟩dt. |
In a similar fashion, using
∫In⟨∂tϑ(˜u),Jhw⟩dt+⟨[ϑ(˜u)]n−1,Jhw+n−1⟩=k−1n∫In⟨ϑ(˜u−n)−ϑ(˜u),Jhψ−n⟩dt. |
Thus
{∫In⟨ϑ(˜u)−ϑ(˜u−n−1),Jhψ+n−1⟩dt+∫In(tn−t)(Ah(˜u;˜u,ψ+n−1)+ga(t)ψ+n−1(a))dt=0,∫In⟨ϑ(˜u−n)−ϑ(˜u),Jhψ−n⟩dt+∫In(t−tn−1)(Ah(˜u;˜u,ψ−n)+ga(t)ψ−n(a))dt=0, | (2.22) |
where
˜u+n−1=M−1∑j=0U+j,n−1ϕj,˜u−n=M−1∑j=0U−j,nϕj. | (2.23) |
Setting
(U+0,n−1,U+1,n−1,⋯,U+M−1,n−1)=U+n−1∈RM |
and
(U−0,n,U−1,n,⋯,U−M−1,n)=U−n∈RM, |
and
G(Un)=0, | (2.24) |
where
The preceding description is a derivation of algebraic equations governing the approximation that is faithful to the variational equation (2.15) and the choice of polynomial degree of the temporal variable. Still, for a completely implementable scheme, one must rely on further approximation of the integrations appeared in (2.17) and (2.9). In the current setting, there are two integrations that need to be approximated: the spatial integration
Furthermore, what is more crucial in this case is how
∫Inga(t)dt≈knga(tn) |
is adequate.
Derivation of numerical integrations for (2.9) is a bit more involved. A viable option is the following two point Gaussian quadrature
∫Inf(t)dt≈kn22∑ℓ=1f(tℓ,n),wheret1,n=−kn2√3+tn−1+tn2andt2,n=kn2√3+tn−1+tn2. | (2.25) |
With this, set
˜u1,n=˜u(⋅,t1,n)=γ˜u+n−1+(1−γ)˜u−n,˜u2,n=˜u(⋅,t2,n)=(1−γ)˜u+n−1+γ˜u−n, | (2.26) |
where
G+n,i(Un)=122∑ℓ=1⟨ϑ(˜uℓ,n)−ϑ(˜u−n−1),ϕ∗i⟩+knc+ℓ(Ah(˜uℓ,n;˜uℓ,n,ϕi)+ga(tℓ,n)δi0)G−n,i(Un)=122∑ℓ=1⟨ϑ(˜u−n)−ϑ(˜uℓ,n),ϕ∗i⟩+knc−ℓ(Ah(˜uℓ,n;˜uℓ,n,ϕi)+ga(tℓ,n)δi0) |
where
The approach proceeds with the construction of algebraic equations for
˜u−n=1−γ1−2γ˜u1,n−γ1−2γ˜u2,n, | (2.27) |
which is obtained from (2.26). Thus, with
In many realistic situations, it is often desirable to achieve an acceptable level of accuracy of a numerical approximation in some quantities of interest. Relevant examples include average water content over a certain region and at some time instances or the water content at some locations. Along this line of argument, it may be computationally infeasible as well as very inefficient to attempt to control the error in a global fashion when all that is required is accuracy on those aforementioned quantities. A practical alternative is to estimate the error of the numerical approximation in the specified quantity of interest, whose representation is expressed as a functional of
[Q(u)](T)=⟨ϑ(u(⋅,T)),ψT⟩+∫T0(⟨ϑ(u),ψ⟩+u(a,t)ψa)dt, | (3.1) |
for given data
To derive the error in approximating
The nonlinearity in Richards Equation stems from
˜uσ=˜u+σ(u−˜u),forσ∈[0,1], | (3.2) |
the Mean Value Theorem for integral gives
ϑ(u)−ϑ(˜u)=¯ϑ′(u−˜u),where¯ϑ′=∫10ϑ′(˜uσ)dσ. | (3.3) |
Furthermore, setting
F(w)=κ(w)∂z(w−z), | (3.4) |
its Fréchet derivative is
F′(w)v=κ(w)∂zv+(κ′(w)∂z(w−z))v | (3.5) |
Utilizing again the Mean Value Theorem for integral, one gets
F(u)−F(˜u)=∫10F′(uσ)(u−˜u)dσ=¯κ∂z(u−˜u)+¯v(u−˜u), | (3.6) |
where
¯κ=∫10κ(˜uσ)dσand¯v=∫10κ′(˜uσ)∂z(˜uσ−z)dσ. | (3.7) |
At this stage, we are in a position to formulate the adjoint problem. For
{−⟨w,¯ϑ′∂tφ⟩+⟨∂zw,¯κ∂zφ⟩+⟨w,¯v∂zφ⟩=⟨w,¯ϑ′ψ⟩+w(a,t)ψa,t<T,⟨w(⋅,T),¯ϑ′φ(⋅,T)⟩=⟨w(⋅,T),¯ϑ′ψT⟩, | (3.8) |
for every
Rn(˜u;˜u,w)=∫In(⟨∂tϑ(˜u),w⟩+A(˜u;˜u,w)+ga(t)w(a,t))dt+⟨[ϑ(˜u)]n−1,w+n−1⟩. | (3.9) |
Theorem 3.1. For
[Q(u)](T)−[Q(˜u)](T)=E0+E1+E2+E3, | (3.10) |
where
E0=⟨ϑ(u0)−ϑ(˜u−0),φ0⟩,E1=−N∑n=1Rh,n(˜u;˜u,φ),E2=−N∑n=1εA,n(˜u;˜u,φ)dt,E3=−N∑n=1εh,n(˜u;φ), | (3.11) |
with
εA,n(˜u;˜u,w)=∫InεA(˜u;˜u,w)dt,εh,n(˜u;w)=∫In⟨∂tϑ(˜u),w−Jhw⟩dt+⟨[ϑ(˜u)]n−1,(w−Jhw)+n−1⟩. | (3.12) |
Proof. Substitute
−⟨e,¯ϑ′∂tφ⟩+⟨∂ze,¯κ∂zφ⟩+⟨e,¯v∂zφ⟩=−⟨ϑ(u)−ϑ(˜u),∂tφ⟩+⟨κ(u)∂z(u−z)−κ(˜u)∂z(˜u−z),∂zφ⟩=−(⟨∂tϑ(˜u),φ⟩+A(˜u;˜u,φ)+g(t)φ(a,t))−∂t⟨ϑ(u)−ϑ(˜u),φ⟩, | (3.13) |
where we have used the first equation in (2.2). Since
⟨e,¯ϑ′ψ⟩+e(a,t)ψa=⟨ϑ(u)−ϑ(˜u),ψ⟩+(u(a,t)−˜u(a,t))ψa, | (3.14) |
integration of (3.8) over
⟨ϑ(un)−ϑ(˜u−n),φ−n⟩+∫In(⟨ϑ(u)−ϑ(˜u),ψ⟩+(u−˜u))(a,t)ψa)dt=⟨ϑ(un−1)−ϑ(˜u−n−1),φ+n−1⟩−Rn(˜u;˜u,φ), | (3.15) |
where
[Q(u)](T)−[Q(˜u)](T)=⟨ϑ(u0)−ϑ(˜u−0),φ0⟩−N∑n=1Rn(˜u;˜u,φ). | (3.16) |
The residual
Rn(˜u;˜u,φ)=Rh,n(˜u;˜u,φ)+δRn(˜u;˜u,φ), | (3.17) |
where
δRn(˜u;˜u,w)=Rn(˜u;˜u,w)−Rh,n(˜u;˜u,w)=∫In⟨∂tϑ(˜u),w−Jhw⟩dt+⟨[ϑ(˜u)]n−1,(w−Jhw)+n−1⟩+∫In(A(˜u;˜u,w)−Ah(˜u;˜u,w))dt=εh,n(˜u;w)+∫InεA(˜u;˜u,w)dt=εh,n(˜u;w)+εA,n(˜u;˜u,w). | (3.18) |
Putting(3.18) to (3.17) and in turn to (3.16) completes the proof.
Theorem 3.2. For
[Q(u)](T)−[Q(˜u)](T)=E0+E1+E2+E3, | (3.19) |
where
E0=⟨ϑ(u0)−ϑ(˜u−0),φ0⟩,E1=−N∑n=1Rn(˜u;˜u,φ−πqhφ),E2=−N∑n=1εA,n(˜u;˜u,Πqhφ),E3=−N∑n=1εh,n(˜u;πqhφ), | (3.20) |
and
Proof. Most derivation steps follow the proof of Theorem 3.1 up to (3.16):
[Q(u)](T)−[Q(˜u)](T)=⟨ϑ(u0)−ϑ(˜u−0),φ0⟩−N∑n=1Rn(˜u;˜u,φ). | (3.21) |
At this stage, we intend to insert (2.15), which is valid when the test function is
Rn(˜u;˜u,φ)=Rn(˜u;˜u,φ−πqhφ)+Rn(˜u;˜u,πqhφ)=Rn(˜u;˜u,φ−πqhφ)+Rn(˜u;˜u,πqhφ)−Rh,n(˜u;˜u,πqhφ)=Rn(˜u;˜u,φ−πqhφ)+εA,n(˜u;˜u,πqhφ)+εh,n(˜u;πqhφ), | (3.22) |
where similar equation to (3.18) has been used, and
Several numerical examples are presented in this section to achieve two goals: 1) to investigate the global/norm-based accuracy of the proposed approximation, and 2) to validate the robustness of error estimators that are derived from Theorem 3.1 and Theorem 3.2. While the former cannot satisfactorily substitute for a rigorous a priori error analysis, at least it should give an illustrative indicator on the global convergence property of the approximation. With respect to the latter, we only concentrate on the estimators' accuracy in predicting error and their capability to decompose it into relevant components. Various pertinent applications of the proposed error estimators to other aspects in numerical simulation of Richards Equation, such as its role in adaptivity, will be a subject of future work.
A uniform set of discretization parameters
While the proposed procedures enjoy a flexibility in their implementation, a closed form solution of Richards Equation is needed for the purpose of assessing their performance. As alluded to in the introduction, it is only on a very rare occasion that a closed form solution of Richards Equation is available. One such instance is when the constitutive relations are expressed as
κ(u)=κseαu,andϑ(u)=ϑr+(ϑs−ϑr)eαu, | (4.1) |
where
u(z,t)=α−1ln(κ−1sw(z,t)), | (4.2) |
where
w(z,t)=C1+C2eαz+eαz/2∞∑n=1wn(t)ϕn(z),with | (4.3) |
wn(t)=wn(0)e−μnt,μn=κs(α2+4λ2n)4α(ϑs−ϑr)>0,wn(0)=1⟨ϕn,ϕn⟩∫L0(κseαu0(z)−C1−C2eαz)e−αz/2ϕn(z)dz. | (4.4) |
The pair
{−ϕ′′n=λ2nϕnin(a,b),˜Baϕn=0,˜Bbϕn=0, | (4.5) |
where
Two examples are considered in the numerical experiments whose data are listed in Table 4.1. Solution profiles of these examples are shown in Figure 4.1 and Figure 4.2. The axes on these figures are flipped to follow the plotting style for profiles associated with Richards Equation (see for example [25,24]). The initial condition is
Ex. 1 | Ex. 2 | |
|
||
(4.6) & (4.7) | (4.6) & (4.8) | |
u0(z)=α−1ln(κ−1sf(z)), | (4.6) |
where for Ex. 1,
f(z)=C1+C2eαz+Aeαz/2sin(λ1z),λ1=π/b,C2=κs(eαga−eαgb)1−eαb,C1=κseαga−C2,A=4λ1(κse−α(65+b/2)−C1e−αb/2−C2eαb/2)((α/2)2+λ21)b, | (4.7) |
and for Ex. 2,
f(z)=C1+C2eαz+e−α(b−z)/26000∑n=1Ansin(λn(b−z)),λnisgovernedbytan(λnb)+2λnα=0,C1=−ga,C2=κseαgb−C1eαb,An=αcosh(αb/2)sin(λnb)−2λncos(λnb)sinh(αb/2)(α/2)2+λ2n4λnga2λnb−sin(2λn). | (4.8) |
In this subsection, a set of numerical experiments to investigate accuracy of the approximation is presented. We solve the two examples whose data are listed in Table 4.1.
Table 4.2 and Table 4.3 list the errors of approximation
FVEM-dG0 | FVEM-dG1 | ||
12 | 1 | 58.0082e-03 | 14.5267e-03 |
24 | 1 | 58.1606e-03 | 15.1200e-03 |
48 | 1 | 58.1991e-03 | 15.2688e-03 |
96 | 1 | 58.2087e-03 | 15.3060e-03 |
12 | 2 | 32.5818e-03 | 0.6939e-03 |
24 | 2 | 32.5477e-03 | 0.8597e-03 |
48 | 2 | 32.5396e-03 | 0.9086e-03 |
96 | 2 | 32.5376e-03 | 0.9211e-03 |
12 | 4 | 17.3786e-03 | 0.2823e-03 |
24 | 4 | 17.2600e-03 | 0.0916e-03 |
48 | 4 | 17.2310e-03 | 0.1222e-03 |
96 | 4 | 17.2238e-03 | 0.1344e-03 |
12 | 8 | 9.0728e-03 | 0.3586e-03 |
24 | 8 | 8.9160e-03 | 0.0793e-03 |
48 | 8 | 8.8779e-03 | 0.0154e-03 |
96 | 8 | 8.8685e-03 | 0.0153e-03 |
FVEM-dG0 | FVEM-dG1 | ||
5 | 4 | 4.9527e-02 | 5.0631e-02 |
10 | 4 | 2.0846e-02 | 1.8016e-02 |
20 | 4 | 1.0534e-02 | 0.4128e-02 |
40 | 4 | 0.8508e-02 | 0.0992e-02 |
5 | 8 | 4.9824e-02 | 5.0641e-02 |
10 | 8 | 1.8868e-02 | 1.7991e-02 |
20 | 8 | 0.6907e-02 | 0.4088e-03 |
40 | 8 | 0.4671e-02 | 0.0965e-02 |
5 | 16 | 5.0159e-02 | 5.0645e-02 |
10 | 16 | 1.8208e-02 | 1.7988e-02 |
20 | 16 | 0.5197e-02 | 0.4079e-02 |
40 | 16 | 0.2637e-02 | 0.0959e-02 |
5 | 32 | 5.0382e-02 | 5.0647e-02 |
10 | 32 | 1.8027e-02 | 1.7988e-02 |
20 | 32 | 0.4504e-02 | 0.4077e-02 |
40 | 32 | 0.1646e-02 | 0.0958e-02 |
Ex. 1 | Ex. 2 | |
|
0.231831624739998887 | 0.129975678959476710 |
|
0.221196137487056291 | 0.111225678959476525 |
First, the accuracy of FVEM-dG1 generally outperforms that of FVEM-dG0, which is especially evident when solving Ex. 1 (see Table 4.2). The approximation error for Ex. 1 seems to be dominated by component of the temporal discretization. For a fixed
As mentioned, the error equation for a quantity of interest
To test the proposed error estimators, we consider two quantities of interest:
● The spatial average of water content at time
[Q(u)](T)=1b−a∫baϑ(u(z,T))dz. | (4.9) |
To calculate the adjoint solution associated with this quantity, the corresponding adjoint data is
● The total average of water content over
[Q(u)](T)=1T∫T01b−a∫baϑ(u(z,t))dzdt. | (4.10) |
The corresponding adjoint data is
The true values of these quantities of interest for the two examples are listed in Table 4.4.
The approximate solution is
Table 4.5 and Table 4.6 demonstrate performance of the error estimator for the above quantities of interest when solving Ex. 1. In these tables, the error has been decomposed according to the components of error listed in Theorem 3.1. As in the accuracy assessment results, four different number of elements (
Err. Est. | Eff. | ||||||
12 | 1 | -5.5601e-05 | 6.6298e-03 | 2.6571e-04 | 2.2485e-05 | 6.8623e-03 | 1.149 |
24 | 1 | -1.3843e-05 | 6.6974e-03 | 1.3440e-04 | 5.3567e-06 | 6.8233e-03 | 1.139 |
48 | 1 | -3.4568e-06 | 6.7142e-03 | 6.7378e-05 | 1.3220e-06 | 6.7794e-03 | 1.131 |
96 | 1 | -8.6396e-07 | 6.7184e-03 | 3.3706e-05 | 3.2943e-07 | 6.7515e-03 | 1.126 |
12 | 2 | -4.4365e-05 | 3.8268e-03 | 7.1941e-05 | 3.6142e-05 | 3.8906e-03 | 1.120 |
24 | 2 | -1.1046e-05 | 3.8548e-03 | 3.9509e-05 | 8.5556e-06 | 3.8918e-03 | 1.120 |
48 | 2 | -2.7579e-06 | 3.8617e-03 | 2.0874e-05 | 2.1051e-06 | 3.8820e-03 | 1.120 |
96 | 2 | -6.8914e-07 | 3.8635e-03 | 1.0730e-05 | 5.2410e-07 | 3.8740e-03 | 1.115 |
12 | 4 | -3.9779e-05 | 2.0010e-03 | 2.5003e-05 | 4.3906e-05 | 2.0310e-03 | 1.067 |
24 | 4 | -9.9212e-06 | 2.0128e-03 | 1.2165e-06 | 1.0291e-05 | 2.0254e-03 | 1.069 |
48 | 4 | -2.4774e-06 | 2.0158e-03 | 6.9258e-06 | 2.5084e-06 | 2.0227e-03 | 1.069 |
96 | 4 | -6.1911e-07 | 2.0165e-03 | 3.7657e-06 | 6.2266e-07 | 2.0203e-03 | 1.068 |
12 | 8 | -3.8042e-05 | 1.0175e-03 | 1.9493e-05 | 4.6704e-05 | 1.0457e-03 | 1.037 |
24 | 8 | -9.4764e-06 | 1.0227e-03 | 5.0975e-06 | 1.1390e-05 | 1.0297e-03 | 1.036 |
48 | 8 | -2.3676e-06 | 1.0240e-03 | 2.3602e-06 | 2.7559e-06 | 1.0268e-03 | 1.036 |
96 | 8 | -5.9172e-07 | 1.0244e-03 | 1.3885e-06 | 6.8063e-07 | 1.0258e-03 | 1.036 |
Err. Est. | Eff. | ||||||
12 | 1 | -7.6641e-05 | -5.9702e-03 | 6.5348e-06 | 2.7273e-05 | -6.0131e-03 | 1.290 |
24 | 1 | -1.9082e-05 | -5.9818e-03 | 1.6059e-06 | 6.7751e-06 | -5.9925e-03 | 1.290 |
48 | 1 | -4.7653e-06 | -5.9847e-03 | 3.9971e-07 | 1.6907e-06 | -5.9874e-03 | 1.290 |
96 | 1 | -1.1910e-06 | -5.9854e-03 | 9.9817e-08 | 4.2248e-07 | -5.9861e-03 | 1.290 |
12 | 2 | -7.4772e-05 | -3.0291e-03 | 1.6147e-05 | 2.5436e-05 | -3.0623e-03 | 1.123 |
24 | 2 | -1.8616e-05 | -3.0342e-03 | 3.9483e-06 | 6.3250e-06 | -3.0426e-03 | 1.123 |
48 | 2 | -4.6488e-06 | -3.0355e-03 | 9.8092e-07 | 1.5784e-06 | -3.0376e-03 | 1.123 |
96 | 2 | -1.1619e-06 | -3.0358e-03 | 2.4483e-07 | 3.9441e-07 | -3.0363e-03 | 1.123 |
12 | 4 | -7.4397e-05 | -1.5584e-03 | 2.3449e-05 | 2.4137e-05 | -1.5852e-03 | 1.057 |
24 | 4 | -1.8523e-05 | -1.5609e-03 | 5.7189e-06 | 6.0235e-06 | -1.5677e-03 | 1.057 |
48 | 4 | -4.6257e-06 | -1.5615e-03 | 1.4158e-06 | 1.5036e-06 | -1.5632e-03 | 1.057 |
96 | 4 | -1.1561e-06 | -1.5617e-03 | 3.5295e-07 | 3.7571e-07 | -1.5621e-03 | 1.057 |
12 | 8 | -7.4326e-05 | -7.9524e-04 | 2.7824e-05 | 2.3365e-05 | -8.1837e-04 | 1.027 |
24 | 8 | -1.8504e-05 | -7.9647e-04 | 6.8634e-06 | 5.8679e-06 | -8.0225e-04 | 1.027 |
48 | 8 | -4.6210e-06 | -7.9678e-04 | 1.6962e-06 | 1.4661e-06 | -7.9824e-04 | 1.027 |
96 | 8 | -1.1549e-06 | -7.9686e-04 | 4.2208e-07 | 3.6638e-07 | -7.9722e-04 | 1.027 |
Notice that values in the tables give an indication that the error in
The component
The component
Next we utilize the proposed error estimator to the numerical solution of Ex. 2. Table 4.7 and Table 4.8 show the breakdown of error for each of the quantities of interest. Again, following the accuracy assessment results, four different number of elements (
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -6.2164e-08 | -3.6456e-07 | 1.0290e-02 | 1.0253e-02 | 0.977 |
10 | 4 | -1.3302e-05 | 3.3879e-09 | -4.6917e-09 | 3.9111e-03 | 3.8978e-03 | 0.993 |
20 | 4 | -5.7876e-06 | 9.9041e-10 | -2.2824e-10 | 1.0090e-03 | 1.0032e-03 | 0.998 |
40 | 4 | -2.7053e-06 | 5.6955e-10 | -3.8568e-11 | 2.4965e-04 | 2.4695e-04 | 0.999 |
5 | 8 | -3.6107e-05 | -4.3218e-08 | -3.5113e-07 | 1.1133e-02 | 1.1096e-02 | 0.974 |
10 | 8 | -1.3302e-05 | 1.8737e-10 | -4.7768e-10 | 4.3243e-03 | 4.3110e-03 | 0.993 |
20 | 8 | -5.7876e-06 | 1.9063e-11 | -6.0320e-12 | 1.0842e-03 | 1.0784e-03 | 0.998 |
40 | 8 | -2.7053e-06 | 5.5338e-12 | -4.5001e-13 | 2.6644e-04 | 2.6373e-02 | 0.999 |
5 | 16 | -3.6121e-05 | 6.8028e-08 | -4.5382e-07 | 1.1595e-02 | 1.1559e-02 | 0.973 |
10 | 16 | -1.3302e-05 | 1.6801e-11 | -8.8583e-11 | 4.5811e-03 | 4.5678e-03 | 0.992 |
20 | 16 | -5.7876e-06 | 5.2323e-13 | -3.2271e-13 | 1.1290e-03 | 1.1232e-03 | 0.998 |
40 | 16 | -2.7053e-06 | 4.0884e-14 | -2.5154e-14 | 2.7647e-04 | 2.7376e-04 | 0.999 |
5 | 32 | -3.6089e-05 | -4.4295e-08 | 4.5726e-08 | 1.1837e-02 | 1.1801e-02 | 0.972 |
10 | 32 | -1.3302e-05 | 2.5330e-12 | -2.9891e-11 | 4.7280e-03 | 4.7144e-03 | 0.992 |
20 | 32 | -5.7876e-06 | 2.6583e-14 | -9.4480e-14 | 1.1545e-03 | 1.1487e-03 | 0.998 |
40 | 32 | -2.7053e-06 | -1.0436e-14 | -1.8777e-14 | 2.8211e-04 | 2.7941e-04 | 0.999 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -4.6874e-03 | -7.6435e-08 | 7.2999e-03 | 2.5763e-03 | 0.921 |
10 | 4 | -1.3302e-05 | -4.6875e-03 | -8.4587e-10 | 3.3265e-03 | -1.3743e-03 | 1.026 |
20 | 4 | -5.7876e-06 | -4.6875e-03 | -3.4359e-11 | 9.8963e-04 | -3.7036e-03 | 1.001 |
40 | 4 | -2.7054e-06 | -4.6875e-03 | -4.2724e-12 | 2.5707e-04 | -4.4331e-03 | 1.000 |
5 | 8 | -3.6102e-05 | -2.3437e-03 | -4.6414e-08 | 7.2458e-03 | 4.8659e-03 | 0.950 |
10 | 8 | -1.3302e-05 | -2.3437e-03 | -6.5517e-11 | 3.5887e-03 | 1.2316e-03 | 0.961 |
20 | 8 | -5.7876e-06 | -2.3437e-03 | -7.0707e-13 | 1.0899e-03 | -1.2596e-03 | 1.004 |
40 | 8 | -2.7054e-06 | -2.3437e-03 | -4.9054e-14 | 2.8339e-04 | -2.0631e-03 | 1.000 |
5 | 16 | -3.6105e-05 | -1.1719e-03 | -7.9249e-08 | 7.1892e-03 | 5.9812e-03 | 0.956 |
10 | 16 | -1.3302e-05 | -1.1719e-03 | -1.0129e-11 | 3.7626e-03 | 2.5774e-03 | 0.977 |
20 | 16 | -5.7876e-06 | -1.1719e-03 | -6.6506e-14 | 1.1637e-03 | -1.3957e-05 | 1.823 |
40 | 16 | -2.7054e-06 | -1.1719e-03 | -1.1789e-14 | 3.0287e-04 | -8.7171e-04 | 1.001 |
5 | 32 | -3.6103e-05 | -5.8593e-04 | -2.1637e-08 | 7.1541e-03 | 6.5320e-03 | 0.959 |
10 | 32 | -1.3302e-06 | -5.8594e-04 | -3.1392e-12 | 3.8643e-03 | 3.2650e-03 | 0.979 |
20 | 32 | -5.7876e-06 | -5.8594e-04 | -4.6973e-14 | 1.2132e-03 | 6.2149e-04 | 0.988 |
40 | 32 | -2.7054e-06 | -5.8594e-04 | -1.1491e-14 | 3.1628e-04 | -2.7236e-04 | 1.002 |
The result in Table 4.8 shows that
Tables 4.9 to 4.12 present the decomposition of error for Ex. 1 and Ex. 2 into various components as dictated by Theorem 3.2. The columns for
12 | 1 | 6.9104e-03 | 7.5953e-06 | 0 |
24 | 1 | 6.8352e-03 | 1.8846e-06 | 6.9389e-18 |
48 | 1 | 6.7824e-03 | 4.6724e-07 | 3.4694e-18 |
96 | 1 | 6.7523e-03 | 1.1620e-07 | 6.9389e-18 |
12 | 2 | 3.8392e-03 | 6.1045e-06 | 8.9582e-05 |
24 | 2 | 3.8789e-03 | 1.5228e-06 | 2.2428e-05 |
48 | 2 | 3.8787e-03 | 3.7986e-07 | 5.6090e-06 |
96 | 2 | 3.8732e-03 | 9.4827e-08 | 1.4024e-06 |
12 | 4 | 1.9444e-03 | 5.6811e-06 | 1.1982e-04 |
24 | 4 | 2.0038e-03 | 1.4190e-06 | 3.0033e-05 |
48 | 4 | 2.0173e-03 | 3.5462e-07 | 7.5129e-06 |
96 | 4 | 2.0189e-03 | 8.8625e-08 | 1.8785e-06 |
12 | 8 | 9.4839e-04 | 5.5176e-06 | 1.2981e-04 |
24 | 8 | 1.0052e-03 | 1.3769e-06 | 3.2575e-05 |
48 | 8 | 1.0206e-03 | 3.4421e-07 | 8.1499e-06 |
96 | 8 | 1.0243e-03 | 8.6050e-08 | 2.0378e-06 |
12 | 1 | -5.9364e-03 | 0 | 0 |
24 | 1 | -5.9734e-03 | 0 | 0 |
48 | 1 | -5.9826e-03 | 0 | 0 |
96 | 1 | -5.9849e-03 | 0 | 0 |
12 | 2 | -3.0501e-03 | 2.5710e-06 | 5.9998e-05 |
24 | 2 | -3.0397e-03 | 6.4271e-07 | 1.5112e-05 |
48 | 2 | -3.0369e-03 | 1.6068e-07 | 3.7850e-06 |
96 | 2 | -3.0361e-03 | 4.0169e-08 | 9.4670e-07 |
12 | 4 | -1.6024e-03 | 4.3468e-06 | 8.7251e-05 |
24 | 4 | -1.5722e-03 | 1.0865e-06 | 2.1970e-05 |
48 | 4 | -1.5644e-03 | 2.7161e-07 | 5.5023e-06 |
96 | 4 | -1.5624e-03 | 6.7902e-08 | 1.3762e-06 |
12 | 8 | -8.5030e-04 | 5.5588e-06 | 1.0069e-04 |
24 | 8 | -8.1048e-04 | 1.3899e-06 | 2.5351e-05 |
48 | 8 | -8.0031e-04 | 3.4750e-07 | 6.3488e-06 |
96 | 8 | -7.9774e-04 | 8.6875e-08 | 1.5879e-06 |
5 | 4 | 1.0289e-02 | -7.6351e-08 | 3.0166e-07 |
10 | 4 | 3.9111e-03 | -5.9250e-10 | 4.6158e-09 |
20 | 4 | 1.0090e-03 | -1.7676e-11 | 1.7694e-10 |
40 | 4 | 2.4965e-04 | -1.9490e-12 | 2.1193e-11 |
5 | 8 | 1.1134e-02 | 7.3138e-08 | -1.3466e-06 |
10 | 8 | 4.3243e-03 | -6.0938e-11 | 1.1118e-09 |
20 | 8 | 1.0842e-03 | -4.8331e-13 | 1.1840e-11 |
40 | 8 | 2.6644e-04 | -2.7270e-14 | 6.6398e-13 |
5 | 16 | 1.1601e-02 | 8.7291e-08 | -5.8431e-06 |
10 | 16 | 4.5811e-03 | -1.1412e-11 | 3.7774e-10 |
20 | 16 | 1.1290e-03 | -3.7491e-14 | 1.0044e-12 |
40 | 16 | 2.7647e-04 | -4.7254e-15 | 1.7396e-14 |
5 | 32 | 1.1833e-02 | 2.1590e-08 | 3.9613e-06 |
10 | 32 | 4.7277e-03 | -3.8970e-12 | 1.8867e-10 |
20 | 32 | 1.1545e-03 | -1.9623e-14 | 1.5073e-13 |
40 | 32 | 2.8211e-04 | -4.4201e-15 | -2.7756e-17 |
5 | 4 | 2.6123e-03 | -7.7482e-09 | 1.1954e-07 |
10 | 4 | -1.3610e-03 | -5.0964e-11 | 1.2934e-09 |
20 | 4 | -3.6979e-03 | -1.4624e-12 | 4.4327e-11 |
40 | 4 | -4.4304e-03 | -1.6102e-13 | 5.1326e-12 |
5 | 8 | 4.9021e-03 | 6.9429e-09 | -1.0375e-07 |
10 | 8 | 1.2450e-03 | -5.4195e-12 | 2.1318e-10 |
20 | 8 | -1.2539e-03 | -4.3805e-14 | 1.8653e-12 |
40 | 8 | -2.0604e-03 | -3.6394e-15 | 9.6166e-14 |
5 | 16 | 6.0183e-03 | 1.5114e-08 | -1.0262e-06 |
10 | 16 | 2.5907e-03 | -1.0270e-12 | 5.4566e-11 |
20 | 16 | -8.1695e-06 | -9.7700e-15 | 1.0732e-13 |
40 | 16 | -8.6900e-04 | -2.1094e-15 | 1.2386e-15 |
5 | 32 | 6.5684e-03 | 3.4467e-09 | -3.0913e-07 |
10 | 32 | 3.2783e-03 | -3.6607e-13 | 2.2585e-11 |
20 | 32 | 6.2727e-04 | -8.8020e-15 | 1.0911e-14 |
40 | 32 | -2.6966e-04 | -2.1545e-15 | -4.1980e-16 |
This paper investigates the application of adjoint-based a posteriori error analysis for numerical approximation of Richards Equation. Construction of the approximate solution is cast into space-time variational formulation, specifically using the finite volume element in spatial variable and discontinuous Galerkin finite element in temporal variable. The resulting error estimators have the capability to predict components of error in certain quantities of interest that are expressed as a functional of the solution. The two examples give a strong indication that the error estimators are robust and capable to predict the error satisfactorily.
As for future work, we are interested in exploring further applications of the error estimators, in particular as to how they are applied to the setting of multidimensional problems. Owing to the various challenges persistent in the approximations of Richards Equation, a utilization of adaptivity is perhaps the only judicious route. Here the adaptivity is multi-faceted, not only as it pertains to local spatial refinement and dynamic time stepping, but also as it relates to determining optimal number of iterations when solving the nonlinear algebraic system. In this regard, the prospect of adjoint-based approach to estimate the components of error seems to be very promising.
Another interesting subject, which is not pursued in the present work, is a rigorous mathematical analysis of the proposed approximation. It must begin with establishing the existence of an approximate solution of (2.15). Here a potentially useful tool is either the Banach Fixed Point Theorem or the Brouwer Fixed Point Theorem. It should then be followed by a careful convergence analysis with the ultimate goal of showing the existence of a limit of the sequence of approximate solutions as
[1] |
W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003. doi: 10.1007/978-3-0348-7605-6
![]() |
[2] |
Adaptive multistep time discretization and linearization based on a posteriori error estimates for the Richards equation. Appl. Numer. Math. (2017) 112: 104-125. ![]() |
[3] |
Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Advances in Water Resources (2004) 27: 565-581. ![]() |
[4] |
A posteriori analysis of a space and time discretization of a nonlinear model for the flow in partially saturated porous media. IMA J. Numer. Anal. (2014) 34: 1002-1036. ![]() |
[5] |
A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. (1990) 26: 1483-1496. ![]() |
[6] |
Finite volume methods for elliptic PDE's: A new approach. M2AN Math. Model. Numer. Anal. (2002) 36: 307-324. ![]() |
[7] |
A finite volume element method for a non-linear elliptic problem. Numer. Linear Algebra Appl. (2005) 12: 515-546. ![]() |
[8] |
Z. Chen, G. Huan and Y. Ma, Computational Methods for Multiphase Flows in Porous Media, vol. 2 of Computational Science & Engineering, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006. doi: 10.1137/1.9780898718942
![]() |
[9] |
Error estimates in L2,H1 and L∞ in covolume methods for elliptic and parabolic problems: A unified approach. Math. Comp. (2000) 69: 103-120. ![]() |
[10] |
A mass-conservative control volume-finite element method for solving Richards'equation in heterogeneous porous media. BIT (2011) 51: 845-864. ![]() |
[11] | (1996) Computational Differential Equations. Cambridge: Cambridge University Press. |
[12] |
(1995) Introduction to adaptive methods for differential equations. Cambridge: in Acta Numerica, 1995, Acta Numer., Cambridge Univ. Press. ![]() |
[13] | (1995) Introduction to computational methods for differential equations. New York: in Theory and Numerics of Ordinary and Partial Differential Equations (Leicester, 1994), Adv. Numer. Anal., IV, Oxford Univ. Press. |
[14] |
A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. (1995) 32: 1-48. ![]() |
[15] |
D. J. Estep, M. G. Larson and R. D. Williams, Estimating the error of numerical solutions of systems of reaction-diffusion equations, Mem. Amer. Math. Soc., 146 (2000), no. 696. doi: 10.1090/memo/0696
![]() |
[16] |
The finite volume method for Richards equation. Comput. Geosci. (1999) 3: 259-294. ![]() |
[17] |
Numerical solution of Richards' equation: A review of advances and challenges. Soil Science Society of America Journal (2017) 81: 1257-1269. ![]() |
[18] |
Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science (1958) 85: 228-232. ![]() |
[19] |
Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality. Acta Numer. (2002) 11: 145-236. ![]() |
[20] |
Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. (1978) 15: 912-928. ![]() |
[21] |
G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems, vol. 295 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1995, Translated from the 1992 Russian edition by Guennadi Kontarev and revised by the author. doi: 10.1007/978-94-017-0621-6
![]() |
[22] |
Semianalytical solution to Richards' equation for layered porous media. Journal of Irrigation and Drainage Engineering (1998) 124: 290-299. ![]() |
[23] |
Capillary conduction of liquids through porous mediums. Physics (1931) 1: 318-333. ![]() |
[24] | Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. (1991) 27: 753-762. |
[25] |
An analytical solution to Richards' equation for time-varying infiltration. Water Resour. Res. (1991) 27: 763-766. ![]() |
Ex. 1 | Ex. 2 | |
|
||
(4.6) & (4.7) | (4.6) & (4.8) | |
FVEM-dG0 | FVEM-dG1 | ||
12 | 1 | 58.0082e-03 | 14.5267e-03 |
24 | 1 | 58.1606e-03 | 15.1200e-03 |
48 | 1 | 58.1991e-03 | 15.2688e-03 |
96 | 1 | 58.2087e-03 | 15.3060e-03 |
12 | 2 | 32.5818e-03 | 0.6939e-03 |
24 | 2 | 32.5477e-03 | 0.8597e-03 |
48 | 2 | 32.5396e-03 | 0.9086e-03 |
96 | 2 | 32.5376e-03 | 0.9211e-03 |
12 | 4 | 17.3786e-03 | 0.2823e-03 |
24 | 4 | 17.2600e-03 | 0.0916e-03 |
48 | 4 | 17.2310e-03 | 0.1222e-03 |
96 | 4 | 17.2238e-03 | 0.1344e-03 |
12 | 8 | 9.0728e-03 | 0.3586e-03 |
24 | 8 | 8.9160e-03 | 0.0793e-03 |
48 | 8 | 8.8779e-03 | 0.0154e-03 |
96 | 8 | 8.8685e-03 | 0.0153e-03 |
FVEM-dG0 | FVEM-dG1 | ||
5 | 4 | 4.9527e-02 | 5.0631e-02 |
10 | 4 | 2.0846e-02 | 1.8016e-02 |
20 | 4 | 1.0534e-02 | 0.4128e-02 |
40 | 4 | 0.8508e-02 | 0.0992e-02 |
5 | 8 | 4.9824e-02 | 5.0641e-02 |
10 | 8 | 1.8868e-02 | 1.7991e-02 |
20 | 8 | 0.6907e-02 | 0.4088e-03 |
40 | 8 | 0.4671e-02 | 0.0965e-02 |
5 | 16 | 5.0159e-02 | 5.0645e-02 |
10 | 16 | 1.8208e-02 | 1.7988e-02 |
20 | 16 | 0.5197e-02 | 0.4079e-02 |
40 | 16 | 0.2637e-02 | 0.0959e-02 |
5 | 32 | 5.0382e-02 | 5.0647e-02 |
10 | 32 | 1.8027e-02 | 1.7988e-02 |
20 | 32 | 0.4504e-02 | 0.4077e-02 |
40 | 32 | 0.1646e-02 | 0.0958e-02 |
Ex. 1 | Ex. 2 | |
|
0.231831624739998887 | 0.129975678959476710 |
|
0.221196137487056291 | 0.111225678959476525 |
Err. Est. | Eff. | ||||||
12 | 1 | -5.5601e-05 | 6.6298e-03 | 2.6571e-04 | 2.2485e-05 | 6.8623e-03 | 1.149 |
24 | 1 | -1.3843e-05 | 6.6974e-03 | 1.3440e-04 | 5.3567e-06 | 6.8233e-03 | 1.139 |
48 | 1 | -3.4568e-06 | 6.7142e-03 | 6.7378e-05 | 1.3220e-06 | 6.7794e-03 | 1.131 |
96 | 1 | -8.6396e-07 | 6.7184e-03 | 3.3706e-05 | 3.2943e-07 | 6.7515e-03 | 1.126 |
12 | 2 | -4.4365e-05 | 3.8268e-03 | 7.1941e-05 | 3.6142e-05 | 3.8906e-03 | 1.120 |
24 | 2 | -1.1046e-05 | 3.8548e-03 | 3.9509e-05 | 8.5556e-06 | 3.8918e-03 | 1.120 |
48 | 2 | -2.7579e-06 | 3.8617e-03 | 2.0874e-05 | 2.1051e-06 | 3.8820e-03 | 1.120 |
96 | 2 | -6.8914e-07 | 3.8635e-03 | 1.0730e-05 | 5.2410e-07 | 3.8740e-03 | 1.115 |
12 | 4 | -3.9779e-05 | 2.0010e-03 | 2.5003e-05 | 4.3906e-05 | 2.0310e-03 | 1.067 |
24 | 4 | -9.9212e-06 | 2.0128e-03 | 1.2165e-06 | 1.0291e-05 | 2.0254e-03 | 1.069 |
48 | 4 | -2.4774e-06 | 2.0158e-03 | 6.9258e-06 | 2.5084e-06 | 2.0227e-03 | 1.069 |
96 | 4 | -6.1911e-07 | 2.0165e-03 | 3.7657e-06 | 6.2266e-07 | 2.0203e-03 | 1.068 |
12 | 8 | -3.8042e-05 | 1.0175e-03 | 1.9493e-05 | 4.6704e-05 | 1.0457e-03 | 1.037 |
24 | 8 | -9.4764e-06 | 1.0227e-03 | 5.0975e-06 | 1.1390e-05 | 1.0297e-03 | 1.036 |
48 | 8 | -2.3676e-06 | 1.0240e-03 | 2.3602e-06 | 2.7559e-06 | 1.0268e-03 | 1.036 |
96 | 8 | -5.9172e-07 | 1.0244e-03 | 1.3885e-06 | 6.8063e-07 | 1.0258e-03 | 1.036 |
Err. Est. | Eff. | ||||||
12 | 1 | -7.6641e-05 | -5.9702e-03 | 6.5348e-06 | 2.7273e-05 | -6.0131e-03 | 1.290 |
24 | 1 | -1.9082e-05 | -5.9818e-03 | 1.6059e-06 | 6.7751e-06 | -5.9925e-03 | 1.290 |
48 | 1 | -4.7653e-06 | -5.9847e-03 | 3.9971e-07 | 1.6907e-06 | -5.9874e-03 | 1.290 |
96 | 1 | -1.1910e-06 | -5.9854e-03 | 9.9817e-08 | 4.2248e-07 | -5.9861e-03 | 1.290 |
12 | 2 | -7.4772e-05 | -3.0291e-03 | 1.6147e-05 | 2.5436e-05 | -3.0623e-03 | 1.123 |
24 | 2 | -1.8616e-05 | -3.0342e-03 | 3.9483e-06 | 6.3250e-06 | -3.0426e-03 | 1.123 |
48 | 2 | -4.6488e-06 | -3.0355e-03 | 9.8092e-07 | 1.5784e-06 | -3.0376e-03 | 1.123 |
96 | 2 | -1.1619e-06 | -3.0358e-03 | 2.4483e-07 | 3.9441e-07 | -3.0363e-03 | 1.123 |
12 | 4 | -7.4397e-05 | -1.5584e-03 | 2.3449e-05 | 2.4137e-05 | -1.5852e-03 | 1.057 |
24 | 4 | -1.8523e-05 | -1.5609e-03 | 5.7189e-06 | 6.0235e-06 | -1.5677e-03 | 1.057 |
48 | 4 | -4.6257e-06 | -1.5615e-03 | 1.4158e-06 | 1.5036e-06 | -1.5632e-03 | 1.057 |
96 | 4 | -1.1561e-06 | -1.5617e-03 | 3.5295e-07 | 3.7571e-07 | -1.5621e-03 | 1.057 |
12 | 8 | -7.4326e-05 | -7.9524e-04 | 2.7824e-05 | 2.3365e-05 | -8.1837e-04 | 1.027 |
24 | 8 | -1.8504e-05 | -7.9647e-04 | 6.8634e-06 | 5.8679e-06 | -8.0225e-04 | 1.027 |
48 | 8 | -4.6210e-06 | -7.9678e-04 | 1.6962e-06 | 1.4661e-06 | -7.9824e-04 | 1.027 |
96 | 8 | -1.1549e-06 | -7.9686e-04 | 4.2208e-07 | 3.6638e-07 | -7.9722e-04 | 1.027 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -6.2164e-08 | -3.6456e-07 | 1.0290e-02 | 1.0253e-02 | 0.977 |
10 | 4 | -1.3302e-05 | 3.3879e-09 | -4.6917e-09 | 3.9111e-03 | 3.8978e-03 | 0.993 |
20 | 4 | -5.7876e-06 | 9.9041e-10 | -2.2824e-10 | 1.0090e-03 | 1.0032e-03 | 0.998 |
40 | 4 | -2.7053e-06 | 5.6955e-10 | -3.8568e-11 | 2.4965e-04 | 2.4695e-04 | 0.999 |
5 | 8 | -3.6107e-05 | -4.3218e-08 | -3.5113e-07 | 1.1133e-02 | 1.1096e-02 | 0.974 |
10 | 8 | -1.3302e-05 | 1.8737e-10 | -4.7768e-10 | 4.3243e-03 | 4.3110e-03 | 0.993 |
20 | 8 | -5.7876e-06 | 1.9063e-11 | -6.0320e-12 | 1.0842e-03 | 1.0784e-03 | 0.998 |
40 | 8 | -2.7053e-06 | 5.5338e-12 | -4.5001e-13 | 2.6644e-04 | 2.6373e-02 | 0.999 |
5 | 16 | -3.6121e-05 | 6.8028e-08 | -4.5382e-07 | 1.1595e-02 | 1.1559e-02 | 0.973 |
10 | 16 | -1.3302e-05 | 1.6801e-11 | -8.8583e-11 | 4.5811e-03 | 4.5678e-03 | 0.992 |
20 | 16 | -5.7876e-06 | 5.2323e-13 | -3.2271e-13 | 1.1290e-03 | 1.1232e-03 | 0.998 |
40 | 16 | -2.7053e-06 | 4.0884e-14 | -2.5154e-14 | 2.7647e-04 | 2.7376e-04 | 0.999 |
5 | 32 | -3.6089e-05 | -4.4295e-08 | 4.5726e-08 | 1.1837e-02 | 1.1801e-02 | 0.972 |
10 | 32 | -1.3302e-05 | 2.5330e-12 | -2.9891e-11 | 4.7280e-03 | 4.7144e-03 | 0.992 |
20 | 32 | -5.7876e-06 | 2.6583e-14 | -9.4480e-14 | 1.1545e-03 | 1.1487e-03 | 0.998 |
40 | 32 | -2.7053e-06 | -1.0436e-14 | -1.8777e-14 | 2.8211e-04 | 2.7941e-04 | 0.999 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -4.6874e-03 | -7.6435e-08 | 7.2999e-03 | 2.5763e-03 | 0.921 |
10 | 4 | -1.3302e-05 | -4.6875e-03 | -8.4587e-10 | 3.3265e-03 | -1.3743e-03 | 1.026 |
20 | 4 | -5.7876e-06 | -4.6875e-03 | -3.4359e-11 | 9.8963e-04 | -3.7036e-03 | 1.001 |
40 | 4 | -2.7054e-06 | -4.6875e-03 | -4.2724e-12 | 2.5707e-04 | -4.4331e-03 | 1.000 |
5 | 8 | -3.6102e-05 | -2.3437e-03 | -4.6414e-08 | 7.2458e-03 | 4.8659e-03 | 0.950 |
10 | 8 | -1.3302e-05 | -2.3437e-03 | -6.5517e-11 | 3.5887e-03 | 1.2316e-03 | 0.961 |
20 | 8 | -5.7876e-06 | -2.3437e-03 | -7.0707e-13 | 1.0899e-03 | -1.2596e-03 | 1.004 |
40 | 8 | -2.7054e-06 | -2.3437e-03 | -4.9054e-14 | 2.8339e-04 | -2.0631e-03 | 1.000 |
5 | 16 | -3.6105e-05 | -1.1719e-03 | -7.9249e-08 | 7.1892e-03 | 5.9812e-03 | 0.956 |
10 | 16 | -1.3302e-05 | -1.1719e-03 | -1.0129e-11 | 3.7626e-03 | 2.5774e-03 | 0.977 |
20 | 16 | -5.7876e-06 | -1.1719e-03 | -6.6506e-14 | 1.1637e-03 | -1.3957e-05 | 1.823 |
40 | 16 | -2.7054e-06 | -1.1719e-03 | -1.1789e-14 | 3.0287e-04 | -8.7171e-04 | 1.001 |
5 | 32 | -3.6103e-05 | -5.8593e-04 | -2.1637e-08 | 7.1541e-03 | 6.5320e-03 | 0.959 |
10 | 32 | -1.3302e-06 | -5.8594e-04 | -3.1392e-12 | 3.8643e-03 | 3.2650e-03 | 0.979 |
20 | 32 | -5.7876e-06 | -5.8594e-04 | -4.6973e-14 | 1.2132e-03 | 6.2149e-04 | 0.988 |
40 | 32 | -2.7054e-06 | -5.8594e-04 | -1.1491e-14 | 3.1628e-04 | -2.7236e-04 | 1.002 |
12 | 1 | 6.9104e-03 | 7.5953e-06 | 0 |
24 | 1 | 6.8352e-03 | 1.8846e-06 | 6.9389e-18 |
48 | 1 | 6.7824e-03 | 4.6724e-07 | 3.4694e-18 |
96 | 1 | 6.7523e-03 | 1.1620e-07 | 6.9389e-18 |
12 | 2 | 3.8392e-03 | 6.1045e-06 | 8.9582e-05 |
24 | 2 | 3.8789e-03 | 1.5228e-06 | 2.2428e-05 |
48 | 2 | 3.8787e-03 | 3.7986e-07 | 5.6090e-06 |
96 | 2 | 3.8732e-03 | 9.4827e-08 | 1.4024e-06 |
12 | 4 | 1.9444e-03 | 5.6811e-06 | 1.1982e-04 |
24 | 4 | 2.0038e-03 | 1.4190e-06 | 3.0033e-05 |
48 | 4 | 2.0173e-03 | 3.5462e-07 | 7.5129e-06 |
96 | 4 | 2.0189e-03 | 8.8625e-08 | 1.8785e-06 |
12 | 8 | 9.4839e-04 | 5.5176e-06 | 1.2981e-04 |
24 | 8 | 1.0052e-03 | 1.3769e-06 | 3.2575e-05 |
48 | 8 | 1.0206e-03 | 3.4421e-07 | 8.1499e-06 |
96 | 8 | 1.0243e-03 | 8.6050e-08 | 2.0378e-06 |
12 | 1 | -5.9364e-03 | 0 | 0 |
24 | 1 | -5.9734e-03 | 0 | 0 |
48 | 1 | -5.9826e-03 | 0 | 0 |
96 | 1 | -5.9849e-03 | 0 | 0 |
12 | 2 | -3.0501e-03 | 2.5710e-06 | 5.9998e-05 |
24 | 2 | -3.0397e-03 | 6.4271e-07 | 1.5112e-05 |
48 | 2 | -3.0369e-03 | 1.6068e-07 | 3.7850e-06 |
96 | 2 | -3.0361e-03 | 4.0169e-08 | 9.4670e-07 |
12 | 4 | -1.6024e-03 | 4.3468e-06 | 8.7251e-05 |
24 | 4 | -1.5722e-03 | 1.0865e-06 | 2.1970e-05 |
48 | 4 | -1.5644e-03 | 2.7161e-07 | 5.5023e-06 |
96 | 4 | -1.5624e-03 | 6.7902e-08 | 1.3762e-06 |
12 | 8 | -8.5030e-04 | 5.5588e-06 | 1.0069e-04 |
24 | 8 | -8.1048e-04 | 1.3899e-06 | 2.5351e-05 |
48 | 8 | -8.0031e-04 | 3.4750e-07 | 6.3488e-06 |
96 | 8 | -7.9774e-04 | 8.6875e-08 | 1.5879e-06 |
5 | 4 | 1.0289e-02 | -7.6351e-08 | 3.0166e-07 |
10 | 4 | 3.9111e-03 | -5.9250e-10 | 4.6158e-09 |
20 | 4 | 1.0090e-03 | -1.7676e-11 | 1.7694e-10 |
40 | 4 | 2.4965e-04 | -1.9490e-12 | 2.1193e-11 |
5 | 8 | 1.1134e-02 | 7.3138e-08 | -1.3466e-06 |
10 | 8 | 4.3243e-03 | -6.0938e-11 | 1.1118e-09 |
20 | 8 | 1.0842e-03 | -4.8331e-13 | 1.1840e-11 |
40 | 8 | 2.6644e-04 | -2.7270e-14 | 6.6398e-13 |
5 | 16 | 1.1601e-02 | 8.7291e-08 | -5.8431e-06 |
10 | 16 | 4.5811e-03 | -1.1412e-11 | 3.7774e-10 |
20 | 16 | 1.1290e-03 | -3.7491e-14 | 1.0044e-12 |
40 | 16 | 2.7647e-04 | -4.7254e-15 | 1.7396e-14 |
5 | 32 | 1.1833e-02 | 2.1590e-08 | 3.9613e-06 |
10 | 32 | 4.7277e-03 | -3.8970e-12 | 1.8867e-10 |
20 | 32 | 1.1545e-03 | -1.9623e-14 | 1.5073e-13 |
40 | 32 | 2.8211e-04 | -4.4201e-15 | -2.7756e-17 |
5 | 4 | 2.6123e-03 | -7.7482e-09 | 1.1954e-07 |
10 | 4 | -1.3610e-03 | -5.0964e-11 | 1.2934e-09 |
20 | 4 | -3.6979e-03 | -1.4624e-12 | 4.4327e-11 |
40 | 4 | -4.4304e-03 | -1.6102e-13 | 5.1326e-12 |
5 | 8 | 4.9021e-03 | 6.9429e-09 | -1.0375e-07 |
10 | 8 | 1.2450e-03 | -5.4195e-12 | 2.1318e-10 |
20 | 8 | -1.2539e-03 | -4.3805e-14 | 1.8653e-12 |
40 | 8 | -2.0604e-03 | -3.6394e-15 | 9.6166e-14 |
5 | 16 | 6.0183e-03 | 1.5114e-08 | -1.0262e-06 |
10 | 16 | 2.5907e-03 | -1.0270e-12 | 5.4566e-11 |
20 | 16 | -8.1695e-06 | -9.7700e-15 | 1.0732e-13 |
40 | 16 | -8.6900e-04 | -2.1094e-15 | 1.2386e-15 |
5 | 32 | 6.5684e-03 | 3.4467e-09 | -3.0913e-07 |
10 | 32 | 3.2783e-03 | -3.6607e-13 | 2.2585e-11 |
20 | 32 | 6.2727e-04 | -8.8020e-15 | 1.0911e-14 |
40 | 32 | -2.6966e-04 | -2.1545e-15 | -4.1980e-16 |
Ex. 1 | Ex. 2 | |
|
||
(4.6) & (4.7) | (4.6) & (4.8) | |
FVEM-dG0 | FVEM-dG1 | ||
12 | 1 | 58.0082e-03 | 14.5267e-03 |
24 | 1 | 58.1606e-03 | 15.1200e-03 |
48 | 1 | 58.1991e-03 | 15.2688e-03 |
96 | 1 | 58.2087e-03 | 15.3060e-03 |
12 | 2 | 32.5818e-03 | 0.6939e-03 |
24 | 2 | 32.5477e-03 | 0.8597e-03 |
48 | 2 | 32.5396e-03 | 0.9086e-03 |
96 | 2 | 32.5376e-03 | 0.9211e-03 |
12 | 4 | 17.3786e-03 | 0.2823e-03 |
24 | 4 | 17.2600e-03 | 0.0916e-03 |
48 | 4 | 17.2310e-03 | 0.1222e-03 |
96 | 4 | 17.2238e-03 | 0.1344e-03 |
12 | 8 | 9.0728e-03 | 0.3586e-03 |
24 | 8 | 8.9160e-03 | 0.0793e-03 |
48 | 8 | 8.8779e-03 | 0.0154e-03 |
96 | 8 | 8.8685e-03 | 0.0153e-03 |
FVEM-dG0 | FVEM-dG1 | ||
5 | 4 | 4.9527e-02 | 5.0631e-02 |
10 | 4 | 2.0846e-02 | 1.8016e-02 |
20 | 4 | 1.0534e-02 | 0.4128e-02 |
40 | 4 | 0.8508e-02 | 0.0992e-02 |
5 | 8 | 4.9824e-02 | 5.0641e-02 |
10 | 8 | 1.8868e-02 | 1.7991e-02 |
20 | 8 | 0.6907e-02 | 0.4088e-03 |
40 | 8 | 0.4671e-02 | 0.0965e-02 |
5 | 16 | 5.0159e-02 | 5.0645e-02 |
10 | 16 | 1.8208e-02 | 1.7988e-02 |
20 | 16 | 0.5197e-02 | 0.4079e-02 |
40 | 16 | 0.2637e-02 | 0.0959e-02 |
5 | 32 | 5.0382e-02 | 5.0647e-02 |
10 | 32 | 1.8027e-02 | 1.7988e-02 |
20 | 32 | 0.4504e-02 | 0.4077e-02 |
40 | 32 | 0.1646e-02 | 0.0958e-02 |
Ex. 1 | Ex. 2 | |
|
0.231831624739998887 | 0.129975678959476710 |
|
0.221196137487056291 | 0.111225678959476525 |
Err. Est. | Eff. | ||||||
12 | 1 | -5.5601e-05 | 6.6298e-03 | 2.6571e-04 | 2.2485e-05 | 6.8623e-03 | 1.149 |
24 | 1 | -1.3843e-05 | 6.6974e-03 | 1.3440e-04 | 5.3567e-06 | 6.8233e-03 | 1.139 |
48 | 1 | -3.4568e-06 | 6.7142e-03 | 6.7378e-05 | 1.3220e-06 | 6.7794e-03 | 1.131 |
96 | 1 | -8.6396e-07 | 6.7184e-03 | 3.3706e-05 | 3.2943e-07 | 6.7515e-03 | 1.126 |
12 | 2 | -4.4365e-05 | 3.8268e-03 | 7.1941e-05 | 3.6142e-05 | 3.8906e-03 | 1.120 |
24 | 2 | -1.1046e-05 | 3.8548e-03 | 3.9509e-05 | 8.5556e-06 | 3.8918e-03 | 1.120 |
48 | 2 | -2.7579e-06 | 3.8617e-03 | 2.0874e-05 | 2.1051e-06 | 3.8820e-03 | 1.120 |
96 | 2 | -6.8914e-07 | 3.8635e-03 | 1.0730e-05 | 5.2410e-07 | 3.8740e-03 | 1.115 |
12 | 4 | -3.9779e-05 | 2.0010e-03 | 2.5003e-05 | 4.3906e-05 | 2.0310e-03 | 1.067 |
24 | 4 | -9.9212e-06 | 2.0128e-03 | 1.2165e-06 | 1.0291e-05 | 2.0254e-03 | 1.069 |
48 | 4 | -2.4774e-06 | 2.0158e-03 | 6.9258e-06 | 2.5084e-06 | 2.0227e-03 | 1.069 |
96 | 4 | -6.1911e-07 | 2.0165e-03 | 3.7657e-06 | 6.2266e-07 | 2.0203e-03 | 1.068 |
12 | 8 | -3.8042e-05 | 1.0175e-03 | 1.9493e-05 | 4.6704e-05 | 1.0457e-03 | 1.037 |
24 | 8 | -9.4764e-06 | 1.0227e-03 | 5.0975e-06 | 1.1390e-05 | 1.0297e-03 | 1.036 |
48 | 8 | -2.3676e-06 | 1.0240e-03 | 2.3602e-06 | 2.7559e-06 | 1.0268e-03 | 1.036 |
96 | 8 | -5.9172e-07 | 1.0244e-03 | 1.3885e-06 | 6.8063e-07 | 1.0258e-03 | 1.036 |
Err. Est. | Eff. | ||||||
12 | 1 | -7.6641e-05 | -5.9702e-03 | 6.5348e-06 | 2.7273e-05 | -6.0131e-03 | 1.290 |
24 | 1 | -1.9082e-05 | -5.9818e-03 | 1.6059e-06 | 6.7751e-06 | -5.9925e-03 | 1.290 |
48 | 1 | -4.7653e-06 | -5.9847e-03 | 3.9971e-07 | 1.6907e-06 | -5.9874e-03 | 1.290 |
96 | 1 | -1.1910e-06 | -5.9854e-03 | 9.9817e-08 | 4.2248e-07 | -5.9861e-03 | 1.290 |
12 | 2 | -7.4772e-05 | -3.0291e-03 | 1.6147e-05 | 2.5436e-05 | -3.0623e-03 | 1.123 |
24 | 2 | -1.8616e-05 | -3.0342e-03 | 3.9483e-06 | 6.3250e-06 | -3.0426e-03 | 1.123 |
48 | 2 | -4.6488e-06 | -3.0355e-03 | 9.8092e-07 | 1.5784e-06 | -3.0376e-03 | 1.123 |
96 | 2 | -1.1619e-06 | -3.0358e-03 | 2.4483e-07 | 3.9441e-07 | -3.0363e-03 | 1.123 |
12 | 4 | -7.4397e-05 | -1.5584e-03 | 2.3449e-05 | 2.4137e-05 | -1.5852e-03 | 1.057 |
24 | 4 | -1.8523e-05 | -1.5609e-03 | 5.7189e-06 | 6.0235e-06 | -1.5677e-03 | 1.057 |
48 | 4 | -4.6257e-06 | -1.5615e-03 | 1.4158e-06 | 1.5036e-06 | -1.5632e-03 | 1.057 |
96 | 4 | -1.1561e-06 | -1.5617e-03 | 3.5295e-07 | 3.7571e-07 | -1.5621e-03 | 1.057 |
12 | 8 | -7.4326e-05 | -7.9524e-04 | 2.7824e-05 | 2.3365e-05 | -8.1837e-04 | 1.027 |
24 | 8 | -1.8504e-05 | -7.9647e-04 | 6.8634e-06 | 5.8679e-06 | -8.0225e-04 | 1.027 |
48 | 8 | -4.6210e-06 | -7.9678e-04 | 1.6962e-06 | 1.4661e-06 | -7.9824e-04 | 1.027 |
96 | 8 | -1.1549e-06 | -7.9686e-04 | 4.2208e-07 | 3.6638e-07 | -7.9722e-04 | 1.027 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -6.2164e-08 | -3.6456e-07 | 1.0290e-02 | 1.0253e-02 | 0.977 |
10 | 4 | -1.3302e-05 | 3.3879e-09 | -4.6917e-09 | 3.9111e-03 | 3.8978e-03 | 0.993 |
20 | 4 | -5.7876e-06 | 9.9041e-10 | -2.2824e-10 | 1.0090e-03 | 1.0032e-03 | 0.998 |
40 | 4 | -2.7053e-06 | 5.6955e-10 | -3.8568e-11 | 2.4965e-04 | 2.4695e-04 | 0.999 |
5 | 8 | -3.6107e-05 | -4.3218e-08 | -3.5113e-07 | 1.1133e-02 | 1.1096e-02 | 0.974 |
10 | 8 | -1.3302e-05 | 1.8737e-10 | -4.7768e-10 | 4.3243e-03 | 4.3110e-03 | 0.993 |
20 | 8 | -5.7876e-06 | 1.9063e-11 | -6.0320e-12 | 1.0842e-03 | 1.0784e-03 | 0.998 |
40 | 8 | -2.7053e-06 | 5.5338e-12 | -4.5001e-13 | 2.6644e-04 | 2.6373e-02 | 0.999 |
5 | 16 | -3.6121e-05 | 6.8028e-08 | -4.5382e-07 | 1.1595e-02 | 1.1559e-02 | 0.973 |
10 | 16 | -1.3302e-05 | 1.6801e-11 | -8.8583e-11 | 4.5811e-03 | 4.5678e-03 | 0.992 |
20 | 16 | -5.7876e-06 | 5.2323e-13 | -3.2271e-13 | 1.1290e-03 | 1.1232e-03 | 0.998 |
40 | 16 | -2.7053e-06 | 4.0884e-14 | -2.5154e-14 | 2.7647e-04 | 2.7376e-04 | 0.999 |
5 | 32 | -3.6089e-05 | -4.4295e-08 | 4.5726e-08 | 1.1837e-02 | 1.1801e-02 | 0.972 |
10 | 32 | -1.3302e-05 | 2.5330e-12 | -2.9891e-11 | 4.7280e-03 | 4.7144e-03 | 0.992 |
20 | 32 | -5.7876e-06 | 2.6583e-14 | -9.4480e-14 | 1.1545e-03 | 1.1487e-03 | 0.998 |
40 | 32 | -2.7053e-06 | -1.0436e-14 | -1.8777e-14 | 2.8211e-04 | 2.7941e-04 | 0.999 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -4.6874e-03 | -7.6435e-08 | 7.2999e-03 | 2.5763e-03 | 0.921 |
10 | 4 | -1.3302e-05 | -4.6875e-03 | -8.4587e-10 | 3.3265e-03 | -1.3743e-03 | 1.026 |
20 | 4 | -5.7876e-06 | -4.6875e-03 | -3.4359e-11 | 9.8963e-04 | -3.7036e-03 | 1.001 |
40 | 4 | -2.7054e-06 | -4.6875e-03 | -4.2724e-12 | 2.5707e-04 | -4.4331e-03 | 1.000 |
5 | 8 | -3.6102e-05 | -2.3437e-03 | -4.6414e-08 | 7.2458e-03 | 4.8659e-03 | 0.950 |
10 | 8 | -1.3302e-05 | -2.3437e-03 | -6.5517e-11 | 3.5887e-03 | 1.2316e-03 | 0.961 |
20 | 8 | -5.7876e-06 | -2.3437e-03 | -7.0707e-13 | 1.0899e-03 | -1.2596e-03 | 1.004 |
40 | 8 | -2.7054e-06 | -2.3437e-03 | -4.9054e-14 | 2.8339e-04 | -2.0631e-03 | 1.000 |
5 | 16 | -3.6105e-05 | -1.1719e-03 | -7.9249e-08 | 7.1892e-03 | 5.9812e-03 | 0.956 |
10 | 16 | -1.3302e-05 | -1.1719e-03 | -1.0129e-11 | 3.7626e-03 | 2.5774e-03 | 0.977 |
20 | 16 | -5.7876e-06 | -1.1719e-03 | -6.6506e-14 | 1.1637e-03 | -1.3957e-05 | 1.823 |
40 | 16 | -2.7054e-06 | -1.1719e-03 | -1.1789e-14 | 3.0287e-04 | -8.7171e-04 | 1.001 |
5 | 32 | -3.6103e-05 | -5.8593e-04 | -2.1637e-08 | 7.1541e-03 | 6.5320e-03 | 0.959 |
10 | 32 | -1.3302e-06 | -5.8594e-04 | -3.1392e-12 | 3.8643e-03 | 3.2650e-03 | 0.979 |
20 | 32 | -5.7876e-06 | -5.8594e-04 | -4.6973e-14 | 1.2132e-03 | 6.2149e-04 | 0.988 |
40 | 32 | -2.7054e-06 | -5.8594e-04 | -1.1491e-14 | 3.1628e-04 | -2.7236e-04 | 1.002 |
12 | 1 | 6.9104e-03 | 7.5953e-06 | 0 |
24 | 1 | 6.8352e-03 | 1.8846e-06 | 6.9389e-18 |
48 | 1 | 6.7824e-03 | 4.6724e-07 | 3.4694e-18 |
96 | 1 | 6.7523e-03 | 1.1620e-07 | 6.9389e-18 |
12 | 2 | 3.8392e-03 | 6.1045e-06 | 8.9582e-05 |
24 | 2 | 3.8789e-03 | 1.5228e-06 | 2.2428e-05 |
48 | 2 | 3.8787e-03 | 3.7986e-07 | 5.6090e-06 |
96 | 2 | 3.8732e-03 | 9.4827e-08 | 1.4024e-06 |
12 | 4 | 1.9444e-03 | 5.6811e-06 | 1.1982e-04 |
24 | 4 | 2.0038e-03 | 1.4190e-06 | 3.0033e-05 |
48 | 4 | 2.0173e-03 | 3.5462e-07 | 7.5129e-06 |
96 | 4 | 2.0189e-03 | 8.8625e-08 | 1.8785e-06 |
12 | 8 | 9.4839e-04 | 5.5176e-06 | 1.2981e-04 |
24 | 8 | 1.0052e-03 | 1.3769e-06 | 3.2575e-05 |
48 | 8 | 1.0206e-03 | 3.4421e-07 | 8.1499e-06 |
96 | 8 | 1.0243e-03 | 8.6050e-08 | 2.0378e-06 |
12 | 1 | -5.9364e-03 | 0 | 0 |
24 | 1 | -5.9734e-03 | 0 | 0 |
48 | 1 | -5.9826e-03 | 0 | 0 |
96 | 1 | -5.9849e-03 | 0 | 0 |
12 | 2 | -3.0501e-03 | 2.5710e-06 | 5.9998e-05 |
24 | 2 | -3.0397e-03 | 6.4271e-07 | 1.5112e-05 |
48 | 2 | -3.0369e-03 | 1.6068e-07 | 3.7850e-06 |
96 | 2 | -3.0361e-03 | 4.0169e-08 | 9.4670e-07 |
12 | 4 | -1.6024e-03 | 4.3468e-06 | 8.7251e-05 |
24 | 4 | -1.5722e-03 | 1.0865e-06 | 2.1970e-05 |
48 | 4 | -1.5644e-03 | 2.7161e-07 | 5.5023e-06 |
96 | 4 | -1.5624e-03 | 6.7902e-08 | 1.3762e-06 |
12 | 8 | -8.5030e-04 | 5.5588e-06 | 1.0069e-04 |
24 | 8 | -8.1048e-04 | 1.3899e-06 | 2.5351e-05 |
48 | 8 | -8.0031e-04 | 3.4750e-07 | 6.3488e-06 |
96 | 8 | -7.9774e-04 | 8.6875e-08 | 1.5879e-06 |
5 | 4 | 1.0289e-02 | -7.6351e-08 | 3.0166e-07 |
10 | 4 | 3.9111e-03 | -5.9250e-10 | 4.6158e-09 |
20 | 4 | 1.0090e-03 | -1.7676e-11 | 1.7694e-10 |
40 | 4 | 2.4965e-04 | -1.9490e-12 | 2.1193e-11 |
5 | 8 | 1.1134e-02 | 7.3138e-08 | -1.3466e-06 |
10 | 8 | 4.3243e-03 | -6.0938e-11 | 1.1118e-09 |
20 | 8 | 1.0842e-03 | -4.8331e-13 | 1.1840e-11 |
40 | 8 | 2.6644e-04 | -2.7270e-14 | 6.6398e-13 |
5 | 16 | 1.1601e-02 | 8.7291e-08 | -5.8431e-06 |
10 | 16 | 4.5811e-03 | -1.1412e-11 | 3.7774e-10 |
20 | 16 | 1.1290e-03 | -3.7491e-14 | 1.0044e-12 |
40 | 16 | 2.7647e-04 | -4.7254e-15 | 1.7396e-14 |
5 | 32 | 1.1833e-02 | 2.1590e-08 | 3.9613e-06 |
10 | 32 | 4.7277e-03 | -3.8970e-12 | 1.8867e-10 |
20 | 32 | 1.1545e-03 | -1.9623e-14 | 1.5073e-13 |
40 | 32 | 2.8211e-04 | -4.4201e-15 | -2.7756e-17 |
5 | 4 | 2.6123e-03 | -7.7482e-09 | 1.1954e-07 |
10 | 4 | -1.3610e-03 | -5.0964e-11 | 1.2934e-09 |
20 | 4 | -3.6979e-03 | -1.4624e-12 | 4.4327e-11 |
40 | 4 | -4.4304e-03 | -1.6102e-13 | 5.1326e-12 |
5 | 8 | 4.9021e-03 | 6.9429e-09 | -1.0375e-07 |
10 | 8 | 1.2450e-03 | -5.4195e-12 | 2.1318e-10 |
20 | 8 | -1.2539e-03 | -4.3805e-14 | 1.8653e-12 |
40 | 8 | -2.0604e-03 | -3.6394e-15 | 9.6166e-14 |
5 | 16 | 6.0183e-03 | 1.5114e-08 | -1.0262e-06 |
10 | 16 | 2.5907e-03 | -1.0270e-12 | 5.4566e-11 |
20 | 16 | -8.1695e-06 | -9.7700e-15 | 1.0732e-13 |
40 | 16 | -8.6900e-04 | -2.1094e-15 | 1.2386e-15 |
5 | 32 | 6.5684e-03 | 3.4467e-09 | -3.0913e-07 |
10 | 32 | 3.2783e-03 | -3.6607e-13 | 2.2585e-11 |
20 | 32 | 6.2727e-04 | -8.8020e-15 | 1.0911e-14 |
40 | 32 | -2.6966e-04 | -2.1545e-15 | -4.1980e-16 |