We propose a parameterized level set method (PLSM) for structural topology optimization based on reaction diffusion equation (RDE) and fuzzy PID control algorithm. By using the proposed method, the structural compliance minimization problem under volume constraints is studied. In this work, the RDE is used as the evolution equation of level set function, and the topological derivative of the material domain is used as the reaction term of the RDE to drive the evolution of level set function, which has little dependence on the initial design domain, and can generate holes in the material domain; the compactly supported radial basis function (CS-RBF) is used to interpolate the level set function and modify the RDE, which can improve the computational efficiency, and keep the boundary smooth in the optimization process. Meanwhile, the fuzzy PID control algorithm is used to deal with the volume constraints, so that the convergence process of the structure volume is relatively stable. Furthermore, the proposed method is applied to 3D structural topology optimization. Several typical numerical examples are provided to demonstrate the feasibility and effectiveness of this method.
Citation: Mingtao Cui, Min Pan, Jie Wang, Pengjie Li. A parameterized level set method for structural topology optimization based on reaction diffusion equation and fuzzy PID control algorithm[J]. Electronic Research Archive, 2022, 30(7): 2568-2599. doi: 10.3934/era.2022132
We propose a parameterized level set method (PLSM) for structural topology optimization based on reaction diffusion equation (RDE) and fuzzy PID control algorithm. By using the proposed method, the structural compliance minimization problem under volume constraints is studied. In this work, the RDE is used as the evolution equation of level set function, and the topological derivative of the material domain is used as the reaction term of the RDE to drive the evolution of level set function, which has little dependence on the initial design domain, and can generate holes in the material domain; the compactly supported radial basis function (CS-RBF) is used to interpolate the level set function and modify the RDE, which can improve the computational efficiency, and keep the boundary smooth in the optimization process. Meanwhile, the fuzzy PID control algorithm is used to deal with the volume constraints, so that the convergence process of the structure volume is relatively stable. Furthermore, the proposed method is applied to 3D structural topology optimization. Several typical numerical examples are provided to demonstrate the feasibility and effectiveness of this method.
[1] | B. Bourdin, A. Chambolle, Design-dependent loads in topology optimization, ESAIM–Contr. Optim. Ca., 9 (2003), 19–48. https://doi.org/10.1051/cocv:2002070 doi: 10.1051/cocv:2002070 |
[2] | D. Muñoz, J. J. Ródenas, E. Nadal, J. Albelda, 3D topology optimization with h-adaptive refinement using cartesian grids finite element method (cgFEM), In: Proceedings of the 6th International Conference on Engineering Optimization, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-97773-7_68 |
[3] | D. P. Peng, B. Merriman, S. Osher, H. K. Zhao, M. J. Kang, A PDE-based fast local level set method, J. Comput. Phys., 155 (1999), 410–438. https://doi.org/10.1006/jcph.1999.6345 doi: 10.1006/jcph.1999.6345 |
[4] | F. Ferrari, O. Sigmund, A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D, Struct. Multidiscip. O., 62 (2020), 2211–2228. https://doi.org/10.1007/s00158-020-02629-w doi: 10.1007/s00158-020-02629-w |
[5] | G. Allaire, F. de Gournay, F. Jouve, A. M. Toader, Structural optimization using topological and shape sensitivity via a level set method, Control Cybern., 34 (2005), 59–80. |
[6] | G. Allaire, F. Jouve, A. M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194 (2004), 363–393. https://doi.org/10.1016/j.jcp.2003.09.032 doi: 10.1016/j.jcp.2003.09.032 |
[7] | G. Allaire, F. Jouve, A. M. Toader, A level-set method for shape optimization, Comptes Rendus Math., 334 (2002), 1125–1130. https://doi.org/10.1016/S1631-073X(02)02412-3 doi: 10.1016/S1631-073X(02)02412-3 |
[8] | H. A. Eschenauer, V. V. Kobelev, A. Schumacher, Bubble method for topology and shape optimization of structures, Struct. Optimization, 8 (1994), 42–51. https://doi.org/10.1007/BF01742933 doi: 10.1007/BF01742933 |
[9] | H. Li, T. Kondoh, P. Jolivet, K. Furuta, T. Yamada, B. Zhu, et al., Optimum design and thermal modeling for 2D and 3D natural convection problems incorporating level set-based topology optimization with body-fitted mesh, Int. J. Numer. Meth. Eng., 123 (2022), 1954–1990. https://doi.org/10.1002/nme.6923 doi: 10.1002/nme.6923 |
[10] | H. Li, T. Kondoh, P. Jolivet, K. Furuta, T. Yamada, B. Zhu, et al., Three-dimensional topology optimization of a fluid-structure system using body-fitted mesh adaption based on the level-set method, Appl. Math. Model., 101 (2022), 276–308. https://doi.org/10.1016/j.apm.2021.08.021 doi: 10.1016/j.apm.2021.08.021 |
[11] | H. Li, T. Yamada, P. Jolivet, K. Furuta, T. Kondoh, K. Izui, et al., Full-scale 3D structural topology optimization using adaptive mesh refinement based on the level-set method, Finite Elem. Anal. Des., 194 (2021), 103561. https://doi.org/10.1016/j.finel.2021.103561 doi: 10.1016/j.finel.2021.103561 |
[12] | H. S. Ho, M. Y. Wang, M. D. Zhou, Parametric structural optimization with dynamic knot RBFs and partition of unity method, Struct. Multidiscip. O., 47 (2013), 353–365. https://doi.org/10.1007/s00158-012-0848-7 doi: 10.1007/s00158-012-0848-7 |
[13] | H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4 (1995), 389–396. https://doi.org/10.1007/BF02123482 doi: 10.1007/BF02123482 |
[14] | H. Zhang, S. T. Liu, X. O. Zhang, Topology optimization of 3D structures with design-dependent loads, Acta Mech. Sin., 26 (2010), 767–775. https://doi.org/10.1007/s10409-010-0370-3 doi: 10.1007/s10409-010-0370-3 |
[15] | J. A. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163 (2000), 489–528. https://doi.org/10.1006/jcph.2000.6581 doi: 10.1006/jcph.2000.6581 |
[16] | J. A. Sethian, P. Smereka, Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35 (2003), 341–372. https://doi.org/10.1146/annurev.fluid.35.101101.161105 doi: 10.1146/annurev.fluid.35.101101.161105 |
[17] | J. Du, N. Olhoff, Topological optimization of continuum structures with design-dependent surface loading – Part II: algorithm and examples for 3D problems, Struct. Multidiscip. O., 27 (2004), 166–177. https://doi.org/10.1007/s00158-004-0380-5 doi: 10.1007/s00158-004-0380-5 |
[18] | J. S. Choi, T. Yamada, K. Izui, S. Nishiwaki, J. Yoo, Topology optimization using a reaction–diffusion equation, Comput. Method. Appl. M., 200 (2011), 2407–2420. https://doi.org/10.1016/j.cma.2011.04.013 doi: 10.1016/j.cma.2011.04.013 |
[19] | J. Sokolowski, A. Zochowski, Topological derivative in shape optimization, Springer, Boston, MA (2009). |
[20] | J. Zhu, Y. Zhao, W. Zhang, X. Gu, T. Gao, J. Kong, et al., Bio-inspired feature-driven topology optimization for rudder structure design, Engineered Sci., 5 (2019), 46–55. https://doi.org/10.30919/es8d716 doi: 10.30919/es8d716 |
[21] | K. Liu, A. Tovar, An efficient 3D topology optimization code written in Matlab, Struct. Multidiscip. O., 50 (2014), 1175–1196. https://doi.org/10.1007/s00158-014-1107-x doi: 10.1007/s00158-014-1107-x |
[22] | K. Svanberg, The method of moving asymptotes–a new method for structural optimization, INT J. Numer. Meth. Eng., 24 (1987), 359–373. https://doi.org/10.1002/nme.1620240207 doi: 10.1002/nme.1620240207 |
[23] | L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[24] | M. Burger, B. Hackl, W. Ring, Incorporating topological derivatives into level set methods, J. Comput. Phys., 194 (2004), 344–362. https://doi.org/10.1016/j.jcp.2003.09.033 doi: 10.1016/j.jcp.2003.09.033 |
[25] | M. H. Abolbashari, S. Keshavarzmanesh, On various aspects of application of the evolutionary structural optimization method for 2D and 3D continuum structures, Finite Elem. Anal. Des., 42 (2006), 478–491. https://doi.org/10.1016/j.finel.2005.09.004 doi: 10.1016/j.finel.2005.09.004 |
[26] | M. J. de Ruiter, F. van Keulen, Topology optimization using a topology description function, Struct. Multidiscip. O., 26 (2004), 406–416. https://doi.org/10.1007/s00158-003-0375-7 doi: 10.1007/s00158-003-0375-7 |
[27] | M. Marino, F. Auricchio, A. Reali, E. Rocca, U. Stefanelli, Mixed variational formulations for structural topology optimization based on the phase-field approach, Struct. Multidiscip. O., 64 (2021), 2627–2652. https://doi.org/10.1007/s00158-021-03017-8 doi: 10.1007/s00158-021-03017-8 |
[28] | M. Otomori, T. Yamada, K. Izui, S. Nishiwaki, Matlab code for a level-set based topology optimization method using a reaction diffusion equation, Struct. Multidiscip. O., 51 (2015), 1159–1172. https://doi.org/10.1007/s00158-014-1190-z doi: 10.1007/s00158-014-1190-z |
[29] | M. P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Method. Appl. M., 71 (1988), 197–224. https://doi.org/10.1016/0045-7825(88)90086-2 doi: 10.1016/0045-7825(88)90086-2 |
[30] | M. P. Bendsøe, O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69 (1999), 635–654. https://doi.org/10.1007/s004190050248 doi: 10.1007/s004190050248 |
[31] | M. P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optimization, 1 (1989), 193–202. https://doi.org/10.1007/BF01650949 doi: 10.1007/BF01650949 |
[32] | M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114 (1994), 146–159. https://doi.org/10.1006/jcph.1994.1155 doi: 10.1006/jcph.1994.1155 |
[33] | M. T. Cui, C. C. Luo, G. Li, M. Pan, The parameterized level set method for structural topology optimization with shape sensitivity constraint factor, Eng. Comput., 37 (2021), 855–872. https://doi.org/10.1007/s00366-019-00860-8 doi: 10.1007/s00366-019-00860-8 |
[34] | M. Y. Wang, H. M. Zong, Q. P. Ma, Y. Tian, M. D. Zhou, Cellular level set in B-splines (CLIBS): A method for modeling and topology optimization of cellular structures, Comput. Method. Appl. M., 349 (2019), 378–404. https://doi.org/10.1016/j.cma.2019.02.026 doi: 10.1016/j.cma.2019.02.026 |
[35] | M. Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Comput. Method. Appl. M., 192 (2003), 227–246. https://doi.org/10.1016/S0045-7825(02)00559-5 doi: 10.1016/S0045-7825(02)00559-5 |
[36] | M. Zhou, G. I. N. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comput. Method. Appl. M., 89 (1991), 309–336. https://doi.org/10.1016/0045-7825(91)90046-9 doi: 10.1016/0045-7825(91)90046-9 |
[37] | M. Zhou, M. Y. Wang, A semi-Lagrangian level set method for structural optimization, Struct. Multidiscip. O., 46 (2012), 487–501. https://doi.org/10.1007/s00158-012-0842-0 doi: 10.1007/s00158-012-0842-0 |
[38] | N. P. van Dijk, K. Maute, M. Langelaar, F. van Keulen, Level-set methods for structural topology optimization: a review, Struct. Multidiscip. O., 48 (2013), 437–472. https://doi.org/10.1007/s00158-013-0912-y doi: 10.1007/s00158-013-0912-y |
[39] | O. Sigmund, P. M. Clausen, Topology optimization using a mixed formulation: An alternative way to solve pressure load problems, Comput. Method. Appl. M., 196 (2007), 1874–1889. https://doi.org/10.1016/j.cma.2006.09.021 doi: 10.1016/j.cma.2006.09.021 |
[40] | P. Wei, M. Y. Wang, Piecewise constant level set method for structural topology optimization, Int. J. Numer. Meth. Eng., 78 (2009), 379–402. https://doi.org/10.1002/nme.2478 doi: 10.1002/nme.2478 |
[41] | P. Wei, Z. Y. Li, X. P. Li, M. Y. Wang, An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions, Struct. Multidiscip. O., 58 (2018), 831–849. https://doi.org/10.1007/s00158-018-1904-8 doi: 10.1007/s00158-018-1904-8 |
[42] | Q. Xia, M. Y. Wang, S. Y. Wang, S. K. Chen, Semi-Lagrange method for level-set-based structural topology and shape optimization, Struct. Multidiscip. O., 31 (2006), 419–429. https://doi.org/10.1007/s00158-005-0597-y doi: 10.1007/s00158-005-0597-y |
[43] | R. Malladi, J. A. Sethian, B. C. Vemuri, Shape modeling with front propagation: a level set approach, IEEE T. Pattern. Anal., 17 (1995), 158–175. https://doi.org/10.1109/34.368173 doi: 10.1109/34.368173 |
[44] | S. Osher, F. Santosa, Level set methods for optimization problems involving geometry and constrains I. Frequencies of a two-density inhomogeneous drum, J. Comput. Phys., 171 (2001), 272–288. https://doi.org/10.1006/jcph.2001.6789 doi: 10.1006/jcph.2001.6789 |
[45] | S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., 79 (1988), 12–49. https://doi.org/10.1016/0021-9991(88)90002-2 doi: 10.1016/0021-9991(88)90002-2 |
[46] | S. Osher, N. Paragios, Geometric level set methods in imaging, vision, and graphics, Springer, New York (2003). https://doi.org/10.1007/b97541 |
[47] | S. Y. Wang, M. Y. Wang, Radial basis functions and level set method for structural topology optimization, Int. J. Numer. Meth. Eng., 65 (2006), 2060–2090. https://doi.org/10.1002/nme.1536 doi: 10.1002/nme.1536 |
[48] | T. Cecil, J. L. Qian, S. Osher, Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions, J. Comput. Phys., 196 (2004), 327–347. https://doi.org/10.1016/j.jcp.2003.11.010 doi: 10.1016/j.jcp.2003.11.010 |
[49] | T. Yamada, K. Izui, S. Nishiwaki, A. Takezawa, A topology optimization method based on the level set method incorporating a fictitious interface energy, Comput. Method. Appl. M., 199 (2010), 2876–2891. https://doi.org/10.1016/j.cma.2010.05.013 doi: 10.1016/j.cma.2010.05.013 |
[50] | T. Zegard, G. H. Paulino, GRAND3–Ground structure based topology optimization for arbitrary 3D domains using MATLAB, Struct. Multidiscip. O., 52 (2015), 1161–1184. https://doi.org/10.1007/s00158-015-1284-2 doi: 10.1007/s00158-015-1284-2 |
[51] | W. Zhang, J. Chen, X. Zhu, J. Zhou, D. Xue, X. Lei, et al., Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach, Comput. Method. Appl. M., 322 (2017), 590–614. https://doi.org/10.1016/j.cma.2017.05.002 doi: 10.1016/j.cma.2017.05.002 |
[52] | W. Zhang, Y. Zhou, J. Zhu, A comprehensive study of feature definitions with solids and voids for topology optimization, Comput. Method. Appl. M., 325 (2017), 289–313. https://doi.org/10.1016/j.cma.2017.07.004 doi: 10.1016/j.cma.2017.07.004 |
[53] | X. Guo, W. Zhang, W. Zhong, Doing topology optimization explicitly and geometrically–a new Moving Morphable Components Based Frame, J. Appl. Mech., 81 (2014), 081009. https://doi.org/10.1115/1.4027609 doi: 10.1115/1.4027609 |
[54] | X. Y. Yang, Y. M. Xie, G. P. Steven, Evolutionary methods for topology optimisation of continuous structures with design dependent loads, Comput. Struct., 83 (2005), 956–963. https://doi.org/10.1016/j.compstruc.2004.10.011 doi: 10.1016/j.compstruc.2004.10.011 |
[55] | Y. M. Xie, G. P. Steven, Evolutionary Structural Optimization, Springer, London (1997) |
[56] | Y. Zhou, W. Zhang, J. Zhu, Z. Xu, Feature-driven topology optimization method with signed distance function, Comput. Method. Appl. M., 310 (2016), 1–32. https://doi.org/10.1016/j.cma.2016.06.027 doi: 10.1016/j.cma.2016.06.027 |
[57] | Z. Luo, M. Y. Wang, S. Y. Wang, P. Wei, A level set-based parameterization method for structural shape and topology optimization, Int. J. Numer. Meth. Eng., 76 (2008), 1–26. https://doi.org/10.1002/nme.2092 doi: 10.1002/nme.2092 |
[58] | Z. Luo, N. Zhang, W. Gao, H. Ma, Structural shape and topology optimization using a meshless Galerkin level set method, Int. J. Numer. Meth. Eng., 90 (2012), 369–389. https://doi.org/10.1002/nme.3325 doi: 10.1002/nme.3325 |