The study of the power mean of the generalized polynomial exponential sums plays a very important role in analytic number theory, and many classical number theory problems are closely related to it. In this article, we use the elementary methods and the properties of the exponential sums to study the calculating problem of one kind of fourth power mean of some special generalized polynomial exponential sums, and we give some exact calculating formulae for them.
Citation: Li Wang, Yuanyuan Meng. Generalized polynomial exponential sums and their fourth power mean[J]. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220
The study of the power mean of the generalized polynomial exponential sums plays a very important role in analytic number theory, and many classical number theory problems are closely related to it. In this article, we use the elementary methods and the properties of the exponential sums to study the calculating problem of one kind of fourth power mean of some special generalized polynomial exponential sums, and we give some exact calculating formulae for them.
[1] | A. Weil, Basic Number Theory, Springer-Verlag, New York, 1974. |
[2] | A. Weil, On some exponential sums, Proc. Nat. Acad. Sci., 34 (1948), 204–207. https://doi.org/10.1073/pnas.34.5.204 doi: 10.1073/pnas.34.5.204 |
[3] | J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput., 41 (2012), 1524–1557. https://doi.org/10.1137/110850414 doi: 10.1137/110850414 |
[4] | W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022 |
[5] | W. P. Zhang, Y. Y. Meng, On the sixth power mean of the two-term exponential sums, Acta. Math. Sin.-English Ser., 38 (2022), 510–518. https://doi.org/10.1007/s10114-022-0541-8 doi: 10.1007/s10114-022-0541-8 |
[6] | L. Chen, X. Wang, A new fourth power mean of two-term exponential sums, Open Math., 17 (2019), 407–414. https://doi.org/10.1515/math-2019-0034 doi: 10.1515/math-2019-0034 |
[7] | W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013. |
[8] | X. C. Du, D. Han, On the fourth power mean of the three-term exponential sums, J. Northwest Univ., 43 (2013), 541–544. |
[9] | T. T. Wang, W. P. Zhang, On the fourth and sixth power mean of mixed exponential sums, Sci. China Math., 38 (2011), 265–270. |
[10] | X. C. Ai, J. H. Chen, S. L. Zhang, H. Chen, A research on the relation between the three-term exponential sums and the system of the congruence equations, J. Math., 33 (2013), 535–540. https://doi.org/10.3969/j.issn.0255-7797.2013.03.021 doi: 10.3969/j.issn.0255-7797.2013.03.021 |
[11] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Math. Rep., 19 (2017), 75–81. |
[12] | H. N. Liu, W. M. Li, On the fourth power mean of the three-term exponential sums, Adv. Math., 46 (2017), 529–547. |
[13] | X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Math., 7 (2019), 907. https://doi.org/10.3390/math7100907 doi: 10.3390/math7100907 |
[14] | L. Chen, Z. Y. Chen, Some new hybrid power mean formulae of trigonometric sums, Adv. Differ. Equation, 2020 (2020), 220. https://doi.org/10.1186/s13662-020-02660-7 doi: 10.1186/s13662-020-02660-7 |
[15] | X. Y. Wang, X. X. Li, One kind sixth power mean of the three-term exponential sums, Open Math., 15 (2017), 705–710. https://doi.org/10.1515/math-2017-0060 doi: 10.1515/math-2017-0060 |
[16] | J. Bourgain, Estimates on polynomial exponential sums, Isr. J. Math., 176 (2010), 221–240. https://doi.org/10.1007/s11856-010-0027-8 doi: 10.1007/s11856-010-0027-8 |
[17] | D. Gomez-Perez, J. Gutierrez, I. E. Shparlinski, Exponential sums with Dickson polynomials, Finite Fields Th. App., 12 (2006), 16–25. https://doi.org/10.1016/j.ffa.2004.08.001 doi: 10.1016/j.ffa.2004.08.001 |
[18] | H. Jiao, Y. Shang, W. Wang, Solving generalized polynomial problem by using new affine relaxed technique, Int. J. Comput. Math., 99 (2022), 309–331. https://doi.org/10.1080/00207160.2021.1909727 doi: 10.1080/00207160.2021.1909727 |
[19] | T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. |
[20] | Z. H. Sun, Legendre polynomials and supercongruences, Acta Arith., 159 (2013), 169–200. |
[21] | Z. H. Sun, Supplements to the theory of quartic residues, Acta Arith., 97 (2001), 361–377. |