Research article Special Issues

Ensemble learning-based IDS for sensors telemetry data in IoT networks


  • Received: 21 May 2022 Revised: 30 June 2022 Accepted: 04 July 2022 Published: 25 July 2022
  • The Internet of Things (IoT) is a paradigm that connects a range of physical smart devices to provide ubiquitous services to individuals and automate their daily tasks. IoT devices collect data from the surrounding environment and communicate with other devices using different communication protocols such as CoAP, MQTT, DDS, etc. Study shows that these protocols are vulnerable to attack and prove a significant threat to IoT telemetry data. Within a network, IoT devices are interdependent, and the behaviour of one device depends on the data coming from another device. An intruder exploits vulnerabilities of a device's interdependent feature and can alter the telemetry data to indirectly control the behaviour of other dependent devices in a network. Therefore, securing IoT devices have become a significant concern in IoT networks. The research community often proposes intrusion Detection Systems (IDS) using different techniques. One of the most adopted techniques is machine learning (ML) based intrusion detection. This study suggests a stacking-based ensemble model makes IoT devices more intelligent for detecting unusual behaviour in IoT networks. The TON-IoT (2020) dataset is used to assess the effectiveness of the proposed model. The proposed model achieves significant improvements in accuracy and other evaluation measures in binary and multi-class classification scenarios for most of the sensors compared to traditional ML algorithms and other ensemble techniques.

    Citation: Naila Naz, Muazzam A Khan, Suliman A. Alsuhibany, Muhammad Diyan, Zhiyuan Tan, Muhammad Almas Khan, Jawad Ahmad. Ensemble learning-based IDS for sensors telemetry data in IoT networks[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10550-10580. doi: 10.3934/mbe.2022493

    Related Papers:

  • The Internet of Things (IoT) is a paradigm that connects a range of physical smart devices to provide ubiquitous services to individuals and automate their daily tasks. IoT devices collect data from the surrounding environment and communicate with other devices using different communication protocols such as CoAP, MQTT, DDS, etc. Study shows that these protocols are vulnerable to attack and prove a significant threat to IoT telemetry data. Within a network, IoT devices are interdependent, and the behaviour of one device depends on the data coming from another device. An intruder exploits vulnerabilities of a device's interdependent feature and can alter the telemetry data to indirectly control the behaviour of other dependent devices in a network. Therefore, securing IoT devices have become a significant concern in IoT networks. The research community often proposes intrusion Detection Systems (IDS) using different techniques. One of the most adopted techniques is machine learning (ML) based intrusion detection. This study suggests a stacking-based ensemble model makes IoT devices more intelligent for detecting unusual behaviour in IoT networks. The TON-IoT (2020) dataset is used to assess the effectiveness of the proposed model. The proposed model achieves significant improvements in accuracy and other evaluation measures in binary and multi-class classification scenarios for most of the sensors compared to traditional ML algorithms and other ensemble techniques.



    加载中


    [1] Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran, S. Guizani, Internet-of-things-based smart cities: Recent advances and challenges, IEEE Commun. Mag., 55 (2017), 16–24. https://ieeexplore.ieee.org/document/8030479
    [2] H. Yang, J. Yuan, C. Li, G. Zhao, Z. Sun, Q. Yao, et al., BrainIoT: Brain-like productive services provisioning with federated learning in industrial IoT, IEEE Int. Things J., 9 (2021), 2014–2024. https://ieeexplore.ieee.org/document/9454442
    [3] B. Bera, S. Saha, A. K. Das, A. V. Vasilakos, Designing blockchain-based access control protocol in iot-enabled smart-grid system, IEEE Int. Things J., 8 (2020), 5744–5761. https://ieeexplore.ieee.org/document/9222155
    [4] M. Hatamian, M. A. Bardmily, M. Asadboland, M. Hatamian, H. Barati, Congestion-aware routing and fuzzy-based rate controller for wireless sensor, Radioengineering, 25 (2016), 114–123. https://www.radioeng.cz/fulltexts/2016/16_01_0114_0123.pdf
    [5] M. Nobakht, V. Sivaraman, R. Boreli, A host-based intrusion detection and mitigation framework for smart home iot using openflow, IEEE, (2016), 147–156. https://ieeexplore.ieee.org/document/7784565
    [6] H. Alkahtani, T. H. Aldhyani, M. Al-Yaari, Adaptive anomaly detection framework model objects in cyberspace, Appl. Bionics Biomech., 2020 (2020). https://doi.org/10.1155/2020/6660489
    [7] T. H. Aldhyani, M. R. Joshi, Intelligent time series model to predict bandwidth utilization, Int. J. Comput. Sci. Appl., 14 (2017).
    [8] M. Tang, M. Alazab, Y. Luo, Big data for cybersecurity: Vulnerability disclosure trends and dependencies, IEEE Trans. Big Data, 5 (2017), 317–329. https://ieeexplore.ieee.org/document/7968482
    [9] V. Priya, I. S. Thaseen, T. R. Gadekallu, M. K. Aboudaif, E. A. Nasr, Robust attack detection approach for iiot using ensemble classifier, preprint, arXiv: 2102.01515.
    [10] S. I. E-ISAC, Analysis of the cyber attack on the ukrainian power grid, 2016.
    [11] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, D. Qiu, Security of the internet of things: perspectives and challenges, Wireless Networks, 20 (2014), 2481–2501. https://doi.org/10.1007/s11276-014-0761-7 doi: 10.1007/s11276-014-0761-7
    [12] A. N. Shahbaz, H. Barati, A. Barati, Multipath routing through the firefly algorithm and fuzzy logic in wireless sensor networks, Peer-to-Peer Networking Appl., 14 (2021), 541–558. https://doi.org/10.1007/s12083-020-01004-2 doi: 10.1007/s12083-020-01004-2
    [13] A. Mosavifard, H. Barati, An energy-aware clustering and two-level routing method in wireless sensor networks, Computing, 102 (2020), 1653–1671. https://doi.org/10.1007/s00607-020-00817-6 doi: 10.1007/s00607-020-00817-6
    [14] N. N. Dezfuli, H. Barati, Distributed energy efficient algorithm for ensuring coverage of wireless sensor networks, IET Commun., 13 (2019), 578–584. https://doi.org/10.1049/iet-com.2018.5329 doi: 10.1049/iet-com.2018.5329
    [15] N. N. Dezfouli, H. Barati, A distributed energy-efficient approach for hole repair in wireless sensor networks, Wireless Networks, 26 (2020), 1839–1855. https://doi.org/10.1007/s11276-018-1867-0 doi: 10.1007/s11276-018-1867-0
    [16] W. Zhou, Y. Jia, A. Peng, Y. Zhang, P. Liu, The effect of iot new features on security and privacy: New threats, existing solutions, and challenges yet to be solved, IEEE Int. Things J., 6 (2019), 1606–1616. https://ieeexplore.ieee.org/document/8386824
    [17] J. Ni, K. Zhang, A. V. Vasilakos, Security and privacy for mobile edge caching: Challenges and solutions, IEEE Wireless Commun., 28 (2020), 77–83. https://doi.org/10.48550/arXiv.2012.03165 doi: 10.48550/arXiv.2012.03165
    [18] W. Zhou, Y. Jia, A. Peng, Y. Zhang, P. Liu, The effect of iot new features on security and privacy: New threats, existing solutions, and challenges yet to be solved, IEEE Int. Things J., 6 (2019), 1606–1616. https://ieeexplore.ieee.org/document/8386824
    [19] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, Survey of intrusion detection systems: techniques, datasets and challenges, Cybersecurity, 2 (2019), 1–22. https://doi.org/10.1186/s42400-019-0038-7 doi: 10.1186/s42400-019-0038-7
    [20] N. H. Al-A'araji, S. O. Al-Mamory, A. H. Al-Shakarchi, Classification and clustering based ensemble techniques for intrusion detection systems: A survey, in Journal of Physics: Conference Series, 1818 (2021), 012106.
    [21] J. Arshad, M. Azad, M. Abdeltaif, K. Salah, An intrusion detection framework for energy constrained IoT devices, Mech. Syst. Signal Process., 136 (2020), 106436. https://doi.org/10.1016/j.ymssp.2019.106436 doi: 10.1016/j.ymssp.2019.106436
    [22] S. S. Sharifi, H. Barati, A method for routing and data aggregating in cluster-based wireless sensor networks, Int. J. Commun. Syst., 34 (2021), e4754. https://doi.org/10.1002/dac.4754 doi: 10.1002/dac.4754
    [23] J. P. Amaral, L. M. Oliveira, J. J. Rodrigues, G. Han, L. Shu, Policy and network-based intrusion detection system for ipv6-enabled wireless sensor networks, IEEE, (2014), 1796–1801. https://ieeexplore.ieee.org/document/6883583
    [24] B. S. Bhati, G. Chugh, F. Al-Turjman, N. S. Bhati, An improved ensemble based intrusion detection technique using xgboost, Trans. Emerging Telecommun. Technol., (2020), e4076. https://doi.org/10.1002/ett.4076
    [25] M. Roesch, Snort: Lightweight intrusion detection for networks, Lisa, 99 (1999), 229–238.
    [26] J. Singh, M. J. Nene, A survey on machine learning techniques for intrusion detection systems, Int. J. Adv. Res. Comput. Commun. Eng., 2 (2013), 4349–4355.
    [27] T. H. Lee, C. H. Wen, L. H. Chang, H. S. Chiang, M. C. Hsieh, A lightweight intrusion detection scheme based on energy consumption analysis in 6lowpan, in Advanced Technologies, Embedded and Multimedia for Human-Centric Computing, (2014), 1205–1213. https://doi.org/10.1007/978-94-007-7262-5_137
    [28] S. Raza, L. Wallgren, T. Voigt, Svelte: Real-time intrusion detection in the internet of things, Ad Hoc Networks, 11 (2013), 2661–2674. https://doi.org/10.1016/j.adhoc.2013.04.014 doi: 10.1016/j.adhoc.2013.04.014
    [29] B. B. Zarpel˜ao, R. S. Miani, C. T. Kawakani, S. C. de Alvarenga, A survey of intrusion detection in internet of things, J. Network Comput. Appl., 84 (2017), 25–37. https://doi.org/10.1016/j.jnca.2017.02.009 doi: 10.1016/j.jnca.2017.02.009
    [30] H. Wong, T. Luo, Man-in-the-middle attacks on mqtt-based iot using bert based adversarial message generation, KDD'20, 2020.
    [31] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, A. P. Sheth, Machine learning for internet of things data analysis: A survey, Digital Commun. Networks, 4 (2018), 161–175. https://doi.org/10.1016/j.dcan.2017.10.002 doi: 10.1016/j.dcan.2017.10.002
    [32] K. A. da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, V. H. C. de Albuquerque, Internet of things: A survey on machine learning-based intrusion detection approaches, Comput. Networks, 151 (2019), 147–157. https://doi.org/10.1016/j.comnet.2019.01.023 doi: 10.1016/j.comnet.2019.01.023
    [33] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, P. Faruki, Network intrusion detection for iot security based on learning techniques, IEEE Commun. Surv. Tutor., 21 (2019), 2671–2701. https://ieeexplore.ieee.org/document/8629941
    [34] M. Dibaei, X. Zheng, Y. Xia, X. Xu, A. Jolfaei, A. K. Bashir et al., Investigating the prospect of leveraging blockchain and machine learning to secure vehicular networks: A survey, IEEE Trans. Intell. Transp. Syst., 23 (2021), 683–700. https://ieeexplore.ieee.org/document/9519843
    [35] X. Liu, L. Xie, Y. Wang, J. Zou, J. Xiong, Z. Ying et al., Privacy and security issues in deep learning: A survey, IEEE Access, 9 (2020), 4566–4593. https://ieeexplore.ieee.org/document/9294026
    [36] M. Wazid, A. K. Das, V. Bhat, A. V. Vasilakos, Lam-ciot: Lightweight authentication mechanism in cloud-based iot environment, J. Network Comput. Appl., 150 (2020), 102496. https://doi.org/10.1016/j.jnca.2019.102496 doi: 10.1016/j.jnca.2019.102496
    [37] E. Borgia, The internet of things vision: Key features, applications and open issues, Comput. Commun., 54 (2014), 1–31. https://doi.org/10.1016/j.comcom.2014.09.008 doi: 10.1016/j.comcom.2014.09.008
    [38] F. Papi, H. Barati, Hdrm: A hole detection and recovery method in wireless sensor network, Int. J. Commun. Syst., 35 (2022), e5120. https://doi.org/10.1002/dac.5120 doi: 10.1002/dac.5120
    [39] E. G. Dehkordi, H. Barati, Cluster based routing method using mobile sinks in wireless sensor network, Int. J. Electron., (2022), 1–13. https://doi.org/10.1080/00207217.2021.2025451
    [40] X. Liu, M. Zhao, S. Li, F. Zhang, W. Trappe, A security framework for the internet of things in the future internet architecture, Future Int., 9 (2017), 27. https://doi.org/10.3390/fi9030027 doi: 10.3390/fi9030027
    [41] E. Yousefpoor, H. Barati, A. Barati, A hierarchical secure data aggregation method using the dragonfly algorithm in wireless sensor networks, Peer-to-Peer Networking Appl., 14 (2021), 1917–1942. https://link.springer.com/article/10.1007/s12083-021-01116-3
    [42] E. Hasheminejad, H. Barati, A reliable tree-based data aggregation method in wireless sensor networks, Peer-to-Peer Networking Appl., 14 (2021), 873–887. https://doi.org/10.1007/s12083-020-01025-x doi: 10.1007/s12083-020-01025-x
    [43] M. Naghibi, H. Barati, Shsda: secure hybrid structure data aggregation method in wireless sensor networks, J. Ambient Intell. Human. Comput., 12 (2021), 10769–10788. https://doi.org/10.1007/s12652-020-02751-z doi: 10.1007/s12652-020-02751-z
    [44] S. Notra, M. Siddiqi, H. H. Gharakheili, V. Sivaraman, R. Boreli, An experimental study of security and privacy risks with emerging household appliances, in 2014 IEEE Conference on Communications and Network Security, (2014), 79–84. https://ieeexplore.ieee.org/document/6997469
    [45] Z. Hajipour, H. Barati, Eelrp: energy efficient layered routing protocol in wireless sensor networks, Computing, 103 (2021), 2789–2809. https://doi.org/10.1007/s00607-021-00996-w doi: 10.1007/s00607-021-00996-w
    [46] A. Arabo, I. Brown, F. El-Moussa, Privacy in the age of mobility and smart devices in smart homes, in 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, (2012), 819–826. https://ieeexplore.ieee.org/document/6406331
    [47] M. Al-Hawawreh, E. Sitnikova, F. den Hartog, An efficient intrusion detection model for edge system in brownfield industrial internet of things, in Proceedings of the 3rd International Conference on Big Data and Internet of Things, (2019), 83–87. https://doi.org/10.1145/3361758.3361762
    [48] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, A. Anwar, Ton iot telemetry dataset: A new generation dataset of iot and iiot for data-driven intrusion detection systems, IEEE Access, 8 (2020), 165130–165150. https://ieeexplore.ieee.org/document/9189760
    [49] E. Anthi, L. Williams, M. Słowinska, G. Theodorakopoulos, P. Burnap, A supervised intrusion detection system for smart home iot devices, IEEE Int. Things J., 6 (2019), 9042–9053. https://ieeexplore.ieee.org/document/8753563
    [50] S. U. Jan, S. Ahmed, V. Shakhov, I. Koo, Toward a lightweight intrusion detection system for the internet of things, IEEE Access, 7 (2019), 42450–42471. https://ieeexplore.ieee.org/document/8675917
    [51] F. Ertam, L. F. Kilincer, O. Yaman, Intrusion detection in computer networks via machine learning algorithms, in 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), (2017), 1–4. https://ieeexplore.ieee.org/document/8090165
    [52] T. Saranya, S. Sridevi, C. Deisy, T. D. Chung, M. A. Khan, Performance analysis of machine learning algorithms in intrusion detection system: A review, Procedia Comput. Sci., 171 (2020), 1251–1260. https://doi.org/10.1016/j.procs.2020.04.133 doi: 10.1016/j.procs.2020.04.133
    [53] O. Almomani, M. A. Almaiah, A. Alsaaidah, S. Smadi, A. H. Mohammad, A. Althunibat, Machine learning classifiers for network intrusion detection system: comparative study, in International Conference on Information Technology (ICIT), (2021), 440–445. https://ieeexplore.ieee.org/document/9491770
    [54] B. S. Bhati, G. Chugh, F. Al-Turjman, N. S. Bhati, An improved ensemble based intrusion detection technique using xgboost, Trans. Emerging Telecommun. Technol., 32 (2021), e4076. https://doi.org/10.1002/ett.4076 doi: 10.1002/ett.4076
    [55] M. Belouch, S. E. hadaj, Comparison of ensemble learning methods applied to network intrusion detection, in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, (2017), 1–4. https://doi.org/10.1145/3018896.3065830
    [56] N. Moustafa, B. Turnbull, K. K. R. Choo, An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things, IEEE Int. Things J., 61 (2018), 4815–4830. https://ieeexplore.ieee.org/document/8470090
    [57] V. Priya, I. S. Thaseen, T. R. Gadekallu, M. K. Aboudaif, E. A. Nasr, Robust attack detection approach for iiot using ensemble classifier, preprint, arXiv: 2102.01515.
    [58] A. Verma, V. Ranga, Elnids: Ensemble learning based network intrusion detection system for rpl based internet of things, in 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), (2019), 1–6. https://ieeexplore.ieee.org/document/8777504
    [59] A. Elijah, A. Abdullah, N. Jhanjhi, M. Supramaniam, B. Abdullateef, Ensemble and deep-learning methods for two-class and multi-attack anomaly intrusion detection: An empirical study, Int. J. Adv. Comput. Sci. Appl., 10 (2019), 520–528. 10.14569/IJACSA.2019.0100969 doi: 10.14569/IJACSA.2019.0100969
    [60] Y. Wang, Y. Shen, G. Zhang, Research on intrusion detection model using ensemble learning methods, in 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), (2016), 422–425. https://ieeexplore.ieee.org/document/7883100
    [61] B. A. Tama, M. Comuzzi, K. H. Rhee, Tse-ids: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system, IEEE Access, 7 (2019), 94497–94507. https://ieeexplore.ieee.org/document/8759867
    [62] R. Primartha, B. A. Tama, Anomaly detection using random forest: A performance revisited, in 2017 International Conference on Data and Software Engineering (ICoDSE), (2017), 1–6. https://ieeexplore.ieee.org/document/8285847
    [63] R. Abdulhammed, M. Faezipour, A. Abuzneid, A. AbuMallouh, Deep and machine learning approaches for anomaly-based intrusion detection of imbalanced network traffic, Int. J. Adv. Comput. Sci. Appl., 10 (2019), 1–4. https://ieeexplore.ieee.org/document/8526292
    [64] C. Ioannou, V. Vassiliou, An intrusion detection system for constrained wsn and iot nodes based on binary logistic regression, in Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, (2018), 259–263. https://doi.org/10.1145/3242102.3242145
    [65] P. Ghosh, R. Mitra, Proposed ga-bfss and logistic regression based intrusion detection system, in Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT) (2015), 1–6. https://ieeexplore.ieee.org/document/7060117
    [66] S. U. Jan, S. Ahmed, V. Shakhov, I. Koo, Toward a lightweight intrusion detection system for the internet of things, IEEE Access, 7 (2019), 42450–42471. https://ieeexplore.ieee.org/document/8675917
    [67] B. Sharmila, R. Nagapadma, Intrusion detection system using naive bayes algorithm, in 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE.IEEE, (2019), 1–4. https://ieeexplore.ieee.org/document/9019921
    [68] Z. Muda, W. Yassin, M. Sulaiman, N. Udzir, Intrusion detection based on k-means clustering and naıve bayes classification, in 2011 7th International Conference on Information Technology in Asia, (2011), 1–6. https://ieeexplore.ieee.org/document/5999520
    [69] A. Halimaa, K. Sundarakantham, Machine learning based intrusion detection system, in 2019 3rd International conference on trends in electronics and informatics (ICOEI), (2019), 916–920. https://ieeexplore.ieee.org/document/8862784
    [70] N. Farnaaz, M. Jabbar, Random forest modeling for network intrusion detection system, Procedia Comput. Sci., 89 (2016), 213–217. https://doi.org/10.1016/j.procs.2016.06.047 doi: 10.1016/j.procs.2016.06.047
    [71] M. A. M. Hasan, M. Nasser, B. Pal, S. Ahmad, Support vector machine and random forest modeling for intrusion detection system (ids), J. Intell. Learn. Syst. Appl., 2014 (2014). https://www.scirp.org/journal/paperinformation.aspx?paperid=42869
    [72] D. Zheng, Z. Hong, N. Wang, P. Chen, An improved lda-based elm classification for intrusion detection algorithm in iot application, Sensors, 20 (2020), 1706. https://doi.org/10.3390/s20061706 doi: 10.3390/s20061706
    [73] B. Subba, S. Biswas, S. Karmakar, Intrusion detection systems using linear discriminant analysis and logistic regression, in 2015 Annual IEEE India Conference (INDICON), (2015), 1–6. https://ieeexplore.ieee.org/document/7443533
    [74] L. Rutkowski, M. Jaworski, L. Pietruczuk, P. Duda, Decision trees for mining data streams based on the gaussian approximation, IEEE Trans. Knowl. Data Eng., 26 (2013), 108–119. https://ieeexplore.ieee.org/document/6466324
    [75] B. V. Dasarathy, B. V. Sheela, A composite classifier system design: Concepts and methodology, Proc. IEEE, 67 (1979), 708–713. https://ieeexplore.ieee.org/document/1455590
    [76] A. Lal, B. Datta, Performance evaluation of homogeneous and heterogeneous ensemble models for groundwater salinity predictions: A regional-scale comparison study, Water, Air, Soil Pollut., 231 (2020), 1–21. https://doi.org/10.1007/s11270-020-04693-w doi: 10.1007/s11270-020-04693-w
    [77] A. Subasi, S. Algebsani, W. Alghamdi, E. Kremic, J. Almaasrani, N. Abdulaziz, Intrusion detection in smart healthcare using bagging ensemble classifier, in International Conference on Medical and Biological Engineering, (2021), 164–171. https://doi.org/10.1007/978-3-030-73909-6_18
    [78] U. Sydney, The ton-iot dataset, 2020. Available from: https://research.unsw.edu.au/projects/toniot-datasets.
    [79] A. Geron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and Techniques to Build Intelligent Systems, O'Reilly Media, 2019.
    [80] V. Priya, I. S. Thaseen, T. R. Gadekallu, M. K. Aboudaif, E. A. Nasr, Robust attack detection approach for iiot using ensemble classifier, preprint, arXiv2102.01515.
    [81] S. Rajagopal, P. P. Kundapur, K. S. Hareesha, A stacking ensemble for network intrusion detection using heterogeneous datasets, Secur. Commun. Networks, 2020 (2020). https://doi.org/10.1155/2020/4586875
    [82] S. Fenanir, F. Semchedine, A. Baadache, A machine learning-based lightweight intrusion detection system for the internet of things, Rev. d'Intell. Artif., 33 (2019), 203–211. https://doi.org/10.18280/ria.330306 doi: 10.18280/ria.330306
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(12749) PDF downloads(201) Cited by(10)

Article outline

Figures and Tables

Figures(4)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog