Investigation of the dynamic properties of implants is essential to ensure safety and compatibility with the host's natural spinal tissue. This paper presents a simplified model of a cantilever beam to investigate the effects of holes/pores on the structures. Free vibration test is one of the most effective methods to measure the dynamic response of a cantilever beam, such as natural frequency and damping ratio. In this study, the natural frequencies of cantilever beams made of polycarbonate (PC) containing various circular open holes were investigated numerically, analytically, and experimentally. The experimental data confirmed the accuracy of the natural frequencies of the cantilever beam with open holes calculated by finite element and analytical models. In addition, two finite element simulation methods, the dynamic explicit and modal dynamic methods, were applied to determine the damping ratios of cantilever beams with open holes. Finite element analysis accurately simulated the damped vibration behavior of cantilever beams with open holes when known material damping properties were applied. The damping behavior of cantilever beams with random pores was simulated, highlighting a completely different relationship between porosity, natural frequency and damping response. The latter highlights the potential of finite element methods to analyze the dynamic response of arbitrary and complex structures, towards improved implant design.
Citation: Xiaoyu Du, Yijun Zhou, Lingzhen Li, Cecilia Persson, Stephen J. Ferguson. The porous cantilever beam as a model for spinal implants: Experimental, analytical and finite element analysis of dynamic properties[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6273-6293. doi: 10.3934/mbe.2023270
Investigation of the dynamic properties of implants is essential to ensure safety and compatibility with the host's natural spinal tissue. This paper presents a simplified model of a cantilever beam to investigate the effects of holes/pores on the structures. Free vibration test is one of the most effective methods to measure the dynamic response of a cantilever beam, such as natural frequency and damping ratio. In this study, the natural frequencies of cantilever beams made of polycarbonate (PC) containing various circular open holes were investigated numerically, analytically, and experimentally. The experimental data confirmed the accuracy of the natural frequencies of the cantilever beam with open holes calculated by finite element and analytical models. In addition, two finite element simulation methods, the dynamic explicit and modal dynamic methods, were applied to determine the damping ratios of cantilever beams with open holes. Finite element analysis accurately simulated the damped vibration behavior of cantilever beams with open holes when known material damping properties were applied. The damping behavior of cantilever beams with random pores was simulated, highlighting a completely different relationship between porosity, natural frequency and damping response. The latter highlights the potential of finite element methods to analyze the dynamic response of arbitrary and complex structures, towards improved implant design.
[1] | Y. Matsumoto, M. J. Griffin, Dynamic response of the standing human body exposed to vertical vibration: Influence of posture and vibration magnitude, J. Sound Vib., 212 (1998), 85–107. https://doi.org/10.1006/jsvi.1997.1376 doi: 10.1006/jsvi.1997.1376 |
[2] | A. Bogadi-Sare, The effect of whole-body vibration: An unrecognized medical problem, Arh. Hig. Rada Toksikol., 44 (1993), 269–279. |
[3] | L. X. Guo, M. Zhang, Y. M. Zhang, E. C. Teo, Vibration modes of injured spine at resonant frequencies under vertical vibration, Spine, 34 (2009), E682–E688. https://doi.org/10.1097/BRS.0b013e3181b1fdf4 doi: 10.1097/BRS.0b013e3181b1fdf4 |
[4] | G. Marini, G. Huber, K. Puschel, S. J. Ferguson, Nonlinear dynamics of the human lumbar intervertebral disc, J. Biomech., 48 (2015), 479–488. https://doi.org/10.1016/j.jbiomech.2014.12.006 doi: 10.1016/j.jbiomech.2014.12.006 |
[5] | Y. Matsumoto, M. J. Griffin, Movement of the upper-body of seated subjects exposed to vertical whole-body vibration at the principal resonance frequency, J. Sound Vib., 215 (1998), 743–762. https://doi.org/10.1006/jsvi.1998.1595 doi: 10.1006/jsvi.1998.1595 |
[6] | Y. Matsumoto, M. J. Griffin, Modelling the dynamic mechanisms associated with the principal resonance of the seated human body, Clin. Biomech., 16 (2001), S31–S44. https://doi.org/10.1016/S0268-0033(00)00099-1 doi: 10.1016/S0268-0033(00)00099-1 |
[7] | W. Fan, L. X. Guo, The role of posterior screw fixation in single-level transforaminal lumbar interbody fusion during whole body vibration: A finite element study, World Neurosurg., 114 (2018), E1086–E1093. https://doi.org/10.1016/j.wneu.2018.03.150 doi: 10.1016/j.wneu.2018.03.150 |
[8] | L. Du, X. J. Sun, T. J. Zhou, Y. C. Li, C. Chen, C. Q. Zhao, et al., The role of cage height on the flexibility and load sharing of lumbar spine after lumbar interbody fusion with unilateral and bilateral instrumentation: A biomechanical study, BMC Musculoskeletal Disord., 18 (2017), 1–8. |
[9] | P. Schleicher, R. Gerlach, B. Schar, C. Cain, W. Achatz, R. Pflugmacher, et al., Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion, Eur. Spine J., 17 (2008), 1757–1765. https://doi.org/10.1007/s00586-008-0797-4 doi: 10.1007/s00586-008-0797-4 |
[10] | D. U. Erbulut, A. Kiapour, T. Oktenoglu, A. F. Ozer, V. K. Goel, A computational biomechanical investigation of posterior dynamic instrumentation: Combination of dynamic rod and hinged (dynamic) screw, J. Biomech. Eng, 136 (2014), 51007. https://doi.org/10.1115/1.4027060 doi: 10.1115/1.4027060 |
[11] | G. Marini, G. Huber, K. Puschel, S. J. Ferguson, A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc, J. Sound Vib., 387 (2017), 194–206. https://doi.org/10.1016/j.jsv.2016.09.021 doi: 10.1016/j.jsv.2016.09.021 |
[12] | V. Kumar, K. K. Singh, S. Gaurav, Analysis of natural frequencies for cantilever beam with I- and T- section using Ansys, Int. Res. J. Eng. Technol., 2 (2015), 1013–1020. |
[13] | A. Suzuki, T. Hoshiai, H. Nakata, T. Otomaru, M. Oki, H. Taniguchi, et al., Modal analysis of two different types of fixed implant-supported prostheses embedded in edentulous maxillae, J. Prosthodontic Res., 63 (2019), 327–333. https://doi.org/10.1016/j.jpor.2019.01.006 doi: 10.1016/j.jpor.2019.01.006 |
[14] | H. B. Khaniki, M. H. Ghayesh, S. Hussain, M. Amabili, Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions, Eng. Comput., 38 (2022), 2313–2339. https://doi.org/10.1007/s00366-020-01208-3 doi: 10.1007/s00366-020-01208-3 |
[15] | H. B. Khaniki, M. H. Ghayesh, S. Hussain, M. Amabili, Effects of geometric nonlinearities on the coupled dynamics of CNT strengthened composite beams with porosity, mass and geometric imperfections, Eng. Comput., 38 (2022), 3463–3488. https://doi.org/10.1007/s00366-021-01474-9 doi: 10.1007/s00366-021-01474-9 |
[16] | M. Amir, M. Talha, Influence of large amplitude vibration on geometrically imperfect sandwich curved panels embedded with gradient metallic cellular core, Int. J. Appl. Mech., 12 (2020), 2050099. https://doi.org/10.1142/S1758825120500994 doi: 10.1142/S1758825120500994 |
[17] | H. S. N. Kumar, S. Kattimani, T. Nguyen-Thoi, Influence of porosity distribution on nonlinear free vibration and transient responses of porous functionally graded skew plates, Def. Technol., 17 (2021), 1918–1935. https://doi.org/10.1016/j.dt.2021.02.003 doi: 10.1016/j.dt.2021.02.003 |
[18] | H. B. Khaniki, M. H. Ghayesh, R. Chin, M. Amabili, Large amplitude vibrations of imperfect porous-hyperelastic beams via a modified strain energy, J. Sound Vib., 513 (2021), 116416. https://doi.org/10.1016/j.jsv.2021.116416 doi: 10.1016/j.jsv.2021.116416 |
[19] | D. L. Rao, Z. Q. Xu, Damping behavior of 304L stainless steel after fatigue loading, Theor. Appl. Fract. Mech., 100 (2019), 110–113. https://doi.org/10.1016/j.tafmec.2019.01.006 doi: 10.1016/j.tafmec.2019.01.006 |
[20] | A. J. Molina-Viedma, E. Lopez-Alba, L. Felipe-Sese, F. A. Diaz, Full-field modal analysis during base motion excitation using high-speed 3D digital image correlation, Meas. Sci. Technol., 28 (2017). https://doi.org/10.1088/1361-6501/aa7d87 doi: 10.1088/1361-6501/aa7d87 |
[21] | C. C. Ma, M. Y. Shao, J. C. Ma, C. C. Liu, K. M. Gao, Fluid structure interaction analysis of flexible beams vibrating in a time-varying fluid domain, Proc. Inst. Mech. Eng., Part C: J. Mech., 234 (2020), 1913–1927. https://doi.org/10.1177/0954406220902163 doi: 10.1177/0954406220902163 |
[22] | B. Yang, Theory of vibration | fundamentals, Encycl. Vib., 2001 (2001), 1290–1299. https://doi.org/10.1006/rwvb.2001.0112 doi: 10.1006/rwvb.2001.0112 |
[23] | W. T. Thomson, Theory of Vibration with Applications, 4th edition, Taylor & Francis, 1993. |
[24] | H. I. Yoon, I. S. Son, S. J. Ahn, Free vibration analysis of Euler-Bernoulli beam with double cracks, J. Mech. Sci. Technol., 21 (2007), 476–485. https://doi.org/10.1007/Bf02916309 doi: 10.1007/Bf02916309 |
[25] | S. U. Sawant, S. J. Chauhan, N. N. Deshmukh, Effect of crack on natural frequency for beam type of structures, in International Conference on Functional Materials, Characterization, Solid State Physics, Power, Thermal and Combustion Energy (Fcsptc-2017), 1859 (2017), 20056. https://doi.org/10.1063/1.4990209 |
[26] | X. Du, G. Blugan, T. Kunniger, S. S. Lee, L. Vladislavova, S. J. Ferguson, Non-linear mechanical properties and dynamic response of silicon nitride bioceramic, Ceram. Int., 47 (2021), 33525–33536. https://doi.org/10.1016/j.ceramint.2021.08.261 doi: 10.1016/j.ceramint.2021.08.261 |
[27] | Z. Kiral, B. M. Icten, B. G. Kiral, Effect of impact failure on the damping characteristics of beam-like composite structures, Compos. Part B Eng., 43 (2012), 3053–3060. https://doi.org/10.1016/j.compositesb.2012.05.005 doi: 10.1016/j.compositesb.2012.05.005 |
[28] | R. A. W. Jane, K. Cullum, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Birkhaeuser, Boston, 1985. |
[29] | C. Kyriazoglou, F. J. Guild, Quantifying the effect of homogeneous and localized damage mechanisms on the damping properties of damaged GFRP and CFRP continuous and woven composite laminates—an FEA approach, Compos. Part A Appl. Sci. Manuf., 36 (2005), 367–379. https://doi.org/10.1016/j.compositesa.2004.06.037 doi: 10.1016/j.compositesa.2004.06.037 |
[30] | Z. H. Zhu, S. A. Meguid, Nonlinear FE-based investigation of flexural damping of slacking wire cables, Int. J. Solids Struct., 44 (2007), 5122–5132. https://doi.org/10.1016/j.ijsolstr.2006.12.024 doi: 10.1016/j.ijsolstr.2006.12.024 |
[31] | T. Zhang, Y. Z. Zuo, H. W. Teng, D. Y. Ma, H. Liu, Study on Rayleigh damping in dynamic analysis for story-adding RC structure of light-weight steel, Appl. Mech. Mater., 482 (2014), 123–128. https://doi.org/10.4028/www.scientific.net/amm.482.123 doi: 10.4028/www.scientific.net/amm.482.123 |
[32] | M. Liu, D. G. Gorman, Formulation of Rayleigh damping and its extensions, Comput. Struct., 57 (1995), 277–285. https://doi.org/10.1016/0045-7949(94)00611-6 doi: 10.1016/0045-7949(94)00611-6 |
[33] | V. S. Geraschenko, A. S. Grishin, N. I. Gartung, Approaches for the calculation of Rayleigh damping coefficients for a time–history analysis, in Structures Under Shock and Impact XV, (2018), 227–237. |
[34] | L. M. Khoo, P. R. Mantena, P. Jadhav, Structural damage assessment using vibration modal analysis, Struct. Health Monit., 3 (2004), 177–194. https://doi.org/10.1177/1475921704042680 doi: 10.1177/1475921704042680 |
[35] | H. Rajoria, N. Jalili, Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites, Compos. Sci. Technol., 65 (2005), 2079–2093. https://doi.org/10.1016/j.compscitech.2005.05.015 doi: 10.1016/j.compscitech.2005.05.015 |
[36] | V. G. Geethamma, R. Asaletha, N. Kalarikkal, S. Thomas, Vibration and Sound damping in polymers, Resonance, 19 (2014), 821–833. https://doi.org/10.1007/s12045-014-0091-1 doi: 10.1007/s12045-014-0091-1 |
[37] | A. M. Puthanpurayil, O. Lavan, A. J. Carr, R. P. Dhakal, Elemental damping formulation: An alternative modelling of inherent damping in nonlinear dynamic analysis, Bull. Earthquake Eng., 14 (2016), 2405–2434. https://doi.org/10.1007/s10518-016-9904-9 doi: 10.1007/s10518-016-9904-9 |
[38] | M. Wesolowski, E. Barkanov, Improving material damping characterization of a laminated plate, J. Sound Vib., 462 (2019), 114928. https://doi.org/10.1016/j.jsv.2019.114928 doi: 10.1016/j.jsv.2019.114928 |
[39] | L. Viswanadham, R. N. Rao, C. S. Chaitanya, Effect of material addition on the vibration response of a cantilever beam, Mater. Today Proc., 18 (2019), 4537–4541. https://doi.org/10.1016/j.matpr.2019.07.425 doi: 10.1016/j.matpr.2019.07.425 |
[40] | L. Gagnon, M. Morandini, G. L. Ghiringhelli, A review of friction damping modeling and testing, Arch. Appl. Mech., 90 (2020), 107–126. https://doi.org/10.1007/s00419-019-01600-6 doi: 10.1007/s00419-019-01600-6 |
[41] | I. T. C. K. M. Stamatopoulos, S. D. Panteliou, Damping associated with porosity in porous rectangular plates, in Proceedings of the Ninth International Conference on Computational Structures Technology, Civil-Comp Press, (2008), 115. |
[42] | Q. Y. Li, G. F. Jiang, J. Dong, J. W. Hou, G. He, Damping behavior and energy absorption capability of porous magnesium, J. Alloys Compd., 680 (2016), 522–530. https://doi.org/10.1016/j.jallcom.2016.04.101 doi: 10.1016/j.jallcom.2016.04.101 |
[43] | W. G. Zheng, S. M. He, R. J. Tang, S. L. He, Damping enhancement using axially functionally graded porous structure based on acoustic black hole effect, Materials, 12 (2019), 2480. https://doi.org/10.3390/ma12152480 doi: 10.3390/ma12152480 |
[44] | I. S. Golovin, H. R. Sinning, I. K. Arhipov, S. A. Golovin, M. Bram, Damping in some cellular metalic materials due to microplasticity, Mater. Sci. Eng. A, 370 (2004), 531–536. https://doi.org/10.1016/j.msea.2003.08.089 doi: 10.1016/j.msea.2003.08.089 |
[45] | H. Matsuzaki, Y. Tokuhashi, E. Matsumoto, M. Hoshino, T. Kiuchi, S. Toriyama, Problems and solutions of pedicle screw plate fixation of lumbar spine, Spine, 15 (1990), 1159–1165. https://doi.org/10.1097/00007632-199011010-00014 doi: 10.1097/00007632-199011010-00014 |
[46] | X. L. Deng, H. X. Chen, Q. Y. Xu, F. Feng, X. Y. Chen, X. W. Lv, et al., Topology optimization design of three-dimensional multi-material and multi-body structure based on irregular cellular hybrid cellular automata method, Sci. Rep., 12 (2022), 1–20. https://doi.org/10.1038/s41598-022-09249-y doi: 10.1038/s41598-022-09249-y |
[47] | M. Fantini, M. Curto, F. D. Crescenzio, A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices, Virtual Phys. Prototyping, 11 (2016), 77–90. https://doi.org/10.1080/17452759.2016.1172301 doi: 10.1080/17452759.2016.1172301 |