Let $ q $ be an even prime power and let $ \mathbb{F}_{q} $ be the finite field of $ q $ elements. Let $ f $ be a nonzero polynomial over $ \mathbb{F}_{q^2} $ of the form $ f = a_{1}x_{1}^{m_{1}}+\dots+a_{s}x_{s}^{m_{s}}+y_{1}y_{2}+\dots+y_{n-1}y_{n}+y_{n-2t-1}^{2}+\dots +y_{n-3}^2+y_{n-1}^{2}$ $+b_{t}y_{n-2t}^{2}+ $ $ \dots +b_{1}y_{n-2}^{2}+b_{0}y_{n}^{2} $, where $ a_{i}, b_j\in \mathbb{F}_{q^{2}}^{*}, $ $ m_i\ne 1, $ $ (m_{i}, m_{k}) = 1, $ $ i\ne k, $ $ m_{i}|(q+1), $ $ m_{i}\in \mathbb{Z}^{+}, $ $ 2|n $, $ n > 2 $, $ 0\leq t\leq \frac{n}{2}-2 $, $ {\mathrm{Tr}}_{\mathbb{F}_{q^2}/\mathbb{F}_{2}}(b_{j}) = 1 $ for $ i, k = 1, \dots, s $ and $ j = 0, 1, \dots, t $. For each $ b \in \mathbb{F}_{q^2} $, let $ N_{q^2}(f = b) $ denote the number of $ \mathbb{F}_{q^2} $-rational points on the affine hypersurface $ f = b $. In this paper, we obtain the formula of $ N_{q^2}(f = b) $ by using the Jacobi sums, Gauss sums and the results of quadratic form in finite fields.
Citation: Qinlong Chen, Wei Cao. The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields[J]. Electronic Research Archive, 2023, 31(7): 4303-4312. doi: 10.3934/era.2023219
Let $ q $ be an even prime power and let $ \mathbb{F}_{q} $ be the finite field of $ q $ elements. Let $ f $ be a nonzero polynomial over $ \mathbb{F}_{q^2} $ of the form $ f = a_{1}x_{1}^{m_{1}}+\dots+a_{s}x_{s}^{m_{s}}+y_{1}y_{2}+\dots+y_{n-1}y_{n}+y_{n-2t-1}^{2}+\dots +y_{n-3}^2+y_{n-1}^{2}$ $+b_{t}y_{n-2t}^{2}+ $ $ \dots +b_{1}y_{n-2}^{2}+b_{0}y_{n}^{2} $, where $ a_{i}, b_j\in \mathbb{F}_{q^{2}}^{*}, $ $ m_i\ne 1, $ $ (m_{i}, m_{k}) = 1, $ $ i\ne k, $ $ m_{i}|(q+1), $ $ m_{i}\in \mathbb{Z}^{+}, $ $ 2|n $, $ n > 2 $, $ 0\leq t\leq \frac{n}{2}-2 $, $ {\mathrm{Tr}}_{\mathbb{F}_{q^2}/\mathbb{F}_{2}}(b_{j}) = 1 $ for $ i, k = 1, \dots, s $ and $ j = 0, 1, \dots, t $. For each $ b \in \mathbb{F}_{q^2} $, let $ N_{q^2}(f = b) $ denote the number of $ \mathbb{F}_{q^2} $-rational points on the affine hypersurface $ f = b $. In this paper, we obtain the formula of $ N_{q^2}(f = b) $ by using the Jacobi sums, Gauss sums and the results of quadratic form in finite fields.
[1] | L. K. Hua, H. S. Vandiver, Characters over certain types of rings with applications to the theory of equations in a finite field, Proc. Natl. Acad. Sci. USA, 35 (1949), 94–99. https://doi.org/10.1073/pnas.35.2.94 doi: 10.1073/pnas.35.2.94 |
[2] | A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., 55 (1949), 497–508. https://doi.org/10.1090/S0002-9904-1949-09219-4 doi: 10.1090/S0002-9904-1949-09219-4 |
[3] | B. Berndt, R. Evans, K. Williams, Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998. |
[4] | W. Cao, Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195–202. https://doi.org/10.4064/aa130-2-8 doi: 10.4064/aa130-2-8 |
[5] | S. N. Hu, X. E. Qin, J. Y. Zhao, Counting rational points of an algebraic variety over finite fields, Results Math., 74 (2019), 37, 21 pp. https://doi.org/10.1007/s00025-019-0962-6 |
[6] | Q. Sun, D. Q. Wan, On the solvability of the equation $\sum_{i = 1}^{n} \frac{x_{i}}{d_{i}} \equiv 0({\rm{mod}}\; 1)$ and its application, Proc. Amer. Math. Soc., 100 (1987), 220–224. https://doi.org/10.1090/S0002-9939-1987-0884454-6 doi: 10.1090/S0002-9939-1987-0884454-6 |
[7] | Q. Sun, D. Q. Wan, On the Diophantine equation $\sum_{i = 1}^{n} \frac{x_{i}}{d_{i}} \equiv 0({\rm{mod}}\; 1)$, Proc. Amer. Math. Soc., 112 (1991), 25–29. https://doi.org/10.1090/S0002-9939-1991-1047008-8 doi: 10.1090/S0002-9939-1991-1047008-8 |
[8] | Q. Sun, P. Z. Yuan, On the number of solutions of diagonal equations over a finite field, Finite Fields Appl., 2 (1996), 35–41. https://doi.org/10.1006/ffta.1996.0003 doi: 10.1006/ffta.1996.0003 |
[9] | J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247–257. https://doi.org/10.1016/0022-314X(92)90091-3 doi: 10.1016/0022-314X(92)90091-3 |
[10] | R. Lidl, H. Niederreiter, Finite Fields, 2nd Eds., Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9780511525926 |