Let $ p $ be an odd prime and let $ \mathbb{F}_p $ be the finite field of $ p $ elements. In 2019, Sun studied some permutations involving squares in $ \mathbb{F}_p $. In this paper, by the theory of local fields we generalize this topic to $ \mathbb{F}_{p^2} $, which gives a partial answer to the question posed by Sun.
Citation: Hai-Liang Wu, Li-Yuan Wang. Permutations involving squares in finite fields[J]. Electronic Research Archive, 2022, 30(6): 2109-2120. doi: 10.3934/era.2022106
Let $ p $ be an odd prime and let $ \mathbb{F}_p $ be the finite field of $ p $ elements. In 2019, Sun studied some permutations involving squares in $ \mathbb{F}_p $. In this paper, by the theory of local fields we generalize this topic to $ \mathbb{F}_{p^2} $, which gives a partial answer to the question posed by Sun.
[1] | X.-D. Hou, Permutation polynomials over finite fields-A survey of recent advances, Finite Field Appl., 32 (2015), 82–119. https://doi.org/10.1016/j.ffa.2014.10.001 doi: 10.1016/j.ffa.2014.10.001 |
[2] | G. Zolotarev, Nouvelle démonstration de la loi de réciprocité de Legendre, Nouvelles Ann. Math., 11 (1872), 354–362. |
[3] | M. Riesz, Sur le lemme de Zolotareff et sur la loi de réciprocité des restes quadratiques, Math. Scand., 1 (1953), 159–169. https://doi.org/10.7146/math.scand.a-10376 doi: 10.7146/math.scand.a-10376 |
[4] | M. Szyjewski, Zolotarev's proof of Gauss reciprocity and Jacobi symbols, Serdica Math. J., 37 (2011), 251–260. |
[5] | G. Frobenius, Über das quadratische Reziprozit$\ddot d$atsgesetz I, Königliche Akademie der Wissenschaften, 1914,335–349. |
[6] | A. Brunyate, P. L. Clark, Extending the Zolotarev-Frobenius approach to quadratic reciprocity, Ramanujan J., 37 (2015), 25–50. https://doi.org/10.1007/s11139-014-9635-y doi: 10.1007/s11139-014-9635-y |
[7] | R. E. Dressler, E. E. Shult, A simple proof of the Zolotarev-Frobenius theorem, Proc. Amer. Math. Soc., 54 (1976), 53–54. https://doi.org/10.1090/S0002-9939-1976-0389732-8 doi: 10.1090/S0002-9939-1976-0389732-8 |
[8] | L.-Y. Wang, H.-L. Wu, Applications of Lerch's theorem to permutations of quadratic residues, Bull. Aust. Math. Soc., 100 (2019), 362–371. https://doi.org/10.1017/S000497271900073X doi: 10.1017/S000497271900073X |
[9] | W. Duke, K. Hopkins, Quadratic reciprocity in a finite group, Amer. Math. Monthly, 112 (2005), 251–256. https://doi.org/10.1080/00029890.2005.11920190 doi: 10.1080/00029890.2005.11920190 |
[10] | Z.-W. Sun, Quadratic residues and related permutations and identities, Finite Fields Appl., 59 (2019), 246–283. https://doi.org/10.1016/j.ffa.2019.06.004 doi: 10.1016/j.ffa.2019.06.004 |
[11] | Z.-W. Sun, On quadratic residues and quartic residues modulo primes, Int. J. Number Theory, 16 (2020), no. 8, 1833–1858. https://doi.org/10.1142/S1793042120500955 doi: 10.1142/S1793042120500955 |
[12] | F. Petrov, Z.-W. Sun, Proof of some conjecture involving quadratic residues, Electron. Res. Arch., 28 (2020), 589–597. https://doi.org/10.3934/era.2020031 doi: 10.3934/era.2020031 |
[13] | H.-L. Wu, Quadratic residues and related permuations, Finite Fields Appl., 60 (2019), Article 101576. https://doi.org/10.1016/j.ffa.2019.101576 doi: 10.1016/j.ffa.2019.101576 |
[14] | J. Neukirch, Algebraic Number Theory, Springer-Verlag Berlin Heidelberg, 1999. https://doi.org/10.1007/978-3-662-03983-0 |
[15] | Z. I. Borevich, I. R. Shafarevich, Number Theory, Academic Press, 1966. |
[16] | L. J. Mordell, The congruence $((p-1)/2)! \equiv\pm1\pmod p$, Amer. Math. Monthly, 68 (1961), 145–146. https://doi.org/10.2307/2312481 doi: 10.2307/2312481 |