This paper deals with the existence of weak solutions for semilinear elliptic equation with nonlinearity on the boundary. We establish the existence of a maximal and a minimal weak solution between an ordered pair of sub- and supersolution for both monotone and nonmonotone nonlinearities. We use iteration argument when the nonlinearity is monotone. For the nonmonotone case, we utilize the surjectivity of a pseudomonotone and coercive operator, Zorn's lemma and a version of Kato's inequality.
Citation: S. Bandyopadhyay, M. Chhetri, B. B. Delgado, N. Mavinga, R. Pardo. Maximal and minimal weak solutions for elliptic problems with nonlinearity on the boundary[J]. Electronic Research Archive, 2022, 30(6): 2121-2137. doi: 10.3934/era.2022107
This paper deals with the existence of weak solutions for semilinear elliptic equation with nonlinearity on the boundary. We establish the existence of a maximal and a minimal weak solution between an ordered pair of sub- and supersolution for both monotone and nonmonotone nonlinearities. We use iteration argument when the nonlinearity is monotone. For the nonmonotone case, we utilize the surjectivity of a pseudomonotone and coercive operator, Zorn's lemma and a version of Kato's inequality.
[1] | M. Cuesta Leon, Existence results for quasilinear problems via ordered sub- and supersolutions, Ann. Fac. Sci. Toulouse Math., 6 (1997), 591–608. http://www.numdam.org/item?id=AFST_1997_6_6_4_591_0 |
[2] | J. Schoenenberger-Deuel, P. Hess, A criterion for the existence of solutions of non-linear elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A, 74 (1976), 49–54. https://doi-org.proxy.swarthmore.edu/10.1017/s030821050001653x doi: 10.1017/s030821050001653x |
[3] | J. M. Arrieta, R. Pardo, A. Rodríguez-Bernal, Infinite resonant solutions and turning points in a problem with unbounded bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2885–2896. https://doi.org/10.1142/S021812741002743X doi: 10.1142/S021812741002743X |
[4] | J. M. Arrieta, R. Pardo, A. Rodríguez-Bernal, Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 225–252. |
[5] | J. M. Arrieta, R. Pardo, A. Rodríguez-Bernal, Equilibria and global dynamics of a problem with bifurcation from infinity, J. Differ. Equ., 246 (2009), 2055–2080. https://doi.org/10.1016/j.jde.2008.09.002 doi: 10.1016/j.jde.2008.09.002 |
[6] | P. Liu, J. Shi, Bifurcation of positive solutions to scalar reaction-diffusion equations with nonlinear boundary condition, J. Differ. Equ., 264 (2018), 425–454. https://doi.org/10.1016/j.jde.2017.09.014 doi: 10.1016/j.jde.2017.09.014 |
[7] | N. Mavinga, Generalized eigenproblem and nonlinear elliptic equations with nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 137–153. https://doi.org/10.1017/S0308210510000065 doi: 10.1017/S0308210510000065 |
[8] | N. Mavinga, R. Pardo, Bifurcation from infinity for reaction-diffusion equations under nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 649–671. https://doi.org/10.1017/S0308210516000251 doi: 10.1017/S0308210516000251 |
[9] | C. Morales-Rodrigo, A. Suárez, Some elliptic problems with nonlinear boundary conditions, in Spectral theory and nonlinear analysis with applications to spatial ecology, World Sci. Publ., Hackensack, NJ, 2005,175–199. https://doi.org/10.1142/9789812701589_0009 |
[10] | J. M. Arrieta, A. N. Carvalho, A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differ. Equ., 156 (1999), 376–406. https://doi.org/10.1006/jdeq.1998.3612 doi: 10.1006/jdeq.1998.3612 |
[11] | R. S. Cantrell, C. Cosner, On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains, J. Differ. Equ., 231 (2006), 768–804. https://doi.org/10.1016/j.jde.2006.08.018 doi: 10.1016/j.jde.2006.08.018 |
[12] | A. A. Lacey, J. R. Ockendon, J. Sabina, Multidimensional reaction diffusion equations with nonlinear boundary conditions, SIAM J. Appl. Math., 58 (1998), 1622–1647. https://doi.org/10.1137/S0036139996308121 doi: 10.1137/S0036139996308121 |
[13] | C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992. |
[14] | K. Akô, On the Dirichlet problem for quasi-linear elliptic differential equations of the second order, J. Math. Soc. Japan, 13 (1961), 45–62, https://doi.org/10.2969/jmsj/01310045 doi: 10.2969/jmsj/01310045 |
[15] | H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J., 21 (1971), 125–146, https://doi.org/10.1512/iumj.1971.21.21012 doi: 10.1512/iumj.1971.21.21012 |
[16] | D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1971), 979–1000. https://doi.org/10.1512/iumj.1972.21.21079 doi: 10.1512/iumj.1972.21.21079 |
[17] | H. Amann, M. G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., 27 (1978), 779–790. https://doi.org/10.1512/iumj.1978.27.27050 doi: 10.1512/iumj.1978.27.27050 |
[18] | E. N. Dancer, G. Sweers, On the existence of a maximal weak solution for a semilinear elliptic equation, Differ. Integral Equ., 2 (1989), 533–540. |
[19] | D. Motreanu, A. Sciammetta, E. Tornatore, A sub-supersolution approach for {N}eumann boundary value problems with gradient dependence, Nonlinear Anal. Real World Appl., 54 (2020), 103096. https://doi.org/10.1016/j.nonrwa.2020.103096 doi: 10.1016/j.nonrwa.2020.103096 |
[20] | H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions, in New developments in differential equations (Proc. 2nd Scheveningen Conf., Scheveningen, 1975), 1976, 43–63. North–Holland Math. Studies, Vol. 21. |
[21] | R. A. Adams, J. J. F. Fournier, Sobolev spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam), 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. |
[22] | S. Carl, V. K. Le, D. Motreanu, Nonsmooth variational problems and their inequalities, Springer Monographs in Mathematics, Springer, New York, 2007. https://doi.org/10.1007/978-0-387-46252-3 Comparison principles and applications. |
[23] | A. Kufner, O. John, S. Fučík, Function spaces, Noordhoff International Publishing, Leyden; Academia, Prague, 1977, Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. |
[24] | P. Hess, On the solvability of nonlinear elliptic boundary value problems, Indiana Univ. Math. J., 25 (1976), 461–466. https://doi.org/10.1512/iumj.1976.25.25036 doi: 10.1512/iumj.1976.25.25036 |
[25] | J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969. |
[26] | H. Brezis, A. C. Ponce, Kato's inequality up to the boundary, Commun. Contemp. Math., 10 (2008), 1217–1241. https://doi.org/10.1142/S0219199708003241 doi: 10.1142/S0219199708003241 |
[27] | H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. |