Research article

Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system

  • Received: 12 September 2021 Revised: 25 January 2022 Accepted: 30 January 2022 Published: 14 April 2022
  • In this paper, we consider a class of critical Schrödinger-Bopp-Podolsky system. By virtue of the Nehari manifold and variational methods, we study the existence, nonexistence and asymptotic behavior of ground state solutions for this problem.

    Citation: Senli Liu, Haibo Chen. Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system[J]. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108

    Related Papers:

  • In this paper, we consider a class of critical Schrödinger-Bopp-Podolsky system. By virtue of the Nehari manifold and variational methods, we study the existence, nonexistence and asymptotic behavior of ground state solutions for this problem.



    加载中


    [1] F. Bopp, Eine lineare Theorie des Elektrons, Ann. Physik, 38 (1940), 345–384. https://doi.org/10.1002/andp.19404300504 doi: 10.1002/andp.19404300504
    [2] B. Podolsky, P. Schwed, Review of a generalized electrodynamics, Rev. Modern Phys., 20 (1948), 40–50. https://doi.org/10.1103/revmodphys.20.40 doi: 10.1103/revmodphys.20.40
    [3] M. Bertin, B. Pimentel, C. Valcárcel, G. Zambrano, Hamilton-Jacobi formalism for Podolsky's electromagnetic theory on the null-plane, J. Math. Phys., 58 (2017), 082902, 21. https://doi.org/10.1063/1.4999846 doi: 10.1063/1.4999846
    [4] M. Bertin, B. Pimentel, G. Zambrano, The canonical structure of Podolsky's generalized electrodynamics on the null-plane, J. Math. Phys., 52 (2011), 102902. https://doi.org/10.1063/1.3653510 doi: 10.1063/1.3653510
    [5] B. Podolsky, A generalized electrodynamics. I. Nonquantum, Phys. Rev., 62 (1942), 68–71.
    [6] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283–293. https://doi.org/10.12775/TMNA.1998.019 doi: 10.12775/TMNA.1998.019
    [7] A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differ. Equ., 249 (2010), 1746–1763. https://doi.org/10.1016/j.jde.2010.07.007 doi: 10.1016/j.jde.2010.07.007
    [8] G. Cerami, G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equ., 248 (2010), 521–543. https://doi.org/10.1016/j.jde.2009.06.017 doi: 10.1016/j.jde.2009.06.017
    [9] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674. https://doi.org/10.1016/j.jfa.2006.04.005 doi: 10.1016/j.jfa.2006.04.005
    [10] G. Cerami, R. Molle, Positive bound state solutions for some Schrödinger-Poisson systems, Nonlinearity, 29 (2016), 3103–3119. https://doi.org/10.1088/0951-7715/29/10/3103 doi: 10.1088/0951-7715/29/10/3103
    [11] T. D'Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893–906. https://doi.org/10.1017/S030821050000353X doi: 10.1017/S030821050000353X
    [12] S. Kim, J. Seok, On nodal solutions of the nonlinear Schrödinger-Poisson equations, Commun. Contemp. Math., 14 (2012), 1250041. https://doi.org/10.1142/S0219199712500411 doi: 10.1142/S0219199712500411
    [13] C. Mercuri, T. Tyler, On a class of nonlinear Schrödinger-Poisson systems involving a nonradial charge density, Rev. Mat. Iberoam., 36 (2020), 1021–1070. https://doi.org/10.4171/rmi/1158 doi: 10.4171/rmi/1158
    [14] D. Mugnai, The Schrödinger-Poisson system with positive potential, Comm. Partial Differential Equations, 36 (2011), 1099–1117. https://doi.org/10.1080/03605302.2011.558551 doi: 10.1080/03605302.2011.558551
    [15] J. Sun, T. Wu, Z. Feng, Non-autonomous Schrödinger-Poisson system in $\Bbb{R}^3$, Discrete Contin. Dyn. Syst., 38 (2018), 1889–1933. https://doi.org/10.3934/dcds.2018077 doi: 10.3934/dcds.2018077
    [16] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90–108. https://doi.org/10.1016/j.jmaa.2008.03.057 doi: 10.1016/j.jmaa.2008.03.057
    [17] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391–404. https://doi.org/10.1142/S021919970800282X doi: 10.1142/S021919970800282X
    [18] P. D'Avenia, G. Siciliano, Nonlinear Schrödinger equation in the Bopp-Podolsky electrodynamics: solutions in the electrostatic case, J. Differ. Equ., 267 (2019), 1025–1065. https://doi.org/10.1016/j.jde.2019.02.001 doi: 10.1016/j.jde.2019.02.001
    [19] G. Siciliano, S. Kaye, The fibering method approach for a non-linear Schrödinger equation coupled with the electromagnetic field, Publ. Mat., 64 (2020), 373–390. https://doi.org/10.5565/PUBLMAT6422001 doi: 10.5565/PUBLMAT6422001
    [20] P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283.
    [21] A. Szulkin, T. Weth, The method of Nehari manifold, Int. Press, Somerville, MA, (2010), 597–632.
    [22] K. Fan, Minimax theorems, Prog. Nonlinear Differ. Equ. Appl., 39 (1953), 42. https://doi.org/10.1007/978-1-4612-4146-1 doi: 10.1007/978-1-4612-4146-1
    [23] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0
    [24] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, second ed., vol. 224, Springer-Verlag, Berlin, (1983), xiii+513 pp. https://doi.org/10.1007/978-3-642-61798-0
    [25] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. https://doi.org/10.2307/2044999 doi: 10.2307/2044999
    [26] J. Sun, T. Wu, On the nonlinear Schrödinger-Poisson systems with sign-changing potential, Z. Angew. Math. Phys., 66 (2015), 1649–1669. https://doi.org/10.1007/s00033-015-0494-1 doi: 10.1007/s00033-015-0494-1
    [27] E. Lieb, M. Loss, Analysis, second ed., vol. 14, American Mathematical Society, Providence, RI, (2001), xxii+346 pp. https://doi.org/10.1090/gsm/014
    [28] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, vol. 65, American Mathematical Society, Providence, RI, (1986), viii+100 pp. https://doi.org/10.1090/cbms/065
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1104) PDF downloads(102) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog