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Abstract: Let p be an odd prime and let Fp be the finite field of p elements. In 2019, Sun studied
some permutations involving squares in Fp. In this paper, by the theory of local fields we generalize
this topic to Fp2 , which gives a partial answer to the question posed by Sun.
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1. Introduction

Permutation is an important mathematical concept. Investigating permutations over finite fields is a
classical topic in number theory, combinatorics and finite fields. Let g(x) be a polynomial over a ring
R. We say that g(x) is a permutation polynomial if it acts as a permutation of all elements of the ring,
i.e., the map

x 7→ g(x)

is a bijection over R. By the Lagrange interpolation formula it is easy to see that every permutation
over a finite field is induced by a permutation polynomial (for the recent progress on permutation
polynomial readers may refer to the survey paper [1]).

Now we introduce some earlier work on this topic. Let p be an odd prime and let a ∈ Z with p ∤ a.
Clearly fa(x) = ax is a permutation polynomial over Z/pZ = Fp. The famous Zolotarev lemma [2]
says that the sign of the permutation on Fp induced by fa(x) coincides with the Legendre symbol ( a

p ).
This fact provides us with a different proof (see [3, 4]) of the law of quadratic reciprocity. Later G.
Frobenius [5] generalized Zolotarev’s result to the Jacobi symbols. Readers may refer to [6, 7] for
more related information.

Let k be a positive integer with gcd(k, p − 1) = 1. Then clearly the polynomial gk(x) = xk is a
permutation polynomial over Fp. The authors [8] determined the sign of this permutation induced by
gk(x) via extending the method of Zolotarev. Moreover, with the tools in group representation theory,
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Duke and Hopkins [9] generalized this result to finite groups. They also gave the law of quadratic
reciprocity on finite groups.

Recently, Sun [10, 11] studied some permutations involving squares in Fp. For example, let p =
2n + 1 be an odd prime and let b1, · · · , bn be the sequence of all the n quadratic residues among
1, · · · , p − 1 in ascending order. Then it is easy to see that the sequence

12, · · · , n2, (1.1)

is a permutation τp of

b1, · · · , bn, (1.2)

where a denotes the element a mod pZ for each a ∈ Z. Sun showed that

sgn(τp) =

1 if p ≡ 3 (mod 8),
(−1)(h(−p)+1)/2 if p ≡ 7 (mod 8),

where h(−p) is the class number of Q(
√
−p) and sgn(τp) denotes the sign of τp. While studying this

topic, Sun and his collaborator [10, 12] also determined some products which concerns pth roots of
unity. For instance, in the case p ≡ 3 (mod 4) Sun [10] obtained

∏
0< j<k<p/2

(
ζ j2

p − ζ
k2

p

)
=

(−p)(p−3)/8 if 8 | p − 3,
(−1)

p+1
8 +

h(−p)−1
2 p(p−3)/8i if 8 | p − 7.

(1.3)

Later Petrov and Sun [12] showed that if p ≡ 1 (mod 8), then∏
0< j<k<p/2

(
ζ j2

p + ζ
k2

p

)
= (−1)#

{
1≤k< p

4 :
(

k
p

)
=−1
}

and that if p ≡ 5 (mod 8), then∏
0< j<k<p/2

(
ζ j2

p + ζ
k2

p

)
= (−1)#

{
1≤k< p

4 :
(

k
p

)
=−1
}
ε−h(p)

p ,

where #S denotes the cardinality of a set S and h(p) is the class number of Q(
√

p). These products
have close connections with permutations over Fp. Readers may consult [10, 12] for details.

Along this line, the first author [13] determined the sign of τp in the case p ≡ 1 (mod 4). Motivated
by Sun’s work, the first author also studied some permutations on Fp involving primitive roots modulo
p. In fact, let gp ∈ Z be a primitive root modulo p. Then the sequence

g2
p, g4

p, · · · , g
p−1
p (1.4)

is a permutation on the sequence (1.2). In [13] the first author gave the sign of this permutation in the
case p ≡ 1 (mod 4).

Recently Sun posed the following problem:
In an arbitrary finite field Fq with 2 ∤ q, can we get an analogue of the above permutation which

involves non-zero squares over Fq?
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In this paper, we mainly generalize the above permutations to Fp2 . To do this, we first need to
construct two sequences of non-zero squares in Fp2 which are analogues of the sequences (1.1) and
(1.4). We now introduce some notations and some basic facts involving local fields.

Let p = 2n + 1 be an odd prime, and let ζp2−1 be a primitive (p2 − 1)th root of unity in the algebraic
closure Qp of Qp. By [14, p.158 Propositon 7.12] it is easy to see that [Qp(ζp2−1) : Qp] = 2 and that the
integral closure of Zp in Qp(ζp2−1) is Zp[ζp2−1]. Noting that pZp is unramified in Qp(ζp2−1), we therefore
obtain Zp[ζp2−1]/pZp[ζp2−1] � Fp2 . Let ∆ ≡ 3 (mod 4) be an arbitrary quadratic non-residue modulo
p in Z. Then clearly p is inert in the field Q(

√
∆). Hence Z[

√
∆]/pZ[

√
∆] � Fp2 . Since Qp(ζp2−1) and

Qp(
√
∆) are both quadratic unramified extensions of Qp, by the local existence theorem (cf. [14, p.321

Theorem 1.4]) we have
Qp(ζp2−1) = Qp(

√
∆).

By the structure of the unit group of a local field (cf. [14, p.136, Proposition 5.3]) we have

Zp[ζp2−1]× = ⟨ζp2−1⟩ × (1 + pZp[ζp2−1]),

where Zp[ζp2−1]× denotes the group of all invertible elements in Zp[ζp2−1] and ⟨ζp2−1⟩ = {ζ
k
p2−1 : k ∈ Z}.

Hence we can let g ∈ Zp[ζp2−1] be a primitive root modulo pZp[ζp2−1] with g ≡ ζp2−1 (mod pZp[ζp2−1]).
For all x ∈ Z[

√
∆] and y ∈ Zp[ζp2−1] we use the symbols x̄ and ȳ to denote the elements x mod pZ[

√
∆]

and y mod pZp[ζp2−1] respectively.
Set ak = k +

√
∆ for 0 ≤ k ≤ p − 1. Then it is easy to verify that{

a2
k j2 : 0 ≤ k ≤ p − 1, 1 ≤ j ≤ n

}
∪
{
j2 : 1 ≤ j ≤ n

}
is a complete system of representatives of(

Z[
√
∆]/pZ[

√
∆]
)×2

:=
{
α2 + pZ[

√
∆] : α ∈ Z[

√
∆] \ pZ[

√
∆]
}
.

By the isomorphism
Z[
√
∆]/pZ[

√
∆] � Zp[ζp2−1]/pZp[ζp2−1]

which sends x mod pZ[
√
∆] to x mod pZp[ζp2−1], we can view the sequence

S := a2
0 · 1

2, a2
0 · 2

2, · · · , a2
0 · n

2, · · · , a2
p−1, · · · , a

2
p−1n2, · · · , 12, · · · , n2 (1.5)

as a permutation πp of the sequence

S ∗ := g2, g4, · · · , gp2−1. (1.6)

Clearly the above two sequences are analogues of the sequences (1.1) and (1.4). We mainly study this
permutation in this paper. To state our result, let β0 ∈ {0, 1} be the integer satisfying

(−1)β0 ≡
(
√
∆)

p−1
2

ζ
p2−1

4
p2−1

(mod pZp[ζp2−1]). (1.7)

We also use the symbol sgn(πp) to denote the sign of πp. Now we state the main result of this paper.
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Theorem 1.1.

sgn(πp) =


(−1)β0+

p+3
4 if p ≡ 1 (mod 4),

(−1)
h(−p)+1

2 +β0 if p ≡ 3 (mod 4) and p > 3,
(−1)1+β0 if p = 3,

where h(−p) is the class number of Q(
√
−p).

The detailed proof of the above theorem will be given in next section.

2. Proof of the main result

Recall that ak = k +
√
∆ for k = 0, 1, · · · , p − 1. We begin with several lemmas involving ak. For

convenience, we write p = 2n + 1 and pZ[
√
∆] = p in this section.

Lemma 2.1. Let Ap =
∏

0≤k≤p−1 ak. Then

An(n−1)
p ≡

∆−
n
2 (mod p) if p ≡ 1 (mod 4),

(−1)
n−1

2 (mod p) if p ≡ 3 (mod 4).

Proof. Since ∏
0≤t≤p−1

(x + t) ≡ xp − x (mod pZ[x]),

we have
An(n−1)

p =
∏

0≤t≤p−1

(
√
∆ + t)n(n−1) ≡ (−2

√
∆)n(n−1) (mod p).

Observing that (
√
∆)p−1 ≡ −1 (mod p), one may get the desired result. □

Lemma 2.2. Let Bp =
∏

0≤k≤p−1(1 − ap−1
k ). Then

Bn
p ≡ 1 (mod p).

Proof. For each k = 0, · · · , p − 1 we have

ap
k = (k +

√
∆)p ≡ k + (

√
∆)p−1

√
∆ ≡ k −

√
∆ (mod p). (2.1)

Hence we have the following congruences

Bn
p ≡

∏
0≤k≤p−1

(
1 −

k −
√
∆

k +
√
∆

)n
=2pn(

√
∆)2n2+n

∏
1≤k≤n

( 1

k +
√
∆

)n( 1

p − k +
√
∆

)n
≡

(
−2
p

) ∏
1≤k≤n

( 1
∆ − k2

)n
(mod p).
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Noting that ∏
1≤k≤n

(x − k2) ≡ xn − 1 (mod pZ[x]), (2.2)

we obtain ∏
1≤k≤n

( 1
∆ − k2

)n
≡

(
−2
p

)
(mod p).

Hence
Bn

p ≡ 1 (mod p).

□

Lemma 2.3. Let Cp =
∏

0<s<t<p
1

(t+
√
∆)(s+

√
∆)

. Then

Cn
p ≡

(
−2
p

)
(mod p).

Proof. Clearly we have

Cp =
∏

1≤s<t≤n

1

(t +
√
∆)(s +

√
∆)

1

(p − t +
√
∆)(p − s +

√
∆)

×
∏

1≤s≤n

∏
1≤t≤n

1

(p − t +
√
∆)(s +

√
∆)
.

Hence we obtain that Cn
p mod p is equal to

∏
1≤s<t≤n

(
∆ − t2

p

)(
∆ − s2

p

)
×
∏

1≤s,t≤n

( 1

(
√
∆ − t)(

√
∆ + s)

)n
(mod p).

We first handle the product ∏
1≤s≤n

∏
1≤t≤n

( 1

(
√
∆ − t)(

√
∆ + s)

)n
(mod p).

Noting that ∏
1≤s≤n

(x + s)
∏

1≤t≤n

(x − t) ≡ xp−1 − 1 (mod pZ[x]),

we therefore obtain ∏
1≤t≤n

(
√
∆ − t) ≡

−2∏
1≤s≤n(

√
∆ + s)

(mod p).

Hence ∏
1≤s≤n

∏
1≤t≤n

( 1

(
√
∆ − t)(

√
∆ + s)

)n
≡

(
−2
p

)n
(mod p). (2.3)
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We now turn to the product ∏
1≤s<t≤n

(
∆ − t2

p

)(
∆ − s2

p

)
.

Let np = #{(x2, y2) : 1 ≤ x, y ≤ n, x2 + y2 ≡ ∆ (mod p)}. Then one can easily verify that

np =

n/2 if 4 | p − 1,
(n + 1)/2 if 4 | p − 3.

(2.4)

Let n′p = #{(x2, y2) : 1 ≤ x, y ≤ n, x2 + ∆y2 ≡ ∆ (mod p)}. Then

n′p =

n/2 if p ≡ 1 (mod 4),
(n − 1)/2 if p ≡ 3 (mod 4).

(2.5)

By the above we get

#
{
(s, t) : 1 ≤ s < t ≤ n,

(
∆ − t2

p

)(
∆ − s2

p

)
= −1

}
=


n2

4 if 4 | p − 1,

n2−1
4 if 4 | p − 3.

Therefore we have ∏
1≤s<t≤n

(
∆ − t2

p

)(
∆ − s2

p

)
=

(−1)n/2 if p ≡ 1 (mod 4),
1 if p ≡ 3 (mod 4).

(2.6)

Now our desired result follows from (2.3) and (2.6). □

Lemma 2.4. Let Dp =
∏

0≤s<t≤p−1(ap−1
t − ap−1

s ). Then Dn
p (mod p) is equal to

(
√
∆)−n2

(mod p) if p ≡ 1 (mod 4),
(
√
∆)−n2

(−1)
h(−p)+1

2 · ( 2
p ) (mod p) if p ≡ 3 (mod 4) and p > 3,

−(
√
∆)−1 (mod p) if p = 3.

Proof. From (2.1) one may easily verify that Dn
p (mod p) is equal to( t − √∆

t +
√
∆
−

s −
√
∆

s +
√
∆

)n
≡
∏

0≤s<t≤p−1

( 2
√
∆(t − s)

(t +
√
∆)(s +

√
∆)

)n
(mod p).

We further obtain

Dn
p ≡

(
−2
p

)n+1( −1
√
∆

)n2

Cn
p

∏
0<t<p

( 1

t +
√
∆

)n ∏
0<s<t<p

(t − s)n (mod p).

We first handle the product ∏
1≤t≤p−1

( 1

t +
√
∆

)n
.
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By (2.2) we have ∏
1≤t≤p−1

( 1

t +
√
∆

)n
≡
∏

1≤t≤n

( 1
∆ − t2

)n
≡

(
−2
p

)
(mod p). (2.7)

We turn to the product ∏
1≤s<t≤p−1

(t − s)n.

It is clear that ∏
1≤s<t≤p−1

(t − s)n (mod p)

is equal to ∏
1≤s<t≤n

( t − s
p

)(
−s + t

p

) ∏
1≤s≤n

∏
1≤t≤n

(
−1
p

)( t + s
p

)
≡ (−1)n

∏
1≤s≤n

∏
1≤t≤n

( t + s
p

)
(mod p).

We now divide our proof into the following two cases.
Case 1. p ≡ 1 (mod 4).
Let 1 ≤ w ≤ n be an arbitrary quadratic non-residue modulo p. Then

#{(s, t) : 1 ≤ s, t ≤ n, s + t ≡ w (mod p)} = w − 1

and
#{(s, t) : 1 ≤ s, t ≤ n, s + t ≡ p − w (mod p)} = w.

Hence when p ≡ 1 (mod 4) we have∏
1≤s≤n

∏
1≤t≤n

( t + s
p

)
= (−1)#{1≤w≤n:( w

p )=−1} = (−1)n/2. (2.8)

Case 2. p ≡ 3 (mod 4).
Let 1 ≤ w ≤ n be an arbitrary quadratic non-residue modulo p and let 1 ≤ v ≤ n be an arbitrary

quadratic residue modulo p. Then

#{(s, t) : 1 ≤ s, t ≤ n, s + t ≡ w (mod p)} = w − 1

and
#{s, t) : 1 ≤ s, t ≤ n, s + t ≡ p − v (mod p)} = v.

Hence ∏
1≤s≤n

∏
1≤t≤n

( t + s
p

)
= (−1)#{1≤w≤n:( w

p )=−1}
· (−1)

p2−1
8 .

For each p ≡ 3 (mod 4), let h(−p) be the class number of Q(
√
−p). When p > 3, by the class number

formula (cf. [15, Chapter 5]) we have(
2 −
(2

p

))
h(−p) = n − 2#

{
1 ≤ w ≤ n :

(w
p

)
= −1

}
.
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By this one may easily verify that

#
{
1 ≤ w ≤ n :

(w
p

)
= −1

}
≡

h(−p) + 1
2

(mod 2).

The readers may also see Mordell’s paper [16] for details.
By the above, we obtain

∏
1≤s≤n

∏
1≤t≤n

( t + s
p

)
=

(−1)
h(−p)+1

2 · ( 2
p ) if p ≡ 3 (mod 4) and p > 3,

−1 if p = 3.
(2.9)

In view of the above, we obtain the desired result. □

Let Φp2−1(x) ∈ Z[x] denote the (p2 − 1)th cyclotomic polynomial. We also let

F(x) =
∏

1≤s<t≤(p2−1)/2

(x2t − x2s),

and let

T (x) = (−1)
p2+7

8

( p2 − 1
2

) p2−1
4

· x
(p2−1)

4 ∈ Z[x].

Let ζ = e2πi/(p2−1). The following result gives the explict value of F(ζ). As this result is the key element
in the proof of our main result, we state this result as an individual theorem.

Theorem 2.5. Let ζ = e2πi/(p2−1) be a primitive (p2 − 1)th root of unity. Then

F(ζ) = i(−1)
p2+7

8

( p2 − 1
2

) p2−1
4

.

Hence Φp2−1(x) | F(x) − T (x) in Z[x].

Proof. It is sufficient to prove that F(ζ) = T (ζ). We first compute F(ζ)2. We have the following
equalities:

F(ζ)2 =
∏

1≤s<t≤ p2−1
2

(ζ2t − ζ2s)2

=(−1)
(p2−1)(p2−3)

8 ·
∏

1≤s,t≤ p2−1
2

(ζ2t − ζ2s)

=
∏

1≤t≤ p2−1
2

x
p2−1

2 − 1
x − ζ2t

∣∣∣∣∣∣
x=ζ2t

=

( p2 − 1
2

) p2−1
2 ∏

1≤t≤ p2−1
2

ζ−2t = −1 ·
( p2 − 1

2

) p2−1
2

.
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Hence F(ζ) = ±i · ( p2−1
2 )

p2−1
2 . We now compute the argument of F(ζ). Note that for any 1 ≤ s < t ≤

(p2 − 1)/2 we have
ζ2t − ζ2s = ζ t+s(ζ t−s − ζ−(t−s)).

We therefore obtain

Arg(ζ2t − ζ2s) =
2π

p2 − 1
(t + s) +

π

2
.

By this we have

Arg(F(ζ)) =
∑

1≤s<t≤ p2−1
2

( 2π
p2 − 1

(t + s) +
π

2

)

=
(p2 − 1)(p2 − 3)π

16
+

2π
p2 − 1

·
∑

1≤s<t≤ p2−1
2

(t + s)

≡ −
π

2
+

p2 − 1
8
π (mod 2πZ).

Therefore

F(ζ) = i(−1)
p2+7

8

( p2 − 1
2

) p2−1
4

= T (ζ).

This completes the proof. □

Before the proof of our main result, we first observe the following fact. Let S = {α1, · · · , αn} be an
arbitrary subset of a finite field and let τ be a permutation on S . Then it follows from definition that

sgn(τ) =
∏

1≤s<t≤n

τ(αt) − τ(αs)
αt − αs

.

Hence

sgn(πp) =
∏

1≤s<t≤n

g2t − g2s

πp(g2t) − πp(g2s)
.

The next two propositions handle the numerator and the denominator respectively.

Proposition 2.6. Set P = pZp[ζp2−1]. Then

∏
1≤s<t≤ p2−1

2

(g2t − g2s) ≡ −
(2

p

)(
−2
p

) p+1
2

g
p2−1

4 (mod P). (2.10)

Proof. Clearly Φp2−1(x) mod pZp[ζp2−1][x] splits completely in (Zp[ζp2−1]/P)[x]. As g ≡ ζp2−1

(mod P), by Theorem 2.5 we see that ∏
1≤s<t≤ p2−1

2

(g2t − g2s) (mod P)
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2118

is equal to

−

(2
p

)( p2 − 1
2

) p2−1
4

g
p2−1

4 ≡ −

(2
p

)(
−2
p

) p+1
2

g
p2−1

4 (mod P).

This completes the proof. □

We now turn to the denominator.

Proposition 2.7. ∏
1≤s<t≤ p2−1

2

(πp(g2t) − πp(g2s)) (mod p)

is equal to 
−∆−

p−1
4 (
√
∆)−

(p−1)2
4 (mod p) if p ≡ 1 (mod 4),

(−1)
h(−p)−1

2 (
√
∆)−

(p−1)2
4 (mod p) if p ≡ 3 (mod 4) and p > 3,

−(
√
∆)−1 (mod p) if p = 3.

(2.11)

Proof. It is easy to verify that ∏
1≤s<t≤ p2−1

2

(πp(g2t) − πp(g2s)) (mod p)

is equal to
An(n−1)

p Bn
pDn

p

∏
1≤s<t≤n

(t2 − s2)2 (mod p).

By [10, (1.5)] we have ∏
1≤s<t≤n

(t2 − s2)2 ≡ (−1)n+1 (mod p).

By the above we obtain that ∏
1≤s<t≤ p2−1

2

(πp(g2t) − πp(g2s)) (mod p)

is equal to 
−∆−

p−1
4 (
√
∆)−

(p−1)2
4 (mod p) if p ≡ 1 (mod 4),

(−1)
h(−p)−1

2 (
√
∆)−

(p−1)2
4 (mod p) if p ≡ 3 (mod 4) and p > 3,

−(
√
∆)−1 (mod p) if p = 3.

This completes the proof. □
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Combining the above two propositions, we now state the proof of our main result.
Proof of Theorem 1.1. Set

√
∆ ≡ ζαp2−1 (mod P) for some α ∈ Z. Since (

√
∆)p−1 ≡ −1 (mod P),

we obtain

(p − 1)α ≡
p2 − 1

2
(mod p2 − 1).

Hence
α ≡

p + 1
2

(mod p + 1).

Set α = p+1
2 + (p + 1)β for some β ∈ Z. Then

(
√
∆)n ≡ ζ

p2−1
4

p2−1ζ
p2−1

2 β

p2−1 (mod P).

By this we obtain

(−1)β ≡
(
√
∆)n

ζ
p2−1

4
p2−1

(mod P).

Hence β ≡ β0 (mod 2), where β0 is defined as in (1.7). We divide the remaining proof into three cases.
Case 1. p = 3.
In this case by (2.10) and (2.11) it is easy to see that

sgn(π3) = (−1)1+β0 .

Case 2. p ≡ 1 (mod 4).
By (2.10) and (2.11) we have

sgn(πp) ≡ g
p2−1

4 +
p−1

2 α+
(p−1)2

4 α (mod P).

Replacing α by p+1
2 +(p+1)β and noting that g

p2−1
2 ≡ −1 (mod P), we obtain that when p ≡ 1 (mod 4)

sgn(πp) = (−1)β0+
p+3

4 .

Case 3. p ≡ 3 (mod 4) and p > 3.
Similar to the Case 2, we have

sgn(πp) ≡
(2

p

)
g

p2−1
4 (−1)

h(−p)+1
2 g

(p−1)2
4 α (mod P).

Then via a computation we obtain
sgn(πp) = (−1)

h(−p)+1
2 +β0 .

In view of the above, we complete the proof. □
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