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Abstract: Let q be an even prime power and let Fq be the finite field of q elements. Let f be a nonzero
polynomial over Fq2 of the form f = a1xm1

1 + · · · + asx
ms
s + y1y2 + · · · + yn−1yn + y2

n−2t−1 + · · · + y2
n−3 +

y2
n−1 + bty2

n−2t + · · · + b1y2
n−2 + b0y2

n, where ai, b j ∈ F
∗

q2 , mi , 1, (mi,mk) = 1, i , k, mi|(q + 1), mi ∈ Z
+,

2|n , n > 2, 0 ≤ t ≤ n
2 − 2, TrFq2/F2(b j) = 1 for i, k = 1, . . . , s and j = 0, 1, . . . , t. For each b ∈ Fq2 , let

Nq2( f = b) denote the number of Fq2-rational points on the affine hypersurface f = b. In this paper,
we obtain the formula of Nq2( f = b) by using the Jacobi sums, Gauss sums and the results of quadratic
form in finite fields.

Keywords: finite field; polynomial; Jacobi sum; Gauss sum

1. Introduction

Let Fq be the finite field of q elements with characteristic p, where q = pr, p is a prime number. Let
F∗q = Fq\{0} and Z+ denote the set of positive integers. Let s ∈ Z+ and b ∈ Fq. Let f (x1, . . . , xs) be a
diagonal polynomial over Fq of the following form

f (x1, . . . , xs) = a1xm1
1 + a2xm2

2 + · · · + asxms
s ,

where ai ∈ F
∗
q, mi ∈ Z

+, i = 1, . . . , s. Denote by Nq( f = b) the number of Fq-rational points on the
affine hypersurface f = b, namely,

Nq( f = b) = #{(x1, . . . , xs) ∈ As(Fq) | f (x1, . . . , xs) = b}.

In 1949, Hua and Vandiver [1] and Weil [2] independently obtained the formula of Nq( f = b) in terms
of character sum as follows

Nq( f = b) = qs−1 +
∑

ψ1

(
a−1

1

)
· · ·ψs

(
a−s

s
)

J0
q (ψ1, . . . , ψs) , (1.1)
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where the sum is taken over all s multiplicative characters of Fq that satisfy ψmi
i = ε, ψi , ε, i = 1, . . . , s

and ψ1 · · ·ψs = ε. Here ε is the trivial multiplicative character of Fq, and J0
q(ψ1, . . . , ψs) is the Jacobi

sum over Fq defined by

J0
q (ψ1, . . . , ψs) =

∑
c1+···+cs=0,ci∈Fq

ψ1 (c1) · · ·ψs (cs).

Though the explicit formula for Nq( f = b) are difficult to obtain in general, it has been studied
extensively because of their theoretical importance as well as their applications in cryptology and
coding theory; see [3–9]. In this paper, we use the Jacobi sums, Gauss sums and the results of quadratic
form to deduce the formula of the number of Fq2-rational points on a class of hypersurfaces over Fq2

under certain conditions. The main result of this paper can be stated as

Theorem 1.1. Let q = 2r with r ∈ Z+ and Fq2 be the finite field of q2 elements. Let f (X) = a1xm1
1 +

a2xm2
2 + · · ·+asx

ms
s , g(Y) = y1y2+y3y4+ · · ·+yn−1yn+y2

n−2t−1+ · · ·+y2
n−3+y2

n−1+bty2
n−2t+ · · ·+b1y2

n−2+b0y2
n,

and l(X,Y) = f (X) + g(Y), where ai, b j ∈ F
∗

q2 , mi , 1, (mi,mk) = 1, i , k, mi|(q + 1), mi ∈ Z
+, 2|n ,

n > 2, 0 ≤ t ≤ n
2 − 2, TrFq2/F2(b j) = 1 for i, k = 1, . . . , s and j = 0, 1, . . . , t. For h ∈ Fq2 , we have

(1) If h = 0, then

Nq2(l(X,Y) = 0) = q2(s+n−1) +
∑
γ∈F∗

q2

 s∏
i=1

( γai

)
mi

mi − 1
 (qs+2n−3 + (−1)tqs+n−3

).
(2) If h ∈ F∗q2 , then

Nq2(l(X,Y) = h)

=q2(s+n−1) +
(
qs+2n−3 + (−1)t+1

(
q2 − 1

)
qs+n−3

) s∏
i=1

( h
ai

)
mi

mi − 1


+
∑

γ∈F∗
q2\{h}

 s∏
i=1

( γai

)
mi

mi − 1
 (q2n+s−3 + (−1)t qn+s−3

).
Here, (

γ

ai

)
mi

=

{
1, if γ

ai
is a residue of order mi,

0, otherwise.

2. Prerequisites

To prove Theorem 1.1, we need the lemmas and theorems below which are related to the Jacobi
sums and Gauss sums.

Definition 2.1. Let χ be an additive character and ψ a multiplicative character of Fq. The Gauss sum
Gq(ψ, χ) in Fq is defined by

Gq(ψ, χ) =
∑
x∈F∗q

ψ(x)χ(x).

In particular, if χ is the canonical additive character, i.e., χ(x) = e2πiTrFq/Fp (x)/p where TrFq/Fp(y) =
y + yp + · · · + ypr−1

is the absolute trace of y from Fq to Fp, we simply write Gq(ψ) := Gq(ψ, χ).

Electronic Research Archive Volume 31, Issue 7, 4303–4312.



4305

Let ψ be a multiplicative character of Fq which is defined for all nonzero elements of Fq. We extend
the definition of ψ by setting ψ(0) = 0 if ψ , ε and ε(0) = 1.

Definition 2.2. Let ψ1, . . . , ψs be s multiplicative characters of Fq. Then, Jq(ψ1, . . . , ψs) is the Jacobi
sum over Fq defined by

Jq (ψ1, . . . , ψs) =
∑

c1+···+cs=1,ci∈Fq

ψ1 (c1) · · ·ψs (cs).

The Jacobi sums Jq(ψ1, . . . , ψs) as well as the sums J0
q(ψ1, . . . , ψs) can be evaluated easily in case

some of the multiplicative characters ψi are trivial.

Lemma 2.3. ( [10, Theorem 5.19, p. 206]) If the multiplicative characters ψ1, . . . , ψs of Fq are trivial,
then

Jq(ψ1, . . . , ψs) = J0
q(ψ1, . . . , ψs) = qs−1.

If some, but not all, of the ψi are trivial, then

Jq(ψ1, . . . , ψs) = J0
q(ψ1, . . . , ψs) = 0.

Lemma 2.4. ( [10, Theorem 5.20, p. 206]) If ψ1, . . . , ψs are multiplicative characters of Fq with ψs

nontrivial, then
J0

q(ψ1, . . . , ψs) = 0

if ψ1 · · ·ψs is nontrivial and

J0
q(ψ1, . . . , ψs) = ψs(−1)(q − 1)Jq(ψ1, . . . , ψs−1)

if ψ1 · · ·ψs is trivial.

If all ψi are nontrivial, there exists an important connection between Jacobi sums and Gauss sums.

Lemma 2.5. ( [10, Theorem 5.21, p. 207]) If ψ1, . . . , ψs are nontrivial multiplicative characters of Fq

and χ is a nontrivial additive character of Fq, then

Jq(ψ1, . . . , ψs) =
Gq(ψ1, χ) · · ·Gq(ψs, χ)

Gq(ψ1 · · ·ψs, χ)

if ψ1 · · ·ψs is nontrivial and

Jq(ψ1, . . . , ψs) = −ψs(−1)Jq(ψ1, . . . , ψs−1)

= −
1
q

Gq(ψ1, χ) · · ·Gq(ψs, χ)

if ψ1 · · ·ψs is trivial.

We turn to another special formula for Gauss sums which applies to a wider range of multiplicative
characters but needs a restriction on the underlying field.
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Lemma 2.6. ( [10, Theorem 5.16, p. 202]) Let q be a prime power, let ψ be a nontrivial multiplicative
character of Fq2 of order m dividing q + 1. Then

Gq2 (ψ) =
{

q, if m odd or q+1
m even,

−q, if m even and q+1
m odd.

For h ∈ Fq2 , define v(h) = −1 if h ∈ F∗q2 and v(0) = q2 − 1. The property of the function v(h) will be
used in the later proofs.

Lemma 2.7. ( [10, Lemma 6.23, p. 281]) For any finite field Fq, we have∑
c∈Fq

v(c) = 0,

for any b ∈ Fq, ∑
c1+···+cm=b

v(c1) · · · v(ck) =

0, 1 ⩽ k < m,

v (b) qm−1, k = m,

where the sum is over all c1, . . . , cm ∈ Fq with c1 + · · · + cm = b.

The quadratic forms have been studied intensively. A quadratic form f in n indeterminates is called
nondegenerate if f is not equivalent to a quadratic form in fewer than n indeterminates. For any finite
field Fq, two quadratic forms f and g over Fq are called equivalent if f can be transformed into g by
means of a nonsingular linear substitution of indeterminates.

Lemma 2.8. ( [10, Theorem 6.30, p. 287]) Let f ∈ Fq[x1, . . . , xn], q even , be a nondegenerate
quadratic form. If n is even, then f is either equivalent to

x1x2 + x3x4 + · · · + xn−1xn

or to a quadratic form of the type

x1x2 + x3x4 + · · · + xn−1xn + x2
n−1 + ax2

n,

where a ∈ Fq satisfies TrFq/Fp(a) = 1.

Lemma 2.9. ( [10, Corollary 3.79, p. 127]) Let a ∈ Fq and let p be the characteristic of Fq, the
trinomial xp − x − a is irreducible in Fq if and only if TrFq/Fp(a) , 0.

Lemma 2.10. ( [10, Lemma 6.31, p. 288]) For even q, let a ∈ Fq with TrFq/Fp(a) = 1 and b ∈ Fq. Then

Nq(x2
1 + x1x2 + ax2

2 = b) = q − v(b).

Lemma 2.11. ( [10, Theorem 6.32 , p. 288]) Let Fq be a finite field with q even and let b ∈ Fq. Then
for even n, the number of solutions of the equation

x1x2 + x3x4 + · · · + xn−1xn = b

Electronic Research Archive Volume 31, Issue 7, 4303–4312.



4307

in Fn
q is qn−1 + v(b)q(n−2)/2. For even n and a ∈ Fq with TrFq/Fp(a) = 1, the number of solutions of the

equation
x1x2 + x3x4 + · · · + xn−1xn + x2

n−1 + ax2
n = b

in Fn
q is qn−1 − v(b)q(n−2)/2.

Lemma 2.12. Let q = 2r and h ∈ Fq2 . Let g(Y) ∈ Fq2[y1, y2, . . . , yn] be a polynomial of the form

g(Y) = y1y2 + y3y4 + · · · + yn−1yn + y2
n−2t−1 + · · · + y2

n−3 + y2
n−1 + bty2

n−2t + · · · + b1y2
n−2 + b0y2

n,

where b j ∈ F
∗

q2 , 2|n , n > 2, 0 ≤ t ≤ n
2 − 2, TrFq2/F2(b j) = 1, j = 0, 1, . . . , t. Then

Nq2(g(Y) = h) = q2(n−1) + (−1)t+1qn−2v(h). (2.1)

Proof. We provide two proofs here. The first proof is as follows. Let q1 = q2. Then by Lemmas 2.7
and 2.10, the number of solutions of g(Y) = h in Fq2 can be deduced as

Nq2(g(Y) = h)

=
∑

c1+c2+···+ct+2=h

Nq2 (y1y2 + y3y4 + · · · + yn−2t−3yn−2t−2 = c1)

· Nq2

(
yn−2t−1yn−2t + y2

n−2t−1 + bty2
n−2t = c2

)
· · ·Nq2

(
yn−1yn + y2

n−1 + b0y2
n = ct+2

)
=

∑
c1+c2+···+ct+2=h

(
qn−2t−3

1 + v (c1) q(n−2t−4)/2
1

)
(q1 − v (c2)) · · · (q1 − v (ct+2))

=
∑

c1+c2+···+ct+2=h

(
qn−2t−2

1 + v (c1) q(n−2t−2)/2
1 − v (c2) qn−2t−3

1 − v (c1) v (c2) q(n−2t−4)/2
1

)
· (q1 − v (c3)) · · · (q1 − v (ct+2))

=
∑

c1+c2+···+ct+2=h

(
qn−t−2

1 + v (c1) q(n−2)/2
1 − v (c2) qn−t−3

1 + · · · + (−1)t+1v (c1) v (c2) · · · v (ct+2) q(n−2t−4)/2
1

)
=qn−1

1 + q(n−2)/2
1

∑
c1∈Fq2

v (c1) + · · · + (−1)t+1
∑

c1+c2+···+ct+2=h

v (c1) v (c2) · · · v (ct+2) q(n−2t−4)/2
1 . (2.2)

By Lamma 2.7 and (2.2), we have

Nq2(g(Y) = h) = qn−1
1 + (−1)t+1v(h)q(n−2)/2

1 = q2(n−1) + (−1)t+1v(h)qn−2.

Next we give the second proof. Note that if f and g are equivalent, then for any b ∈ Fq2 the
equation f (x1, . . . , xn) = b and g(x1, . . . , xn) = b have the same number of solutions in Fq2 . So we can
get the number of solutions of g(Y) = h for h ∈ Fq2 by means of a nonsingular linear substitution of
indeterminates.

Let k(X) ∈ Fq2[x1, x2, x3, x4] and k(X) = x1x2 + x2
1 + Ax2

2 + x3x4 + x2
3 + Bx2

4, where TrFq2/F2(A) =
TrFq2/F2(B) = 1. We first show that k(x) is equivalent to x1x2 + x3x4.

Let x3 = y1 + y3 and xi = yi for i , 3, then k(X) is equivalent to y1y2 + y1y4 + y3y4 + Ay2
2 + y2

3 + By2
4.

Let y2 = z2 + z4 and yi = zi for i , 2, then k(X) is equivalent to z1z2 + z3z4 + Az2
2 + z2

3 + Az2
4 + Bz2

4.

Let z1 = α1 + Aα2 and zi = αi for i , 1, then k(X) is equivalent to α1α2 + α
2
3 + α3α4 + (A + B)α2

4.
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Since TrFq2/F2(A + B) = 0, we have α2
3 + α3α4 + (A + B)α2

4 is reducible by Lemma 2.9. Then k(X) is
equivalent to x1x2 + x3x4. It follows that if t is odd, then g(Y) is equivalent to x1x2 + x3x4 + · · ·+ xn−1xn,
and if t is even , then g(Y) is equivalent to x1x2 + x3x4 + · · · + xn−1xn + x2

n−1 + ax2
n with TrFq2/F2(a) = 1.

By Lemma 2.11, we get the desired result. □

3. Proof of Theorem 1.1

From (1.1), we know that the formula for the number of solutions of f (X) = 0 over Fq2 is

Nq2( f (X) = 0) = q2(s−1) +

d1−1∑
j1=1

· · ·

ds−1∑
js=1

ψ
j1
1 (a1) · · ·ψ js

s (as) J0
q2

(
ψ

j1
1 , . . . , ψ

js
s

)
,

where di = (mi, q2 − 1) and ψi is a multiplicative character of Fq2 of order di. Since mi|q + 1, we have
di = mi. Let H = {( j1, . . . , js) | 1 ≤ ji < mi, 1 ≤ i ≤ s}. It follows that ψ j1

1 · · ·ψ
js
s is nontrivial

for any ( j1, . . . , js) ∈ H as (mi,m j) = 1. By Lemma 2.4, we have J0
q2

(
ψ

j1
1 , . . . , ψ

js
s

)
= 0 and hence

Nq2( f (X) = 0) = q2(s−1).

Let Nq2( f (X) = c) denote the number of solutions of the equation f (X) = c over Fq2 with c ∈ F∗q2 .
Let V = {( j1, . . . , js)|0 ≤ ji < mi, 1 ≤ i ≤ s}. Then

Nq2( f (X) = c) =
∑

γ1+···+γs=c

Nq2

(
a1xm1

1 = γ1

)
· · ·Nq2

(
asxms

s = γs
)

=
∑

γ1+···+γs=c

m1−1∑
j1=0

ψ
j1
1

(
γ1

a1

)
· · ·

ms−1∑
js=0

ψ js
s

(
γs

as

)
.

Since ψi is a multiplicative character of Fq2 of order mi, we have

Nq2( f (X) = c) =
∑

γ1
c +···+

γs
c =1

∑
( j1,..., js)∈V

ψ
j1
1

(
γ1

c

)
ψ

j1
1

(
c
a1

)
· · ·ψ js

s

(
γs

c

)
ψ js

s

(
c
as

)

=
∑

( j1,..., js)∈V

ψ
j1
1

(
c
a1

)
· · ·ψ js

s

(
c
as

) ∑
γ1
c +···+

γs
c =1

ψ
j1
1

(
γ1

c

)
· · ·ψ js

s

(
γs

c

)
=

∑
( j1,..., js)∈V

ψ
j1
1

(
c
a1

)
· · ·ψ js

s

(
c
as

)
Jq2

(
ψ

j1
1 , . . . , ψ

js
s

)
.

By Lemma 2.3,

Nq2( f (X) = c) = q2(s−1) +
∑

( j1,..., js)∈H

ψ
j1
1

(
c
a1

)
· · ·ψ js

s

(
c
as

)
Jq2

(
ψ

j1
1 , . . . , ψ

js
s

)
.

By Lemma 2.5,

Jq2

(
ψ

j1
1 , . . . , ψ

js
s

)
=

Gq2(ψ j1
1 ) · · ·Gq2(ψ js

s )

Gq2(ψ j1
1 · · ·ψ

js
s )

.
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Since mi|q + 1 and 2 ∤ mi, by Lemma 2.6, we have

Gq2(ψ j1
1 ) = · · · = Gq2(ψ js

s ) = Gq2(ψ j1
1 · · ·ψ

js
s ) = q.

Then

Nq2( f (X) = c)

=q2(s−1) + qs−1
m1−1∑
j1=1

ψ
j1
1

(
c
a1

)
· · ·

ms−1∑
js=1

ψ js
s

(
c
as

)

=q2(s−1) + qs−1

m1−1∑
j1=0

ψ
j1
1

(
c
a1

)
− 1

 · · ·
ms−1∑

js=0

ψ js
s

(
c
as

)
− 1

 .
It follows that

Nq2( f (X) = c) = q2(s−1) + qs−1
s∏

i=1

( c
ai

)
mi

mi − 1
 , (3.1)

where (
c
ai

)
mi

=

{
1, if c

ai
is a residue of order mi,

0, otherwise.

For a given h ∈ Fq2 . We discuss the two cases according to whether h is zero or not.
Case 1: h = 0. If f (X) = 0, then g(Y) = 0; if f (X) , 0, then g(Y) , 0. Then

Nq2(l(X,Y) = 0)

=
∑

c1+c2=0

Nq2 ( f (X) = c1) Nq2 (g(Y) = c2)

=q2(s−1)
(
q2(n−1) + (−1)t+1(q2 − 1)qn−2

)
+

∑
c1+c2=0
c1,c2∈F

∗

q2

Nq2 ( f (X) = c1) Nq2 (g(Y) = c2) . (3.2)

By Lemma 2.12, (3.1) and (3.2), we have

Nq2(l(X,Y) = 0)

=q2(s+n−2) + (−1)t+1q2(s−1)+hn − (−1)t+1q2(s−2)+n +
∑

c1∈F
∗

q2

[
q2(s+n−2)

− (−1)t+1q2(s−2)+n

+

s∏
i=1

(c1

ai

)
mi

mi − 1
 (q2n+s−3 − (−1)t+1qn+s−3

)
=q2(s+n−2) + (−1)t+1q2(s−1)+n − (−1)t+1q2(s−2)+n + q2(s+n−1) − (−1)t+1q2(s−1)+n − q2(s+n−2)

+ (−1)t+1q2(s−2)+n +
∑

c1∈F
∗

q2

 s∏
i=1

(c1

ai

)
mi

mi − 1
 (q2n+s−3 − (−1)t+1qn+s−3

)
=q2(s+n−1) +

∑
c1∈F

∗

q2

 s∏
i=1

(c1

ai

)
mi

mi − 1
 (q2n+s−3 − (−1)t+1qn+s−3

) . (3.3)
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Case 2: h ∈ F∗q2 . If f (X) = h, then g(Y) = 0; if f (X) = 0, then g(Y) = h; if f (X) < {0, h}, then
g(Y) < {0, h}. So we have

Nq2(l(X,Y)) = h)

=
∑

c1+c2=h

Nq2 ( f (X) = c1) Nq2 (g (Y) = c2)

=Nq2( f (X) = 0)Nq2(g(Y) = h) + Nq2( f (X) = h)Nq2(g(Y) = 0)

+
∑

c1+c2=h
c1,c2∈F

∗

q2\{h}

Nq2 ( f (X) = c1) Nq2 (g (Y) = c2). (3.4)

By Lemma 2.12, (3.1) and (3.4),

Nq2(l(X,Y) = h)

=2q2(s+n−2) + (−1)t+1 q2s+n−2 − (−1)t+1 2q2s+n−4 +
(
qs+2n−3 + (−1)t+1

(
q2 − 1

)
qs+n−3

) s∏
i=1

( h
ai

)
mi

mi − 1


+
∑

c1∈F
∗

q2\{h}

q2(s+n−2)
− (−1)t+1 q2s+n−4 +

s∏
i=1

(c1

ai

)
mi

mi − 1
 (q2n+s−3 − (−1)t+1 qn+s−3

) .
It follows that

Nq2(l(X,Y) = h)

=2q2(s+n−2) + (−1)t+1 q2s+n−2 − (−1)t+1 2q2s+n−4 +
(
qs+2n−3 + (−1)t+1

(
q2 − 1

)
qs+n−3

) s∏
i=1

( h
ai

)
mi

mi − 1


+
∑

c1∈F
∗

q2\{h}

q2(s+n−2)
− (−1)t+1 q2s+n−4 +

s∏
i=1

(c1

ai

)
mi

mi − 1
 (q2n+s−3 − (−1)t+1qn+s−3)


=q2(s+n−1) +

(
qs+2n−3 + (−1)t+1

(
q2 − 1

)
qs+n−3

) s∏
i=1

( h
ai

)
mi

mi − 1
 + ∑

c1∈F
∗

q2\{h}

 s∏
i=1

(c1

ai

)
mi

mi − 1


· (q2n+s−3 + (−1)tqn+s−3)
]
.

(3.5)

By (3.3) and (3.5), we get the desired result. The proof of Theorem 1.1 is complete. □

4. Corollary and examples

There is a direct corollary of Theorem 1.1 and we omit its proof.

Corollary 4.1. Under the conditions of Theorem 1.1, if a1 = · · · = as = h ∈ F∗q2 , then we have
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Nq2(l(X,Y) = h)

=q2(s+n−1) +
(
qs+2n−3 + (−1)t+1

(
q2 − 1

)
qs+n−3

) s∏
i=1

(mi − 1)

+
∑

γ∈F∗
q2\{h}

 s∏
i=1

((
γ

h

)
mi

mi − 1
) (

q2n+s−3 + (−1)t qn+s−3
),

where (
γ

h

)
mi

=

{
1, if γ

h is a residue of order mi,

0, otherwise.

Finally, we give two examples to conclude the paper.

Example 4.2. Let F210 = ⟨α⟩ = F2[x]/(x10 + x3 + 1) where α is a root of x10 + x3 + 1. Suppose l(X,Y) =
α33x3

1 + x11
2 + y2

3 + α
10y2

4 + y1y2 + y3y4. Clearly, TrF210/F2(α
10) = 1, m1 = 3, m2 = 11, s = 2, n = 4, t = 0,

a2 = 1. By Theorem 1.1, we have

N210(l(X,Y) = 0) = 10245 + (327 + 323) × 20 = 1126587102265344.

Example 4.3. Let F212 = ⟨β⟩ = F2[x]/(x12 + x6 + x4 + x + 1) where β is a root of x12 + x6 + x4 + x + 1.
Suppose l(X,Y) = x5

1+ x13
2 + y2

3+β
10y2

4+ y1y2+ y3y4. Clearly, TrF212/F2(β
10) = 1, m1 = 5, m2 = 13, s = 2,

n = 4, t = 0, a1 = a2 = 1. By Corollary 4.1, we have

N212(l(X,Y) = 1) = 25×12 + (647 − 643 × 4095) × 48 = 1153132559312355328.
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