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Abstract: For an odd prime p and a positive integer «, let g be of multiplicative order T modulo g and
g = p®. Denote by N(h, g, q) the number of a such that 4 1 (a + (g*),) forany 1 < a < 7 and a fixed
integer h > 2 with (h, g) = 1. The main purpose of this paper is to give a sharp asymptotic formula for

T

Nkhgg = > la—(g["

a=1
ht(a+(g%)q)

where k is any nonnegative integer and (a), denotes the smallest positive residue of a modulo g. In
addition, we know that N(h, g,q) = N(0, h, g, q).
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1. Introduction

Let p be an odd prime. For eacha = 1,...,p — 1, there is a unique a € {1,..., p — 1} such that
aa=1 (mod p). Ifae{l,...,p— 1} and a (the inverse of a modulo p) are of opposite parity, then we
call a a Lehmer number. D. H. Lehmer asked for something nontrivial about

Lp)=#{1<a<p-1:2¢ta+a)

(the total number of Lehmer numbers among 1, ..., p — 1) (see Problem F12 of [1]), this is called the
D. H. Lehmer problem. Zhang [2, 3] obtained an asymptotic estimate of L(p):

L(p) = £+ 0(pt 10’ p).
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For an odd integer ¢, Zhang [4] gave the following result

q

’ 2k 1
) @ = L 0w @)

a=1
2|(a+a+1)
where }'?_ denotes the summation over all a such that (a,q) = 1 and 1 < a < ¢, d(q) is the divisor
function. For any nonnegative integer k and any real numbers x,y with 0 < x,y < 1, let

xq

yq
Fury k= 3 3" (h-o*

b=1 c=1
bc=1 (mod gq)
24(b+c)

Zhang also proved
1 1
Fy(x.,0) = 5xy6(q) + O(g*d’(g) In® g

Recently, Niu, Ma, and Wang [5] gave a sharp asymptotic formula for F,(1,y, k) by using estimates of
Kloosterman sums and properties of trigonometric sums.

Let ¢ > 3 be an integer, and d and n > 2 be fixed integers with (n,q) = (d,q) = 1. For0 < 4;,4; < 1,
Lu and Yi [6] obtained

[ig] [A2q]

Z Z (1 - _)/1 L(q) + O(gd*(g) In® g).

b=1 c=1
bc=d (mod gq)
nt(b+c)
Han and Xu et al. [7, 8] studied the high-dimensional D. H. Lehmer problem over incomplete intervals
by using the properties of trigonometric sums and the estimates of n-dimensional Kloosterman sums.
Let A C Z,, be the set of the primitive roots modulo p. For a fixed integer k > 0 and any real number
0 < 0 <1, Zhang [9] considered the distribution of primitive roots by studying

Mp.ko)= ) la-al.

aeA,la—al<op

Cobeli and Zaharescu et al. [10, 11] conducted an in-depth discussion on the distribution of the power
of primitive roots. Shparlinski [12] studied the distribution of powers u” in the residue ring modulo a
large power of a fixed prime for a fixed integer u > 2.

Let g = p® with an odd prime p and a positive integer @, and let g be of multiplicative order
modulo ¢. For a fixed integer & > 2 with (h, g) = 1, we define N(h, g, ¢) as the number of a € Z, such
that 4 1 (a + (g%),), where Z. = {1,...,7}. If h = 2 and g is a primitive root modulo p, then we have

p 5 7 11 13 17 19 23 29 31 37 41 43 47
g 23 2 2 3 2 5 2 3 2 6 3 5
N2,g,p) 2 2 7 6 8 12 8 14 12 18 20 24 18
E.g., for p = 11 and a primitive root 2 modulo 11, (a, (3%)11) = (1,2), (3,8), (4,5), (5,10), (6,9), (8, 3),
and (6, 1) are of opposite parity. For p = 13 and a primitive root 2 modulo 13, (a,(2)13) = (1,2),
(3,8), (4,3), (5,6), (8,9), and (12, 1) are of opposite parity.
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In combination with the D. H. Lehmer problem, we propose to find N(h, g, g), or at least to say
something nontrivial about it, the problem of finding N(4, g, g) being what we call the exponential D.
H. Lehmer problem. The main purpose of this paper is to give an asymptotic formula for

T

an 12k
Nk g @)= D la=@]
a=1
ht(a+(g%)q)

where k is any nonnegative integer and (a), denotes the smallest positive residue of a modulo g. If
k = 0 then we have N(0, h, g,q) = N(h, g, q). We get the following results:

Theorem 1. Let g = p® with an odd prime p and a positive integer a, and let g be of multiplicative
order T modulo ¢g. For any nonnegative integer k and a fixed integer & > 2 with (h,g) = 1, we obtain
the following asymptotic formula:

1 - 2k+2 - 2k+2 q2k+1
N(k,h,g,q) =(1 - E)(l + (5) B (1 B ;) ] Qk+2)2k + 1)

+ 0 (4q**2d(g) In? q).

Taking h = 2 in Theorem 1, we see that a and (g“), are of opposite parity for any a € Z.. Then, we
have the following result:

Corollary 1. Let g = p® with an odd prime p and a positive integer @, and let g be of multiplicative
order T modulo g. For any nonnegative integer k, we have

q2k+1 T 2k+2 T 2k+2 |
Nk,2,2,q9) = 1 _ —l1== O (4 a1 d(a)1n2 a) .
280 %%+M%+D(%J ( J )+(q @)

Taking k = 0 in Theorem 1, we can get the following asymptotic formula for N(k, g, ¢):
Corollary 2. Let g = p® with an odd prime p and a positive integer «, and let g be of multiplicative
order T modulo g. For a fixed integer & > 2 with (h, g) = 1, we obtain

1 |
N(h,g,q) = (1 - E)T + O(qfd(q) In? q).

If g is of multiplicative order %pa) modulo p“, then we see that the range of the exponential function

g*witha € Za}(;zy") is the set of quadratic residues modulo p®. Theorem 1 gives the distribution behaviour
of |a —(8“)pe| With h 1 (a + (")), and helps us to study the distribution of (g%) ..

If g = go is a primitive root modulo p®, then we have that the exponential function gj with a € Zg
maps a complete residue system modulo ¢(p®) to a reduced residue system modulo p?, this exponential
function rearranges the reduced residue system modulo p“. It s also interesting to study the distribution
of (gg)pe-

Corollary 3. Let gy be a primitive root modulo an odd prime p. For any nonnegative integer k, we
have

2k+1
p

2k+2)2k+1)

N(k,2, 8o, p) = +0(4p™ 2 1n? p).
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Theorem 2. Let g = p® with an odd prime p and a positive integer «, and let g be of multiplicative
order T modulo ¢g. For any nonnegative integer k, we have

T " - 2k+2 T 2k+2 (]2k+]
;"a_(g g :(1+(5) _(1_5) )(2k+2)(2k+1)

+ 0 (4q*3d(g) In? q).

We see that the asymptotic formulas of Theorems 1 and 2 and corollaries are nontrivial provided
that 7 > 4%g2d(¢q)In’ q.

2. Some Lemmas

To prove Theorems 1 and 2, we need the following lemmas:
Lemma 1. Let ¢ and / be integers with ¢ > 2 and / > 0. Let r and s be integers with 1 < s < g and
1 < r < h. For any given integer h > 2, we have

1+1 .
q —rq + sh 5+ O(ql) , ifhqg | (-rq+ sh),
Z de (a ) = )
- , 1fhg {1 (—rg + sh).

’sin n(frlq+xh)
q

Proof. See [7].
Lemma 2. Let p be an odd prime and a positive integer «, and let g be of multiplicative order 7
modulo p®. For any integers a and b, we have the following estimate:

- bx ag*
el )

x=1

< (a, p")* pt.

Proof. Letting y; denote the k-th order Dirichlet character modulo p® with k = ¢(p ). we know that
S () k, c1is a k-th residue modulo p%;
c) =
Xk 0, otherwise.
We can write g = g’(‘) (mod p®) for a primitive root gy modulo p®. Thus, we have that K =

{(gx)pa | x € ZT} is the set of k-th residues modulo p®. For a Dirichlet character y modulo p®, we
have

k=1 p®-1 po-1

> xxk«:)e( ) Z)((C)e( ) Z){(g")e( )

ceK

and there exists a Dirichlet character y;, modulo p“ satisfying

Ze(? + Cf) - ;xb@e(

x=1

agx)
p*)
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< (a, p")%p%, we have

=
E

Since | 577" x(e)e (%)

v

1

(tl

ZXka(C)e( )

< (a, p")*pt.

This proves Lemma 2.

Lemma 3. Let ¢ = p® with an odd prime p and a positive integer «, and let g be of multiplicative
order T modulo ¢g. For any nonnegative integers s and j, we have

s+1 j
p’ i+ 1 2
TP o(rptidgn’q).
Z; TG D (Fp"d@n’q)
b=g* (mod q)

Proof. From the orthogonality of trigonometric sums,

i (mr) q, qlm,
el—1| =
~ \q 0, gtm.

It is clear that

m=1 n=1 a=1 b=1 d=1
b=g* (mod q)
1 (< : Sl 1 & ma : —me\
= — 1] cSZd] + — ( e(—)] (Z c’e (—)Zd]]
qt a=1 c=1 d=1 qt m=1 \a=1 T c=1 T d=1
q-1 T a T q
+i2[ e(ng ))[ c“'Zdje(ﬂ)]
qt n=1 \a=1 q c=1 d=1 q
-1 g-1

=R+ R, +R; +R4.

Now, we calculate each term in the above formula one by one. According to Lemma 1, we can get

_ 1 T T \ q ; _1 Ts+1 Rk (]j+1 ;
RI_E Zl Zc Zd- _5(s+1+0(r))(j+1+0(q-))

c=1 d=1

S+1J

q
- 7 Lo q’),
G+ D+ 1) (7d)

and 1

1 « ma u —me\ &

ko= S [ S ()| [S () S ) -0
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Similarly, from Lemma 1 and Lemma 2 we have

< quj%d(q) Ing,

where we used the Jordan inequality

e LSS (S ) S S 2)

m=1 n=1 \a=1
-1 g-1
qu] T q T ma ng“ 1 |
< Z Ze -t 1n 1a TN
qT m=1 n=1 |a=1 T q |SIn Tl |S1n 7'
1 71 -1 1
< g’ TZ: I (g
m 1 TN
qr 4 |sin %] & |sin 7|

< Tspj+§d(q) In® ¢.

Finally, combining the relevant conclusions of R, R, R3, and R4, we immediately get

s+1

Z; bz; TG 1)(j+ 1) +0(r'q"d(g)In* ).
b=g* (mod q)

This proves Lemma 3.
Lemma 4. Let ¢ = p® with an odd prime p and a positive integer a, and let g be of multiplicative
order T modulo ¢g. For any nonnegative integers s, j, and a fixed integer 4 > 2 with (h, q) = 1, we have

s+1 ,j
ZZ = ( )(s+71)(;]+1) 0(r'" d@)In’ q).

=1 b=1
bEg“ (mod g)
ht(a+b)

Proof. It is clear that

a=1 b=1 a=1 b=1 a=1 b=1
b=g® (mod q) b=g® (mod q) b=g? (mod q)
ht(a+b) h|(a+b)
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and
h
kel 1 S, ((a+Db)
IDIRTEED WP I T e
a=1 b=1 =1 a=1 b=1
b=g* (mod gq) b=g* (mod q)
hl(a+b)

=2 + 2.

For1 <l<h-1and1 <m < 7, we know that there are (h, 7) — 1 pairs of m, [ such that it | (-mh+ [7).
By the properties of complete residue systems, Lemma 1, and the proof method of Lemma 3, we have

h-1 © g-1

vl 1
)y <<Ts+161’+2 Z Z (n,q)?
2 hgt - m(—nh+lq)
=1 m=1 a1 | SIN T
ht|(—mh+It)
Wl hel -1 1 k-l
Tiq’*2 B 1 (n,q): ol U 1 1
" hgr IDI | sin S | iy At thTZ | sin 2| | sin Z|
=1 m=1 n=1 = § hq =1 A A

htt(—mh+lt)

<(h, T)quj+%d(q) In® g < T‘Yqu'%d(q) In? g.

From Lemma 3, we also have the upper bound estimate of ;. Thus, we can get Lemma 4.
3. Proofs of the Theorems

In this section, we will complete the proofs of Theorems 1 and 2. First, we can write

T

Nhg = > la—(g]" = ZZ la — b

a=1 a=1 b=1
h(a+(g%)q) b=gs (mod q)
ht(a+b)
2k T q
= 2k 2k—s s1.2k—s
_Z(S)(_l) ZZ a’b
s=0 =1 b=l
b=g* (mod q)
h{(a+b)
1 2k 2% o Ts+lq2k—s " 1 )
= 1 - - —1 S + 0 s _S+§d 1 ,
( h);(s)( : {(S+1)(2k—s+1) (v (¢)In q)}
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we also have

2k

2k _1\2k=s qu_s
;(S)( D Rk-—s+D(s+1)
5L
\s q] Qk—s+1)(s+1)
_ 1 o (2k+2\( 1\’
_(2k+2)(2k+1); s+1)\ ¢

2k+2 s 2k+2
3 —q 2k +2 I N
_(2k+2)(2k+1)7(z( s )( q) : (q) )

s=0

q T 2k+2 T 2k+2
= kT 2k~ 1)7(”(5) _(1_5) )

1 - 2k+2 - 2k+2 q2k+1
N(k.h.g.q) = (1 - ﬁ)(l ’ (5) ) (1 B ?1) ) (2k +2)(2k + 1)

+0 (4% 2d(g)In’ g).

It follows that

This completes the proof of Theorem 1.
Combining Lemma 3 and the proof of Theorem 1, we immediately get Theorem 2.
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