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Abstract: The Ornstein-Uhlenbeck (OU) process was used to simulate random perturbations in the
environment. Considering the influence of telegraph noise and jump noise, a stochastic Gilpin-Ayala
nonautonomous competition model driven by the mean-reverting OU process with finite Markov chain
and Lévy jumps was established, and the asymptotic behaviors of the stochastic Gilpin-Ayala nonau-
tonomous competition model were studied. First, the existence of the global solution of the stochastic
Gilpin-Ayala nonautonomous competition model was proven by the appropriate Lyapunov function.
Second, the moment boundedness of the solution of the stochastic Gilpin-Ayala nonautonomous com-
petition model was discussed. Third, the existence of the stationary distribution of the solution of the
stochastic Gilpin-Ayala nonautonomous competition model was obtained. Finally, the extinction of the
stochastic Gilpin-Ayala nonautonomous competition model was proved. The theoretical results were
verified by numerical simulations.

Keywords: stochastic Gilpin-Ayala nonautonomous competition model; moment boundedness of
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1. Introduction

As a famous model in population dynamics, the classical logistic model proposed by Verhulst [1] in
1838 has attracted the attention and research of many experts and scholars. However, in the classical
logistic model, the exponential growth for species is linear, and the results obtained by this linear
hypothesis are quite different from the survival of species in real life. Therefore, in order to describe
the real problems more accurately, Ayala and Gilpin [2] proposed the following model in 1973:

dx (t) = x (t)
(
r − axθ (t)

)
dt,

where x(t) is the population size at t moments, r is the intrinsic growth rate, a > 0 is the intraspecific
competition coefficient,

a
r

is the environmental carrying capacity, and θ is the positive parameter of the
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modified classical logistic model. In nature, any biological population will interact with other popu-
lations. According to the different interactions, the population system can be divided into three types,
which include competition, predator-prey, and mutualism [3]. Therefore, we consider the following
two-species Gilpin-Ayala competition modeldx (t) = x (t)

(
r1 − a11xθ1 (t) − a12y (t)

)
dt

dy (t) = y (t)
(
r2 − a21x (t) − a22yθ2 (t)

)
dt,

(1.1)

where aii > 0 (i = 1, 2) denotes intraspecific competition coefficients, ai j > 0 (i, j = 1, 2, i , j) denotes
interspecific competition coefficients, and θi (i = 1, 2) denotes the positive parameters of the modified
classical logistic model.

On the other hand, the development of the population will be disturbed by various uncertain envi-
ronmental factors, which will change its growth state in a short time. Therefore, for the study of the
population, we also need to consider the influence of random factors. Random disturbances can be
roughly divided into three categories: white noise, telegraph noise, and jump noise. Due to these dif-
ferent degrees of interference, the birth rate, death rate, competition coefficient, and other parameters
of the population system also show a certain degree of random fluctuations [4] .

For the characterization of white noise, the accepted method [5–7] is to assume that the intrinsic
growth rate r1, r2 in model (1.1) is linearly disturbed by Gaussian white noise, that is, r1(t) = r1 +

σ1
dB1(t)

dt
, r2(t) = r2 + σ2

dB2(t)
dt

. However, in a randomly changing environment, it is unreasonable to
use a linear function of Gaussian white noise to simulate parameter perturbations [8]. For any time
interval [0, t], let ⟨ri(t)⟩ be the time average of ri(t) (i = 1,2). There is

⟨ri(t)⟩ :=
1
t

∫ t

0
ri(s)ds = ri +

α

t
B(t) ∼ N(ri,

α2

t
), i = 1, 2,

where N(·, ·) is a one-dimensional normal distribution. Obviously, we get that the average growth rate

⟨ri(t)⟩ , i = 1, 2 has a variance
α2

t
on [0, t], which tends to infinity at t → 0+. This means that random

fluctuations of the growth rate ri(t), i = 1, 2 will become very large in a small time interval.
Therefore, we consider another method of simulating random perturbations, that is, the intrinsic

growth rate r1, r2 of model (1.1) satisfies the mean-reverting Ornstein-Uhlenbeck(OU) process [9–11]
in the form of

dr1(t) = β1 [r̄1 − r1(t)] dt + σ1dB1(t), dr2(t) = β2 [r̄2 − r2(t)] dt + σ2dB2(t), (1.2)

where β1, β2 is the reversion speed, σ1, σ2 is the intensity of environmental fluctuation, r̄1, r̄2 is the
mean reversion level, and β1, β2, σ1, σ2 > 0.

Integrating from 0 to t on the both sides of the OU process (1.2), we get

r1(t) = r̄1 + [r1(0) − r̄1] e−β1t + σ1

∫ t

0
e−β1(t−s)dB1(s),

r2(t) = r̄2 + [r2(0) − r̄2] e−β2t + σ2

∫ t

0
e−β2(t−s)dB2(s),

(1.3)
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where r1(0), r2(0) are the initial values of the OU process r1(t), r2(t). It is easy to have that the expecta-
tion and variance of r1(t), r2(t) are

E [r1(t)] = r̄1 + [r1(0) − r̄1] e−β1t,Var [r1(t)] =
σ2

1

2β1

(
1 − e−2β1t

)
,

E [r2(t)] = r̄2 + [r2(0) − r̄2] e−β2t,Var [r2(t)] =
σ2

2

2β2

(
1 − e−2β2t

)
.

then r1(t) follows the Gaussian distribution N
(
r̄1 + [r1(0) − r̄1] e−β1t,

σ2
1

2β1

(
1 − e−2β1t

))
. According to

the property of Brownian motion, we obtain that σ1

∫ t

0
e−β1(t−s)dB1(s) follows the Gaussian dis-

tribution N
(
0,
σ2

1

2β1

(
1 − e−2β1t

))
. Similarly, r2(t) ∼ N

(
r̄2 + [r2(0) − r̄2] e−β2t,

σ2
2

2β2

(
1 − e−2β2t

))
and

σ2

∫ t

0
e−β2(t−s)dB2(s) ∼ N

(
0,
σ2

2

2β2

(
1 − e−2β2t

))
.

However, in the real world, in addition to small disturbances in the environment, the population is
also disturbed by telegraph noises and jump noises. The telegraph noise can be explained as a switching
between two or more states of the environment [12–16], and the regime switching can be modeled by
a right-continuous Markov chain (ξ(t))t≥0 taking values in a finite state space S = {1, 2, · · · , p} [17,18].
The jump noise can change the survival state of the population in an instant, for example, earthquakes,
hurricanes, epidemics and so on [19, 20]. The introduction of levy jumps in the basic model is a
reasonable way to describe these phenomena [19, 20]. At the same time, we also consider that some
biological parameters change with time. Therefore, it is not reasonable to consider the autonomous
system only [3], so we consider the following stochastic Gilpin-Ayala nonautonomous competition
model driven by the mean-reverting OU process with finite Markov chain and Lévy jumps:

dx (t) = x (t−)
[(

r1(t) − a11(t)xθ1 (t−) − a12(t)y (t−)
)

dt +
∫

Z
γ1 (ξ(t), z) N(dt, dz)

]
dy (t) = y (t−)

[(
r2(t) − a21(t)x (t−) − a22(t)yθ2 (t−)

)
dt +

∫
Z
γ2 (ξ(t), z) N(dt, dz)

]
dr1 (t) = β1 [r̄1 − r1(t)] dt + σ1dB1(t)
dr2 (t) = β2 [r̄2 − r2(t)] dt + σ2dB2(t),

(1.4)

where x (t−) , y (t−) are the left limit of x (t) , y (t), Bi(t)(i = 1, 2) are independent standard Brownian
motions defined on the probability space

(
Ω,F , {F }t≥0 ,P

)
, and ai j(t)(i, j = 1, 2) are nonnegative con-

tinuous bounded functions defined on [0,∞). ξ(t) is a continuous time Markov chain taking values in
a finite state space S = {1, 2, · · · , p}. N is a Poisson counting measure with characteristic measure v
with v (Z) < ∞, and Z is a measurable subset of (0,∞). Ñ represents a compensating random measure
of Poisson random measure N, defined as Ñ(dt, dz) = N(dt, dz) − v (dz) dt. In order to adapt to the cor-
responding biological significance, we assume that for all k ∈ S , z ∈ Z, the jump diffusion coefficient
satisfies γ1(k, z) > −1, γ2(k, z) > −1. The elements of the generator matrix Q =

(
qi j

)
p×p

of the Markov
chain ξ(t) satisfy

P (ξ(t + △t) = j | ξ(t) = i) =
{

qi j △ t + o(△t), j , i
1 + qi j △ t + o(△t), j = i,

where △t > 0. When i , j, qi j > 0 denotes the transition rate from state i to state j, and
p∑

j=1
qi j = 0.
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Suppose that the Markov chain ξ(t) is irreducible, which means that the Markov chain ξ(t) has a unique

stationary distribution π =
(
π1, π2, · · · , πp

)
∈ R1×p and satisfies πQ = 0, where

p∑
i=1
πi = 1, πi > 0, i ∈ S .

This paper mainly studies the dynamic behaviors of a stochastic Gilpin-Ayala nonautonomous com-
petition model (1.4) driven by the mean-reverting OU process with finite Markov chain and Lévy
jumps. In summary, the Gilpin Ayala model studied in this article assumes that the exponential growth
of species in ecosystems is nonlinear first, which is a more realistic population model compared to
the classical logistic model. Second, most of the current methods of characterizing white noise as-
sume that the population parameters are linearly disturbed by Gaussian white noise, and the research
on the properties of such random models is also very comprehensive [16–24]. The mean-reverting
OU process used in this paper is a more reasonable improvement of the above method of white noise
characterization, but there are few studies on the behavior of this kind of stochastic model [25–28].
In addition, we also consider the effects of telegraph noise and Lévy noises on the survival of the
population, combined with the characteristics of some biological parameters changing with time, so
we construct model (1.4) in this paper. As far as we know, no experts and scholars have studied the
properties of this kind of model, so it is very meaningful to study the dynamic behaviors of this model.

For convenience, the following marks are taken in this article.
If f (t) is a bounded continuous function on [0,∞), let

f u = sup
t∈[0,∞)

f (t), f l = inf
t∈[0,∞)

f (t).

For sequence ci j (1 ≤ i, j ≤ n), let

č = max
1≤i, j≤n

ci j, ĉ = min
1≤i, j≤n

ci j.

2. Existence and uniqueness of global solution

Assumption 2.1. For all state i ∈ S , q > 0, and k ∈ {1, 2, ..., n}, there exists a constant c > 0 and the
following inequalities hold

(1)
∫

Z

[
|ln(1 + γk(i, z))| ∨ (ln(1 + γk(i, z)))2

]
v(dz) < c,

(2)
∫

Z
|γk(i, z)|q v(dz) < c,

(3)
∫

Z
|(1 + γk(i, z))q − 1| v(dz) < c.

Theorem 2.1. If Assumption 2.1 holds, for any initial value (x(0), y(0), r1(0), r2(0)) ∈ R2
+ × R

2 and
ξ(0) ∈ S , there exists a unique solution (x(t), y(t), r1(t), r2(t)) of model (1.4) on t ≥ 0, and it will remain
in R2

+ × R
2 with probability one.

Proof Noting that all the coefficients of model (1.4) satisfy the local Lipschitz condition, for any
initial value (x(0), y(0), r1(0), r2(0)) ∈ R2

+ × R
2 and ξ(0) ∈ S , the system has a unique local solution

(x(t), y(t), r1(t), r2(t)) on t ∈ [0, τe), where τe is the explosion time of the solution [30]. Therefore, to
prove the solution (x(t), y(t), r1(t), r2(t)) is global, it is needed to prove that τe = ∞ with probability one
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only. Hence, we take a sufficiently large p0 > 0 such that each component of
(
x(0), y(0), er1(0), er2(0)

)
falls within

[
1
p0
, p0

]
. For each integer p0 greater than p, we define the stopping time

τp = inf
{

t ∈ (0, τe) : x(t) <
(

1
p
, p

)
or y(t) <

(
1
p
, p

)
or er1(t) <

(
1
p
, p

)
or er2(t) <

(
1
p
, p

)}
, (2.1)

Obviously, τp is monotonically increasing as p increases. For convenience, let τ∞ = lim
p→∞
τp, then

τ∞ ≤ τe holds with probability one. Therefore, if τ∞ = ∞, then τe = ∞ holds. In the following, we
use the proof by contradiction to prove that τ∞ = ∞ is true. Suppose τ∞ = ∞ does not hold with
probability one, then there exist constants T > 0 and ε ∈ (0, 1) such that P(τ∞ ≤ T ) > ε, so there exists
p1 ≥ p0 such that

P(τp ≤ T ) ≥ ε, for all p ≥ p1. (2.2)

Define a C2-function V on R2
+ × R

2

V (x(t), y(t), r1(t), r2(t)) = x(t) − 1 − ln x(t) + y(t) − 1 − ln y(t) +
r4

1(t)
4
+

r4
2(t)
4
.

When x, y > 0, there are inequalities x − 1 ≥ ln x, y − 1 ≥ ln y, so V is a nonnegative function.
Using Itô formula, we can get

dV = LVdt + σ1r3
1dB1(t) + σ2r3

2dB2(t) +
∫

Z

[
xγ1(ξ, z) − ln(1 + γ1(ξ, z))

]
Ñ(dt, dz)

+

∫
Z

[
yγ2(ξ, z) − ln(1 + γ2(ξ, z))

]
Ñ(dt, dz),

(2.3)

where

LV = (x − 1)(r1 − a11(t)xθ1 − a12(t)y) + (y − 1)(r2 − a21(t)x − a22(t)yθ2) + β1r3
1(r̄1 − r1)

+
3
2
σ2

1r2
1 + β2r3

2(r̄2 − r2) +
3
2
σ2

2r2
2 +

∫
Z

[
xγ1(ξ, z) − ln(1 + γ1(ξ, z))

]
v(dz)

+

∫
Z

[
yγ2(ξ, z) − ln(1 + γ2(ξ, z))

]
v(dz).

(2.4)

Thus, there exists a constant N > 0 such that

LV ≤ N. (2.5)

Substituting Eq (2.5) into Eq (2.3), we have

dV ≤ Ndt + σ1r3
1dB1(t) + σ2r3

2dB2(t) +
∫

Z

[
xγ1(ξ, z) − ln(1 + γ1(ξ, z))

]
Ñ(dt, dz)

+

∫
Z

[
yγ2(ξ, z) − ln(1 + γ2(ξ, z))

]
Ñ(dt, dz).

(2.6)

Taking the integral from 0 to τp ∧ T on both sides of Eq (2.6) and taking the expectation, we obtain

EV
(
x(τp ∧ T ), y(τp ∧ T ), r1(τp ∧ T ), r2(τp ∧ T )

)
≤ V (x(0), y(0), r1(0), r2(0)) + NE

(
τp ∧ T

)
≤ V (x(0), y(0), r1(0), r2(0)) + NT.

(2.7)
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When p ≥ p1, let Ωp =
{
τp ≤ T

}
. From Eq (2.2), we can obtain P

(
Ωp

)
≥ ε. From the definition

of τp for each ω ∈ Ωp, such that one of x
(
τp, ω

)
, y

(
τp, ω

)
, er1(τp,ω), er2(τp,ω) is equal to p or

1
p

so that

V
(
x
(
τp, ω

)
, y

(
τp, ω

)
, r1

(
τp, ω

)
, r2

(
τp, ω

))
is not less than (p − 1 − ln p) ,

(
1
p
− 1 + ln p

)
, or

1
4

(ln p)4,

then

V
(
x
(
τp, ω

)
, y

(
τp, ω

)
, r1

(
τp, ω

)
, r2

(
τp, ω

))
≥ min

{
p − 1 − ln p,

1
p
− 1 + ln p,

1
4

(ln p)4
}
,

According to Eq (2.7), we can get

V (x(0), y(0), r1(0), r2(0)) + NT ≥ E
[
IΩp(ω)V

(
x
(
τp, ω

)
, y

(
τp, ω

)
, r1

(
τp, ω

)
, r2

(
τp, ω

))]
≥ εmin

{
p − 1 − ln p,

1
p
− 1 + ln p,

1
4

(ln p)4
}
,

where IΩp(ω) represents the indicator function ofΩp. Let p→ ∞, then∞ > V (x(0), y(0), r1(0), r2(0))+
NT = ∞; we have a contradiction. Therefore, τ∞ = ∞ holds with probability one. Theorem 2.1 is
proved.

3. Moment boundedness of solution

Theorem 3.1. If Assumption 2.1 holds, for any initial value (x(0), y(0), r1(0), r2(0)) ∈ R2
+ × R

2, and
ξ(0) ∈ S , the solution (x(t), y(t), r1(t), r2(t)) of model (1.4) has the property that

E [x(t)]q ≤ κ(q), E
[
y(t)

]q
≤ κ(q),

for any q > 0, where κ(q) is a continuous function with respect to q. That is to say, the q th moment of
the solution (x(t), y(t), r1(t), r2(t)) is bounded.
Proof For any q ≥ 2, define a nonnegative C2-function V : R2

+ × R
2 → R+ ,

V (x(t), y(t), r1(t), r2(t)) =
xq(t)

q
+

yq(t)
q
+

r2q
1 (t)
2q
+

r2q
2 (t)
2q
.

Applying Itô formula to function V , we obtain

dV = LVdt + σ1r2q−1
1 dB1(t) + σ2r2q−1

2 dB2(t) +
∫

Z

(
(x + xγ1(ξ, z))q

q
−

xq

q

)
Ñ(dt, dz)

+

∫
Z

(
(y + yγ2(ξ, z))q

q
−

yq

q

)
Ñ(dt, dz),

where
LV = xq(r1 − a11(t)xθ1 − a12(t)y) + yq(r2 − a21(t)x − a22(t)yθ2)

+ β1r2q−1
1 (r̄1 − r1) +

2q − 1
2
σ2

1r2q−2
1 + β2r2q−1

2 (r̄2 − r2) +
2q − 1

2
σ2

2r2q−2
2

+

∫
Z

(
(x + xγ1(ξ, z))q

q
−

xq

q

)
v(dz) +

∫
Z

(
(y + yγ2(ξ, z))q

q
−

yq

q

)
v(dz).
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Therefore,

LV ≤ −al
11xθ1+q − al

22yθ2+q + |r1| xq + |r2| yq + β1r̄1r2q−1
1 + β2r̄2r2q−1

2 − β1r2q
1 − β2r2q

2 +
2q − 1

2
σ2

1r2q−2
1

+
2q − 1

2
σ2

2r2q−2
2 +

xq

q

∫
Z
|(1 + γ1)q − 1| v(dz) +

yq

q

∫
Z
|(1 + γ2)q − 1| v(dz)

≤ −âlxθ1+q − âlyθ2+q + |r1| xq + |r2| yq + β1r̄1r2q−1
1 + β2r̄2r2q−1

2 − β1r2q
1 − β2r2q

2

+
2q − 1

2
σ2

1r2q−2
1 +

2q − 1
2
σ2

2r2q−2
2 +

cxq

q
+

cyq

q
.

(3.1)
Let η = q min {β1, β2}. Using Itô formula again, we have

d
(
eηtV

)
= ηeηtVdt + eηtdV

= ηeηtVdt + eηt
(
LVdt + σ1r2q−1

1 dB1(t) + σ2r2q−1
2 dB2(t) +

∫
Z

(
(x + xγ1(ξ, z))q

q
−

xq

q

)
Ñ(dt, dz)

+

∫
Z

(
(y + yγ2(ξ, z))q

q
−

yq

q

)
Ñ(dt, dz)

)
= eηt (ηV + LV) dt + eηt

(
σ1r2q−1

1 dB1(t) + σ2r2q−1
2 dB2(t)

∫
Z

(
(x + xγ1(ξ, z))q

q
−

xq

q

)
Ñ(dt, dz)

+

∫
Z

(
(y + yγ2(ξ, z))q

q
−

yq

q

)
Ñ(dt, dz)

)
.

(3.2)
Integrating from 0 to t on both sides of Eq (3.2) and taking the expected value, we obtain

E
(
eηtV

)
= V(x(0), y(0), r1(0), r2(0)) + E

∫ t

0
eηs (ηV + LV) ds, (3.3)

Combining with Eq (3.1), we have

ηV + LV ≤
ηxq

q
+
ηyq

q
+
ηr2q

1

2q
+
ηr2q

2

2q
− âlxθ1+q − âlyθ2+q + |r1| xq + |r2| yq + β1r̄1r2q−1

1 + β2r̄2r2q−1
2

− β1r2q
1 − β2r2q

2 +
2q − 1

2
σ2

1r2q−2
1 +

2q − 1
2
σ2

2r2q−2
2 +

cxq

q
+

cyq

q

≤ sup
(x,y,r1,r2)∈R2

+×R
2

ηxq

q
+
ηyq

q
+
ηr2q

1

2q
+
ηr2q

2

2q
− âlxθ1+q − âlyθ2+q + |r1| xq + |r2| yq + β1r̄1r2q−1

1

+β2r̄2r2q−1
2 − β1r2q

1 − β2r2q
2 +

2q − 1
2
σ2

1r2q−2
1 +

2q − 1
2
σ2

2r2q−2
2 +

cxq

q
+

cyq

q

}
:= κ1(q).

(3.4)
Substituting Eq (3.4) into Eq (3.3), we get

E
(
eηtV

)
≤ V(x(0), y(0), r1(0), r2(0)) + E

∫ t

0
eηsκ1(q)ds.

then
eηtEV ≤ V(x(0), y(0), r1(0), r2(0)) +

eηt − 1
η
κ1(q).
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Further,
lim sup

t→∞
E [xq(t)] ≤ q lim sup

t→∞
E (V(x(t), y(t), r1(t), r2(t)))

≤ q lim sup
t→∞

(
V(x(0), y(0), r1(0), r2(0))

eηt
+

eηt − 1
ηeηt

κ1(q)
)

=
qκ1(q)
η

:= κ2(q).

Similarly , lim sup
t→∞

E
[
yq(t)

]
≤ κ2(q) holds, which then means E [xq(t)] ≤ κ2(q),E

[
yq(t)

]
≤ κ2(q),∀t ≥

0, q ≥ 2. According to Hölder’s inequality, for any q̃ ∈ (0, 2), we obtain

E
[
xq̃(t)

]
≤

(
E

[
x2(t)

]) q̃
2
≤ (κ2(2))

q̃
2 , E

[
yq̃(t)

]
≤

(
E

[
y2(t)

]) q̃
2
≤ (κ2(2))

q̃
2 .

Let κ(q) = max
{
κ2(q), (κ2(2))

q̃
2

}
, then

E [xq(t)] ≤ κ(q),E
[
yq(t)

]
≤ κ(q),∀q > 0.

Theorem 3.1 is proved.
Remark 3.1. Similar to the proof of Theorem 3.1, we can also get E [ri(t)]2q ≤ Q(q), i = 1, 2.

4. Existence of a stationary distribution

Before giving the theorem of the existence of stationary distributions, we give several Lemmas as
follows.
Assumption 4.1. al

11 − au
21 > 0, al

22 − au
12 > 0, β1 > 1, β2 > 1.

Lemma 4.1. Let Xa, j(t) = (x(t), y(t), r1(t), r2(t)) and Xã, j(t) = (x̃(t), ỹ(t), r̃1(t), r̃2(t)) be the solu-
tions of model (1.4) with initial values of (a, j) = ((x(0), y(0), r1(0), r2(0)), ξ(0)) ∈ D × S and
(ã, j) = ((x̃(0), ỹ(0), r̃1(0), r̃2(0)), ξ(0)) ∈ D × S, where D is any compact subset of R2

+ × R
2. If As-

sumptions 2.1 and Assumption 4.1 hold, then the following equation holds

lim
t→+∞

(E |x(t) − x̃(t)| + E |y(t) − ỹ(t)| + E |r1(t) − r̃1(t)| + E |r2(t) − r̃2(t)|) = 0, a.s..

Proof Define a function W

W = |ln x − ln x̃| + |ln y − ln ỹ| + |r1 − r̃1| + |r2 − r̃2| .

then we obtain

d+W = sgn(x − x̃)d(ln x − ln x̃) + sgn(y − ỹ)d(ln y − ln ỹ) + sgn(r1 − r̃1)d(r1 − r̃1) + sgn(r2 − r̃2)d(r2 − r̃2)

= sgn(x − x̃)
[
(r1 − r̃1) − a11(t)(xθ1 − x̃θ1) − a12(t)(y − ỹ)

]
dt + sgn(y − ỹ) [(r2 − r̃2) − a21(t)(x − x̃)

−a22(t)(yθ2 − ỹθ2)
]

dt + sgn(r1 − r̃1)
[
−β1(r1 − r̃1)

]
dt + sgn(r2 − r̃2)

[
−β2(r2 − r̃2)

]
dt

≤ −al
11

∣∣∣xθ1 − x̃θ1
∣∣∣ dt − al

22

∣∣∣yθ2 − ỹθ2
∣∣∣ dt + au

21 |x − x̃| dt + au
12 |y − ỹ| dt − (β1 − 1) |r1 − r̃1| dt

− (β2 − 1) |r2 − r̃2| dt.
(4.1)
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Taking the integral on both sides of Eq (4.1), and taking the expectation, we obtain

EW ≤ W(0) − al
11

∫ t

0
E

∣∣∣xθ1 − x̃θ1
∣∣∣ ds − al

22

∫ t

0
E

∣∣∣yθ2 − ỹθ2
∣∣∣ ds + au

21

∫ t

0
E |x − x̃| ds + au

12

∫ t

0
E |y − ỹ| ds

− (β1 − 1)
∫ t

0
E |r1 − r̃1| ds − (β2 − 1)

∫ t

0
E |r2 − r̃2| ds.

Noting EW(t) ≥ 0, we have

al
11

∫ t

0
E

∣∣∣xθ1 − x̃θ1
∣∣∣ ds + al

22

∫ t

0
E

∣∣∣yθ2 − ỹθ2
∣∣∣ ds − au

21

∫ t

0
E |x − x̃| ds − au

12

∫ t

0
E |y − ỹ| ds

+ (β1 − 1)
∫ t

0
E |r1 − r̃1| ds + (β2 − 1)

∫ t

0
E |r2 − r̃2| ds

≤ W(0).

(4.2)

Let θ1 = θ2 = 1, then

(al
11 − au

21)
∫ t

0
E |x − x̃| ds + (al

22 − au
12)

∫ t

0
E |y − ỹ| ds + (β1 − 1)

∫ t

0
E |r1 − r̃1| ds

+ (β2 − 1)
∫ t

0
E |r2 − r̃2| ds

≤ W(0).

Thus, according Assumption 4.1, we have

E |x − x̃| ∈ L1[0,+∞),E |y − ỹ| ∈ L1[0,+∞).

Therefore, according (4.2), we get

al
11

∫ t

0
E

∣∣∣xθ1 − x̃θ1
∣∣∣ ds + al

22

∫ t

0
E

∣∣∣yθ2 − ỹθ2
∣∣∣ ds + (β1 − 1)

∫ t

0
E |r1 − r̃1| ds + (β2 − 1)

∫ t

0
E |r2 − r̃2| ds

≤ W(0) + au
21

∫ t

0
E |x − x̃| ds + au

12

∫ t

0
E |y − ỹ| ds

≤ +∞.

Thus, we have

E
∣∣∣xθ1 − x̃θ1

∣∣∣ ∈ L1[0,+∞),E
∣∣∣yθ2 − ỹθ2

∣∣∣ ∈ L1[0,+∞),E |r − r̃1| ∈ L1[0,+∞),E |r − r̃2| ∈ L1[0,+∞).

According to model (1.4), there is

E(x(t)) = x(0) +
∫ t

0

[
E(r1(s)x(s)) − E(a11(s)xθ1+1(s)) − E(a12(s)x(s)y(s))

]
ds + E

[∫ t

0

∫
Z
γ1(ξ(s), z)x(s)v(dz)ds

]
,

E(y(t)) = y(0) +
∫ t

0

[
E(r2(s)y(s)) − E(a21(s)x(s)y(s)) − E(a22(s)yθ2+1(s))

]
ds + E

[∫ t

0

∫
Z
γ2(ξ(s), z)y(s)v(dz)ds

]
,

E(r1(t)) = r1(0) +
∫ t

0

[
E(β1r̄1) − E(β1r1(s))

]
ds,

E(r2(t)) = r2(0) +
∫ t

0

[
E(β2r̄2) − E(β2r2(s))

]
ds.
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Therefore, E(x(t)),E(y(t)),E(r1(t)), and E(r2(t)) are continuously differentiable. According to Theorem
3.1 and remark 3.1, we have
dE(x(t))

dt
≤ E [x(t) |r1(t)|] + cE(x(t)) ≤

1
2
E

[
x2(t) + |r1(t)|2

]
+ cE(x(t)) ≤

1
2

(Q(1) + κ(2)) + cκ(1),

dE(y(t))
dt

≤ E
[
y(t) |r2(t)|

]
+ cE(y(t)) ≤

1
2
E

[
y2(t) + |r2(t)|2

]
+ cE(y(t)) ≤

1
2

(Q(1) + κ(2)) + cκ(1),

dE(r1(t))
dt

≤ β1 |r̄1| + β1E |r1(t)| ≤ β1 |r̄1| + β1Q(1)
1
2 ,

dE(r2(t))
dt

≤ β2 |r̄2| + β2E |r2(t)| ≤ β2 |r̄2| + β2Q(1)
1
2 .

So, E(x(t)),E(y(t)),E(r1(t)), and E(r2(t)) are uniformly continuous. According to the Barbalat
lemma, it can be concluded that lim

t→+∞
E |x − x̃| = 0 a.s., lim

t→+∞
E |y − ỹ| = 0 a.s., lim

t→+∞
E |r1 − r̃1| =

0 a.s., lim
t→+∞
E |r2 − r̃2| = 0 a.s.; therefore, Lemma 4.1 is proven.

Lemma 4.2. For any q > 0 and any D on R2
+ × R

2 , there is

sup
(a, j)∈D×S

E

[
sup
0≤s≤t

∣∣∣Xa, j(s)
∣∣∣q] < +∞,∀t ≥ 0.

Proof From model (1.4), it can be inferred that

x(t) = x(0) +
∫ t

0

[(
r1(s)x(s) − a11(s)xθ1+1(s) − a12(s)x(s)y(s)

)]
ds +

∫ t

0

∫
Z
γ1 (ξ(s), z) x(s)N(ds, dz),

y(t) = y(0) +
∫ t

0

[(
r2(s)y(s) − a21(s)x(s)y(s) − a22(s)yθ2+1(s)

)]
ds +

∫ t

0

∫
Z
γ2 (ξ(s), z) y(s)N(ds, dz).

By the Holder inequality and the moment inequality, there is k = 1, 2, · · · , and we have

E

[
sup

(k−1)λ≤s≤kλ
|x(s)|q

]
≤ 3q−1E

[
sup

(k−1)λ≤s≤kλ
|x((k − 1)λ)|q

]
+ 3q−1E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣
∫ kλ

(k−1)λ

∫
Z
γ1 (ξ(s), z) x(s)N(ds, dz)

∣∣∣∣∣∣q
]

+ 3q−1E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣
∫ kλ

(k−1)λ

[
r1(s)x(s) − a11(s)xθ1+1(s) − a12(s)x(s)y(s)

]
ds

∣∣∣∣∣∣q
]
.

(4.3)

According to Theorem 3.1 and remark 3.1, we obtain

E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣
∫ kλ

(k−1)λ

[
r1(s)x(s) − a11(s)xθ1+1(s) − a12(s)x(s)y(s)

]
ds

∣∣∣∣∣∣q
]

≤ λqE

[
sup

(k−1)λ≤s≤kλ
|x(s)|q

∣∣∣r1(s) − a11(s)x(s)θ1 − a12(s)y(s)
∣∣∣q]

≤
1
2
λqE

[
sup

(k−1)λ≤s≤kλ
|x(s)|2q

]
+

1
2
λqE

[
sup

(k−1)λ≤s≤kλ

∣∣∣r1(s) − a11(s)x(s)θ1 − a12(s)y(s)
∣∣∣2q

]
≤

1
2
λqE

[
sup

(k−1)λ≤s≤kλ
|x(s)|2q

]
+

1
2
λq3(2q−1)

[
E

[
sup

(k−1)λ≤s≤kλ
|r1(s)|2q

]
+ (au

11)2qE

[
sup

(k−1)λ≤s≤kλ
|x(s)|2qθ1

]
+(au

12)2qE

[
sup

(k−1)λ≤s≤kλ
|y(s)|2q

]]
:= M1(q)λq.

(4.4)
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By Assumption 2.1 and the Kunita inequality, we get

E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣
∫ kλ

(k−1)λ

∫
Z
γ1 (ξ(s), z) x(s)N(ds, dz)

∣∣∣∣∣∣q
]

≤ 2q−1Dq

E
[∫ kλ

(k−1)λ

∫
Z
|γ1 (ξ(s), z) x(s)|2 v(dz)ds

] q
2

+ E

∫ kλ

(k−1)λ

∫
Z
|γ1 (ξ(s), z) x(s)|q v(dz)ds


+ 2q−1E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣
∫ kλ

(k−1)λ

∫
Z
γ1 (ξ(s), z) x(s)v(dz)ds

∣∣∣∣∣∣q
]

≤ 2q−1Dqλ
q
2E

(
c |x(s)|2

) q
2
+ 2q−1DqλE (c |x(s)|q) + 2q−1E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣c
∫ kλ

(k−1)λ
x(s)ds

∣∣∣∣∣∣q
]

≤ 2q−1Dqλ
q
2 κ(q)c

q
2 + 2q−1Dqλκ(q)c + 2q−1cqλqκ(q).

(4.5)

According to model (1.4), it can also be concluded that

r1(t) = r1(0) +
∫ t

0
β1 [r̄1 − r1(s)] ds +

∫ t

0
σ1dB1(s),

r2(t) = r2(0) +
∫ t

0
β2 [r̄2 − r2(s)] ds +

∫ t

0
σ2dB2(s).

then

E

[
sup

(k−1)λ≤s≤kλ
|r1(s)|q

]
≤ 3q−1E

[
sup

(k−1)λ≤s≤kλ
|r1((k − 1)λ)|q

]
+ 3q−1E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣
∫ kλ

(k−1)λ
β1 [r̄1 − r1(s)] ds

∣∣∣∣∣∣q
]

+ 3q−1E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣
∫ kλ

(k−1)λ
σ1dB1(s)

∣∣∣∣∣∣q
]
.

(4.6)
According to remark 3.1, we obtain

E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣
∫ kλ

(k−1)λ
β1 [r̄1 − r1(s)] ds

∣∣∣∣∣∣q
]
≤ λqE

[
sup

(k−1)λ≤s≤kλ
|β1r̄1 − β1r1(s)|q

]
≤ λqE

[
sup

(k−1)λ≤s≤kλ

(
2q−1 |β1r̄1|

q + 2q−1 |β1r1(s)|q
)]

≤ λqE
[
2q−1β

q
1 |r̄1|

q
]
+ λqE

[
2q−1β

q
1 sup

(k−1)λ≤s≤kλ
|r1(s)|q

]
≤ λq

(
2q−1β

q
1 |r̄1|

q + 2q−1β
q
1Q(

q
2

)
)

:= M2(q)λq.

(4.7)
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According to the Burkholder-Davis-Gundy inequality, we have

E

[
sup

(k−1)λ≤s≤kλ

∣∣∣∣∣∣
∫ kλ

(k−1)λ
σ1dB1(s)

∣∣∣∣∣∣q
]
≤ CqE

[∫ kλ

(k−1)λ
|σ1|

2 ds
] q

2

≤ CqE
(
|σ1|

2 λ
) q

2

= Cq |σ1|
q λ

q
2

:= M3(q)λ
q
2 .

(4.8)

According to Eqs (4.3)–(4.5), we have

sup
(a, j)∈D×S

E

[
sup
0≤s≤t

∣∣∣xa, j(s)
∣∣∣q] < +∞,∀s ∈ [0, t],∀t ≥ 0.

According to Eqs (4.6)–(4.8), we have

sup
(a, j)∈D×S

E

[
sup
0≤s≤t

∣∣∣ra, j
1 (s)

∣∣∣q] < +∞,∀s ∈ [0, t],∀t ≥ 0.

Similarly, it can be inferred that

sup
(a, j)∈D×S

E

[
sup
0≤s≤t

∣∣∣ya, j(s)
∣∣∣q] < +∞,∀s ∈ [0, t],∀t ≥ 0,

sup
(a, j)∈D×S

E

[
sup
0≤s≤t

∣∣∣ra, j
2 (s)

∣∣∣q] < +∞,∀s ∈ [0, t],∀t ≥ 0.

Thus, Lemma 4.2 is proved.
Here, in order to prove the following lemma, we introduce the following symbols. Define B(R2

+ ×

R2 × S) as the set of all probability measures on R2
+ × R

2 × S, and for any two measures p1, p2 ∈ B,
define the metric dH as follows:

dH(p1, p2) = sup
h∈H

∣∣∣∣∣∣∣
p∑

i=1

∫
R2
+×R

2
h(x, i)p1(dx, i) −

p∑
i=1

∫
R2
+×R

2
h(x, i)p2(dx, i)

∣∣∣∣∣∣∣ ,
where H =

{
h : R2

+ × R
2 × S→ R | |h(x, i) − h(y, j)| ≤ |x − y| + |i − j| , |h(· × ·)| ≤ 1

}
.

Lemma 4.3. If Assumption 2.1 and Assumption 4.1 hold, for any compact subset D over R2
+ × R

2, the
following formula holds

lim
t→+∞

dH (p(t, a, i, · × ·), p(t, ã, j, · × ·)) = 0,

where a, ã ∈ D, i, j ∈ S.
Proof For any i, j ∈ S, define the stopping time

αi j = inf
{
t ≥ 0 : ξi(t) = ξ j(t)

}
.

Because of the ergodic nature of Markov chains, αi j < ∞. So, for any ε > 0, there exists a positive
number T , such that

P
{
αi j ≤ T

}
> 1 −

ε

8
,∀i, j ∈ S.
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For such T , by Lemma 4.2, there is a sufficiently large number R > 0 for

P
{
Ωa,i

}
> 1 −

ε

16
,∀(a, i) ∈ D × S, (4.9)

where Ωa,i =
{∣∣∣Xa,i

∣∣∣ ≤ R,∀t ∈ [0,T ]
}
. Now, fix a, ã ∈ D, i, j ∈ S and set Ω1 = Ωa,i ∩Ωã, j. For any h ∈ H

and t ≥ T , calculate∣∣∣Eh(Xa,i, ξi(t)) − Eh(Xã, j, ξ j(t))
∣∣∣ ≤ 2P

{
αi j > T

}
+ E

(
I{αi j≤T} | h(Xa,i, ξi(t)) − h(Xã, j, ξ j(t)) |

)
≤
ε

4
+ E

[
I{αi j≤T}E

(∣∣∣h(Xa,i, ξi(t)) − h(Xã, j, ξ j(t))
∣∣∣ | Fαi j

)]
≤
ε

4
+ E

[
I{αi j≤T}E

∣∣∣h(Xu,k(t − αi j), ξk(t − αi j)) − h(Xv,k(t − αi j), ξk(t − αi j))
∣∣∣]

≤
ε

4
+ E

[
I{αi j≤T}E

(
2 ∧

∣∣∣Xu,k(t − αi j) − Xv,k(t − αi j)
∣∣∣)]

≤
ε

4
+ 2P(Ω −Ω1) + E

[
IΩ1∩{αi j≤T}E

(
2 ∧

∣∣∣Xu,k(t − αi j) − Xv,k(t − αi j)
∣∣∣)] ,

(4.10)
where u = Xa,i(αi j), v = Xã, j(αi j), k = ξi(αi j) = ξ j(αi j). According to Lemma 4.1, there is T1 > 0 and
E

∣∣∣Xa,i − Xã,i
∣∣∣ ≤ ε

2
,∀t ≥ T1.When |a| ∨ |ã| ≤ R, i ∈ S, there is

E
(
2 ∧

∣∣∣Xa,i − Xã,i
∣∣∣) ≤ E ∣∣∣Xa,i − Xã,i

∣∣∣ ≤ ε
2
. (4.11)

Given ω ∈ Ω1 ∩
{
αi j ≤ T

}
, |u| ∨ |v| ≤ R, it is obtained from the above formula that

E
(
2 ∧

∣∣∣Xu,k(t − αi j) − Xv,k(t − αi j)
∣∣∣) < ε

2
,∀t ≥ T + T1. (4.12)

By formula (4.10)–(4.12), we can obtain∣∣∣Eh(Xa,i, ξi(t)) − Eh(Xã, j, ξ j(t))
∣∣∣ ≤ ε

4
+
ε

4
+
ε

2
= ε,∀t ≥ T + T1.

Since h is arbitrary, then

sup
h∈H

∣∣∣Eh(Xa,i(t), ξi(t)) − Eh(Xã, j(t), ξ j(t))
∣∣∣ ≤ ε,∀t ≥ T + T1.

namely,
dH (p(t, a, i, · × ·), p(t, ã, j, · × ·)) ≤ ε,∀t ≥ T + T1.

for all a, ã ∈ D, i, j ∈ S. The proof is therefore complete.
Lemma 4.4. If Assumption 2.1 and Assumption 4.1 hold, for any (a, i) ∈ R2

+ × R
2 × S,

{p(t, a, i, · × ·) | t ≥ 0} is the Cauchy in space B(R2
+ × R

2 × S) with metric dH.
Proof Fix any (a, i) ∈ R2

+ ×R
2 × S. We only need to prove that for any ε > 0, there is a T > 0 such that

dH (p(t + s, a, i, · × ·), p(t, a, i, · × ·)) ≤ ε,∀t ≥ T, s > 0,

which is equivalent to proof

sup
h∈H

∣∣∣Eh(Xa,i(t + s), ξi(t + s)) − Eh(Xa,i(t), ξi(t))
∣∣∣ ≤ ε,∀t ≥ T, s > 0. (4.13)
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For any h ∈ H, t, s > 0, we have∣∣∣Eh(Xa,i(t + s), ξi(t + s)) − Eh(Xa,i(t), ξi(t))
∣∣∣

=
∣∣∣∣E [
E(h(Xa,i(t + s), ξi(t + s)) | Fs

]
− Eh(Xa,i(t), ξi(t))

∣∣∣∣
=

∣∣∣∣∣∣∣
p∑

l=1

∫
R2
+×R

2
Eh(Xz0,l(t), ξl(t))p(s, a, i, dz0 × {l}) − Eh(Xa,i(t), ξi(t))

∣∣∣∣∣∣∣
≤

p∑
l=1

∫
R2
+×R

2

∣∣∣Eh(Xz0,l(t), ξl(t)) − Eh(Xa,i(t), ξi(t))
∣∣∣ p(s, a, i, dz0 × {l})

≤ 2p(s, a, i, D̄c
R × S) +

p∑
l=1

∫
D̄R

∣∣∣Eh(Xz0,l(t), ξl(t)) − Eh(Xa,i(t), ξi(t))
∣∣∣ × p(s, a, i, dz0 × {l}),

(4.14)

where D̄R =
{
a ∈ R2

+ × R
2 | |a| ≤ R

}
, D̄c
R = (R2

+ × R
2) − D̄R. According to Chebyshev’s inequality, the

transition probability {p(t, a, i, dz0 × {l} | t ≥ 0)} is compact, i.e., for any ε > 0, there exists a compact
subset D = D(ε, a, i) over R2

+ × R
2, such that p(t, a, i,D × S) ≥ 1 − ε,∀t ≥ 0, where R is sufficiently

large and we have
p(s, a, i, D̄c

R × S) <
ε

4
,∀s ≥ 0. (4.15)

According to Lemma 4.3, there exists T > 0 such that

sup
h∈H

∣∣∣Eh(Xz0,l(t), ξl(t)) − Eh(Xa,i(t), ξi(t))
∣∣∣ < ε

2
,∀t > T, (z0, l) ∈ D̄R × S. (4.16)

Substituting (4.15) and (4.16) into (4.14), we have∣∣∣Eh(Xa,i(t + s), ξi(t + s)) − Eh(Xa,i(t), ξi(t))
∣∣∣ < ε,∀t ≥ T, s > 0. (4.17)

Since h is arbitrary, then inequality (4.13) holds.
Lemma 4.5 [31]. Let M(t), t ≥ 0 be a local martingale with initial value M(0) = 0. If lim

t→+∞
ρM(t) < ∞,

then lim
t→+∞

M(t)
t
= 0, where ρM(t) =

∫ t

0

d ⟨M,M⟩ (s)
(1 + s)2 , t ≥ 0, and ⟨M,M⟩ (t) is the quadratic variational

process of M(t).
Lemma 4.6 If Assumption 2.1 holds, the solutions of model (1.4) follow:

lim sup
t→∞

ln x(t)
t
≤ 0, lim sup

t→∞

ln y(t)
t
≤ 0. (4.18)

Proof Define a founction W(t) = (x(t) + y(t))q = w(t)q, q ≥ 1. Using Itô formula, we can get

LW = q(x + y)q−1
[
r1x − a11xθ1+1 − a12xy

]
+ q(x + y)q−1

[
r2y − a21xy − a22yθ2+1

]
+ xq

∫
Z

[
(1 + γ1(ξ(s), z))q − 1

]
v(dz) + yq

∫
Z

[
(1 + γ2(ξ(s), z))q − 1

]
v(dz)

≤ q(x + y)q−1 (|r1| x + |r2| y) + cxq + cyq

≤ q |r1|wq + q |r2|wq + 2cwq

≤
q

2q + 1
|r1|

2q+1 +
q

2q + 1
|r2|

2q+1 +
4q2

2q + 1
wq+ 1

2 + 2cwq.
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Let θ > 0 be sufffciently small and satisfy nθ ≤ t ≤ (n + 1)θ, n = 1, 2, ... . It follows that

E

[
sup

nθ≤t≤(n+1)θ
wq(t)

]
= E [wq(nθ)] + I,

where

I = E
[

sup
nθ≤t≤(n+1)θ

∣∣∣∣∣∣
∫ t

nθ
LWds

∣∣∣∣∣∣
]

≤ E

[
sup

nθ≤t≤(n+1)θ

∣∣∣∣∣∣
∫ t

nθ

(
q

2q + 1
|r1(s)|2q+1 +

q
2q + 1

|r2(s)|2q+1 +
4q2

2q + 1
w(s)q+ 1

2 + 2cw(s)q

)
ds

∣∣∣∣∣∣
]

≤
4q2

2q + 1
E

[∫ (n+1)θ

nθ
w(s)q+ 1

2 ds
]
+ 2cE

[∫ (n+1)θ

nθ
w(s)qds

]
+

q
2q + 1

E

[∫ (n+1)θ

nθ

(
|r1(s)|2q+1 + |r2(s)|2q+1

)
ds

]
≤

4q2

2q + 1
θE

[
sup

nθ≤t≤(n+1)θ
w(t)q+ 1

2

]
+ 2cθE

[
sup

nθ≤t≤(n+1)θ
w(t)q

]
+

q
2q + 1

θE

[
sup

nθ≤t≤(n+1)θ

(
|r1(t)|2q+1 + |r2(t)|2q+1

)]
.

Choose θ sufficiently small such that I < h(q), therefore,

E

[
sup

nθ≤t≤(n+1)θ
wq(t)

]
≤ 2h(q).

Let ε be an arbitrary positive constant. Based on Chebyshev’s inequality, it follows that

P

{
sup

nθ≤t≤(n+1)θ
wq(t) > (nθ)1+ε

}
≥

2h(q)
(nθ)1+ε , n = 1, 2, · · · .

By the Borel–Cantelli Lemma, there exists an integer-valued random variable n0(ω) such that for al-
most all ω ∈ Ω, when n ≥ n0, we have

sup
nθ≤t≤(n+1)θ

wq(t) ≤ (nθ)1+ε.

Hence, for almost all ω ∈ Ω, if n ≥ n0 and nθ ≤ t ≤ (n + 1)θ, we have

lim sup
t→∞

ln wq(t)
ln t

≤ lim sup
t→∞

(1 + ε) ln(nθ)
ln(nθ)

,

Let ε→ 0. We have
lim sup

t→∞

ln wq(t)
ln t

≤ 1, a.s.,

then
lim sup

t→∞

ln w(t)
ln t

≤
1
q
, a.s..

Thus,

lim sup
t→∞

ln w(t)
t
≤ lim sup

t→∞

ln w(t)
ln t

× lim sup
t→∞

ln t
t
≤ 0,

and it follows that
lim sup

t→∞

ln x(t)
t
≤ 0, lim sup

t→∞

ln y(t)
t
≤ 0.
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Lemma 4.7. If Assumption 2.1 holds, r̄1 +
p∑

i=1
h1(i)πi > 0, r̄2 +

p∑
i=1

h2(i)πi > 0, where hm(i) =∫
Z

ln (1 + γm(i, z)) v(dz),m = 1, 2, then populations x(t), y(t) are weakly persistent.
Proof According to the definition of weakly persistent, we need to prove lim sup

t→∞
x(t) > 0, lim sup

t→∞
y(t) >

0. If the conclusion is not true, then P(U) > 0, where U =
{
ω : lim sup

t→∞
x(t, ω) = 0, lim sup

t→∞
y(t, ω) = 0

}
.

Applying Itô formula to ln x(t), ln y(t), and integrating from 0 to t, we have

ln x(t)
t
=

ln x(0)
t
+

1
t

∫ t

0

(
r1 − a11(s)xθ1 − a12(s)y

)
ds +

1
t

∫ t

0

∫
Z

ln (1 + γ1(ξ(s), z)) v(dz)ds +
M1(t)

t
,

ln y(t)
t
=

ln y(0)
t
+

1
t

∫ t

0

(
r2 − a21(s)x − a22(s)yθ2

)
ds +

1
t

∫ t

0

∫
Z

ln (1 + γ2(ξ(s), z)) v(dz)ds +
M2(t)

t
,

(4.19)
where

M1(t) =
∫ t

0

∫
Z

ln (1 + γ1(ξ(s), z)) Ñ(ds, dz),M2(t) =
∫ t

0

∫
Z

ln (1 + γ2(ξ(s), z)) Ñ(ds, dz).

By Assumption 2.1,

⟨M1,M1⟩ (t) =
∫ t

0

∫
Z

[
ln (1 + γ1(ξ(s), z))

]2 v(dz)ds < ct,

⟨M2,M2⟩ (t) =
∫ t

0

∫
Z

[
ln (1 + γ2(ξ(s), z))

]2 v(dz)ds < ct.

From Lemma 4.5, we achieve

lim
t→∞

M1(t)
t
= 0, lim

t→∞

M2(t)
t
= 0.

On the one hand, combining the strong law of large numbers [31] and the definition of the OU process,
we have

lim
t→∞

1
t

∫ t

0
r1(s)ds = r̄1, lim

t→∞

1
t

∫ t

0
r2(s)ds = r̄2.

If for all ω ∈ U, lim sup
t→∞

x(t, ω) = 0, lim sup
t→∞

y(t, ω) = 0. Combining formula (4.19), we have

0 ≥ lim sup
t→∞

ln x(t, ω)
t

= r̄1 +

p∑
i=1

h1(i)πi > 0, 0 ≥ lim sup
t→∞

ln y(t, ω)
t

= r̄2 +

p∑
i=1

h2(i)πi > 0.

This contradicts the assumption P(U) > 0, then lim sup
t→∞

x(t) > 0, lim sup
t→∞

y(t) > 0.

Theorem 4.1. If Assumption 2.1 and Assumption 4.1 hold , and r̄1 +
p∑

i=1
h1(i)πi > 0, r̄2 +

p∑
i=1

h2(i)πi > 0,

where hm(i) =
∫

Z
ln (1 + γm(i, z)) v(dz),m = 1, 2, then the model (1.4) has a unique ergodic stationary

distribution.
Proof To prove Theorem 4.1, first prove that there is a probability measure η(· × ·) ∈ B, such that for
any (a, j) ∈ R2

+ ×R
2 × S, the transition probability p(t, a, j, · × ·) for Xa, j(t) converges weakly to η(· × ·).

Electronic Research Archive Volume 32, Issue 3, 1873–1900.



1889

According to Proposition 2.5 [32], weak convergence of probability measures is the concept of a
metric, i.e., p(t, a, j, · × ·) weakly converges to η(· × ·) is equivalent to the existence of metric d such
that lim

t→+∞
d (p(t, a, j, · × ·), η(· × ·)) = 0.

So, we only need to prove that to any (a, j) ∈ R2
+ × R

2 × S, there is

lim
t→+∞

dH (p(t, a, j, · × ·), η(· × ·)) = 0.

From Lemma 4.4, {p(t, 0, 1, · × · | t ≥ 0)} is the Cauchy in the space B(R2
+ × R

2 × S) of metric dH, so
there is a unique η(· × ·) ∈ B that makes

lim
t→+∞

dH (p(t, 0, 1, · × ·), η(· × ·)) = 0.

By Lemma 4.3 and the triangle inequality, we have

lim
t→+∞

dH (p(t, a, j, · × ·), η(· × ·)) ≤ lim
t→+∞

[
dH (p(t, a, j, · × ·), p(t, 0, 1, · × ·)) + dH (p(t, 0, 1, · × ·), η(· × ·))

]
= 0.

That is, the distribution of (X(t), ξ(t)) weakly converges to η.
By the Kolmogorov-Chapman equation, we know that η is constant. From Corollary 3.4.3 [33], it

follows that η is strongly mixed. From Theorem 3.2.6 [33], we know that η is ergodic.

5. Extinction

Theorem 5.1. If Assumption 2.1 holds, for any initial value (x(0), y(0), r1(0), r2(0)) ∈ R2
+ × R

2 and
ξ(0) ∈ S , the solution (x(t), y(t), r1(t), r2(t)) of system (1.4) has the property that

lim sup
t→∞

ln x(t)
t
≤ r̄1 +

p∑
i=1

h1(i)πi, lim sup
t→∞

ln y(t)
t
≤ r̄2 +

p∑
i=1

h2(i)πi.

where hm(i) =
∫

Z
ln (1 + γm(i, z)) v(dz),m = 1, 2. In particular, if r̄1 +

p∑
i=1

h1(i)πi < 0, r̄2 +
p∑

i=1
h2(i)πi < 0,

then x(t), y(t) are extinct.
Proof Applying Itô formula to ln x(t), ln y(t), we can get

d ln x(t) =
(
r1 − a11(t)xθ1 − a12(t)y

)
dt +

∫
Z

ln (1 + γ1(ξ(t), z)) N(dt, dz)

=
(
r1 − a11(t)xθ1 − a12(t)y

)
dt +

∫
Z

ln (1 + γ1(ξ(t), z)) v(dz)dt +
∫

Z
ln (1 + γ1(ξ(t), z)) Ñ(dt, dz),

d ln y(t) =
(
r2 − a21(t)x − a22(t)yθ2

)
dt +

∫
Z

ln (1 + γ2(ξ(t), z)) N(dt, dz)

=
(
r2 − a21(t)x − a22(t)yθ2

)
dt +

∫
Z

ln (1 + γ2(ξ(t), z)) v(dz)dt +
∫

Z
ln (1 + γ2(ξ(t), z)) Ñ(dt, dz).

Integrating from 0 to t, we have

ln x(t) = ln x(0) +
∫ t

0

(
r1 − a11(s)xθ1 − a12(s)y

)
ds +

∫ t

0

∫
Z

ln (1 + γ1(ξ(s), z)) v(dz)ds + M1(t), (5.1)
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ln y(t) = ln y(0) +
∫ t

0

(
r2 − a21(s)x − a22(s)yθ2

)
ds +

∫ t

0

∫
Z

ln (1 + γ2(ξ(s), z)) v(dz)ds + M2(t), (5.2)

where

M1(t) =
∫ t

0

∫
Z

ln (1 + γ1(ξ(s), z)) Ñ(ds, dz),M2(t) =
∫ t

0

∫
Z

ln (1 + γ2(ξ(s), z)) Ñ(ds, dz).

By Assumption 2.1,

⟨M1,M1⟩ (t) =
∫ t

0

∫
Z

[
ln (1 + γ1(ξ(s), z))

]2 v(dz)ds < ct,

⟨M2,M2⟩ (t) =
∫ t

0

∫
Z

[
ln (1 + γ2(ξ(s), z))

]2 v(dz)ds < ct.

From Lemma 4.5, we achieve

lim
t→∞

M1(t)
t
= 0, lim

t→∞

M2(t)
t
= 0.

On the one hand, combining the strong law of large numbers [31] and the definition of the OU process,
we have

lim
t→∞

1
t

∫ t

0
r1(s)ds = r̄1, lim

t→∞

1
t

∫ t

0
r2(s)ds = r̄2.

According to (5.1) and (5.2), we obtain

ln x(t) ≤ ln x(0) +
∫ t

0
r1(s)ds + M1(t) +

∫ t

0
h1(ξ(s))ds,

ln y(t) ≤ ln y(0) +
∫ t

0
r2(s)ds + M2(t) +

∫ t

0
h2(ξ(s))ds.

then
ln x(t)

t
≤

ln x(0)
t
+

∫ t

0
r1(s)ds

t
+

M1(t)
t
+

∫ t

0
h1(ξ(s))ds

t
,

ln y(t)
t
≤

ln y(0)
t
+

∫ t

0
r2(s)ds

t
+

M2(t)
t
+

∫ t

0
h2(ξ(s))ds

t
.

According to the ergodicity of the Markov chain, we obtain

lim sup
t→∞

ln x(t)
t
≤ lim sup

t→∞

∫ t

0
r1(s)ds

t
+ lim sup

t→∞

∫ t

0
h1(ξ(s))ds

t
= r̄1 +

p∑
i=1

h1(i)πi,

lim sup
t→∞

ln y(t)
t
≤ lim sup

t→∞

∫ t

0
r2(s)ds

t
+ lim sup

t→∞

∫ t

0
h2(ξ(s))ds

t
= r̄2 +

p∑
i=1

h2(i)πi.

When r̄1 +
p∑

i=1
h1(i)πi < 0, r̄2 +

p∑
i=1

h2(i)πi < 0, it implies lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0, then x(t), y(t) are

extinct. Theorem 5.1 is proved.
Remark 5.1. Lemma 4.7 and Theorems 4.1 and 5.1 have very important biological explanations.
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From the theoretical results obtained, it can be seen that when r̄1 +
p∑

i=1
h1(i)πi > 0, r̄2 +

p∑
i=1

h2(i)πi > 0,

population x(t), y(t) will be weakly persistent, and if the parameters of the model are controlled within
a certain range, the system has a stationary distribution, which indicates the persistence of population

growth. When r̄1 +
p∑

i=1
h1(i)πi < 0, r̄2 +

p∑
i=1

h2(i)πi < 0, population x(t), y(t) will be extinct. That is,

the survival and extinction of the biological population x(t), y(t) simulated by model (1.4) completely

depends on the symbol of r̄1 +
p∑

i=1
h1(i)πi, r̄2 +

p∑
i=1

h2(i)πi.

The following analyzes the effects of white noise simulated by the OU process on species survival
and extinction. Since the OU process acts on the intrinsic growth rate r1, r2, if the model (1.4) is not
affected by Markov switching and jump noise, then the model is in the following form:

dx (t) = x(t)
(
r1(t) − a11(t)xθ1(t) − a12(t)y(t)

)
dt

dy (t) = y(t)
(
r2(t) − a21(t)x(t) − a22(t)yθ2(t)

)
dt

dr1 (t) = β1 [r̄1 − r1(t)] dt + σ1dB1(t)
dr2 (t) = β2 [r̄2 − r2(t)] dt + σ2dB2(t),

(5.3)

Using a similar method as above, it can be proven that when r̄1 > 0, r̄2 > 0, population x(t), y(t) are
weakly persistent; when r̄1 < 0, r̄2 < 0, population x(t), y(t) are extinct. That is, when the system
is only disturbed by white noise, the survival and extinction of the population is only related to the
symbol of the average growth rate r̄1, r̄2 of the population.

When r̄1 > 0, r̄2 > 0, the species only disturbed by white noise are weakly persistent. If the system is

affected by jump noise and Markov switching again, and satisfies r̄1+
p∑

i=1
h1(i)πi < 0, r̄2+

p∑
i=1

h2(i)πi < 0,

the species are extinct. When r̄1 < 0, r̄2 < 0, the species that are only disturbed by white noise are

extinct, but if there is jump noise and Markov switching such that r̄1+
p∑

i=1
h1(i)πi > 0, r̄2+

p∑
i=1

h2(i)πi > 0,

species are weakly persistent. Therefore, it can be obtained that jump noise and Markov switching can
make the survival system extinct and the extinction system survive.
Remark 5.2. The following is to analyze the effect of jump diffusion coefficient γ1(i, z), γ2(i, z) on
population survival and extinction. If γ1(k, z) < 0, γ2(k, z) < 0, then h1(i) < 0, h2(i) < 0, which means
that jumping noise is detrimental to the survival of the population. If γ1(i, z) > 0, γ2(i, z) > 0, then
h1(i) > 0, h2(i) > 0, which means that jumping noise is beneficial to the survival of the population.
Remark 5.3. Now, consider the subsystem of the system in a certain state i

dx (t) = x (t−)
[(

r1(t) − a11(t)xθ1 (t−) − a12(t)y (t−)
)

dt +
∫

Z
γ1 (i, z) N(dt, dz)

]
dy (t) = y (t−)

[(
r2(t) − a21(t)x (t−) − a22(t)yθ2 (t−)

)
dt +

∫
Z
γ2 (i, z) N(dt, dz)

]
dr1 (t) = β1 [r̄1 − r1(t)] dt + σ1dB1(t)
dr2 (t) = β2 [r̄2 − r2(t)] dt + σ2dB2(t),

(5.4)

Using the above similar proof method, it can be obtained that if r̄1 + h1(i) > 0, r̄2 + h2(i) > 0, the
population x(t), y(t) described by the system (5.4) will be weakly persistent, and if r̄1 + h1(i) < 0, r̄2 +

h2(i) < 0, then the population x(t), y(t) will be extinct.
Remark 5.4. Now, we analyze the impact of Markov switching on population survival and extinction.
If for a certain state i ∈ S , there is r̄1 + h1(i) < 0, r̄2 + h2(i) < 0, then the corresponding subsystem
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(5.4) is extinct. It can be seen from Theorem 5.1 that if every subsystem of system (1.4) is extinct, then
the result of Markov switching is that system (1.4) is still extinct. However, Lemma 4.7 and Theorems
4.1 and 5.1 reveal an interesting phenomenon: If some subsystems are extinct and some are weakly
persistent, the value of the total system after Markov mixing may be greater than zero. At this time,
the whole system is weakly persistent, so we can see the adjustment effect of Markov switching on the
survival condition of the whole population survival system.

6. Computer simulations

In order to verify the above theoretical results on the stochastic Gilpin-Ayala nonautonomous com-
petition model (1.4), we use the Euler-Maruyama method [34] and the R language and select the
appropriate parameters for numerical verification. Given that the state space of Markov chain ξ(t) is

S = {1, 2, 3} and the generated matrix is Q =


−4 2 2
1 −2 1
2 3 −5

, the only stationary distribution of the

Markov chain ξ(t) is π = (π1, π2, π3) =
(

7
29
,

16
29
,

6
29

)
. The combination of parameters is shown in Table

1, and the data is from [27, 35–38].
According to literature [38], in this section, we consider the survival conditions of the competi-

tion system (1.4) of two grassland populations and discuss the effect of stochastic interference on
two grassland species competition in system (1.4). In model (1.4), x(t) represents the numbers of
Phleum pratense and y(t) represents the numbers of Trifolium repens.

Table 1. Several combinations of biological parameters of model (1.4).

Combinations Value
A1 a11(t) = 0.4 + 0.1 sin t, a12(t) = 0.2 sin2 t, a21(t) = 0.07 cos2 t, a22(t) =

1.5(1 − 0.7 cos t), θ1 = 2, θ2 = 1, γ1(1) = 0.1, γ1(2) = 0.4, γ1(3) = 0.2, γ2(1) =
0.2, γ2(2) = 0.3, γ2(3) = 0.1, β1 = 0.4, β2 = 0.2, r̄1 = 0.103, r̄2 = 0.076, σ1 =

0.3, σ2 = 0.1
A2 a11(t) = 0.4 + 0.1 sin t, a12(t) = 0.2 sin2 t, a21(t) = 0.5 cos2 t, a22(t) = 0.5(1 −

0.4 cos t), θ1 = 2, θ2 = 2, γ1(1) = 0.3, γ1(2) = 0.2, γ1(3) = 0.1, γ2(1) =
0.2, γ2(2) = 0.3, γ2(3) = 0.4, β1 = 0.4, β2 = 0.2, r̄1 = 0.103, r̄2 = 0.076, σ1 =

0.3, σ2 = 0.2, q = 2
A3 a11(t) = 0.4 + 0.1 sin t, a12(t) = 0.2 sin2 t, a21(t) = 0.07 cos2 t, a22(t) = 1.5(1 −

0.7 cos t), θ1 = 2, θ2 = 1.5, γ1(1) = 0.1, γ1(2) = 0.2, γ1(3) = 0.3, γ2(1) =
0.4, γ2(2) = 0.3, γ2(3) = 0.2, β1 = 1.3, β2 = 1.1, r̄1 = 0.103, r̄2 = 0.076, σ1 =

0.2, σ2 = 0.1
A4 a11(t) = 0.4 + 0.1 sin t, a12(t) = 0.2 sin2 t, a21(t) = 0.07 cos2 t, a22(t) =

1.5(1 − 0.7 cos t), θ1 = 0.3, θ2 = 0.5, γ1(1) = −0.11, γ1(2) = −0.15, γ1(3) =
−0.3, γ2(1) = −0.13, γ2(2) = −0.19, γ2(3) = −0.3, β1 = 0.4, β2 = 0.2, r̄1 =

−0.13, r̄2 = −0.1, σ1 = 0.02, σ2 = 0.05

Example 6.1. Let v(Z) = 1. Take the initial value of model (1.4) as x(0) = 0.3, y(0) = 0.2, r1(0) =
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0.12, r2(0) = 0.21, choose the combination A1 as the parameter value of model (1.4), and use the R
language for numerical simulation, and Figure 1 is obtained. The numerical simulation results show
that the global solution of the stochastic Gilpin-Ayala population model (1.4) exists, and Theorem 2.1
is verified.

The blue lines in Figure 1(a),(b) show the trend of x(t), y(t), whose growth rate is disturbed by the
OU process. The green lines in Figure 1(a),(b) represent the global solution of x(t), y(t) under the
disturbance of the OU process, Markov chains, and Lévy noise. Combined with Theorem 2.1, it can be
seen that Phleum pratense and Trifolium repens will continue to grow no matter what environmental
disturbance populations Phleum pratense and Trifolium repens are subjected to. The red lines in Figure
1(c),(d) represent intrinsic growth rates r1, r2 of Phleum pratense and Trifolium repens, while the blue
lines in Figure 1(c),(d) represent population growth rates disturbed by the OU process, indicating
that the interference of random environmental factors will make the growth rate r1(t), r2(t) fluctuate
randomly under the interference of the OU process.

In the two grassland species competition system (1.4), we assume that Lévy jumps are affected by
the Markov chains and the Lévy jump values are both positive. According to remark 5.2, it indicates
that the jump noise plays a role in promoting the population growth. It can also be seen from Figure
1(a),(b) that under the action of positive Lévy jumps, the population number represented by the green
lines are larger than the blue lines at the same time. We compared Figures 1(a),(b) in the two grassland
species competition system (1.4), the numbers of Phleum pratense (Figure 1(a)) is more than the num-
bers of Trifolium repens (Figure 1(b)), which indicates that Phleum pratense has a more competitive
advantage in the resource competition, and the number of Trifolium repens will remain lower than that
of Phleum pratense.
Example 6.2. Let v(Z) = 1. Take the initial value of model (1.4) as x(0) = 0.1, y(0) = 0.1, r1(0) =
0.12, r2(0) = 0.13, choose the combination A2 as the parameter value of model (1.4), and use the R
language for numerical simulation, and Figure 2 is obtained. In Figure 2(a), κ(q) denotes a continuous
function with respect to q, and E(xq),E(yq) denote the q-th moment of x(t), y(t). The numerical sim-
ulation results show that E(xq),E(yq) are less than κ(q), so E(xq) ≤ κ(q),E(yq) ≤ κ(q), q > 0 hold and
Theorem 3.1 is verified.

On the other hand, from the biological point of view, due to the limited resources in the natural
environment, no biological population can grow without limit, so we hope that the solution of the two
grassland species competition system (1.4) is ultimately bounded. Therefore, in Figure 2, we set q = 2
to get E(x2) ≤ κ(2),E(y2) ≤ κ(2), which indicates that the system (1.4) is bounded by second order
moments, and population Trifolium repens and Phleum pratense will not grow wildly and maintain a
healthy growth, which obeys the significance of biology.

Example 6.3. Let v(Z) =
1
2

. Take the initial value of model (1.4) as x(0) = 0.3, y(0) = 0.2, r1(0) =
0.12, r2(0) = 0.21, choose the combination A3 as the parameter value of model (1.4), and use the R
language for numerical simulation, and Figure 3 is obtained. Figure 3(a),(c) represent the solution of
x(t), y(t), and Figure 3(b),(d) represent the histogram of the solution of x(t), y(t). The numerical simu-

lation results show that when r̄1 +
3∑

i=1
h1(i)πi > 0, r̄2 +

3∑
i=1

h2(i)πi > 0, x(t), y(t) obey normal distribution

approximately, it means model (1.4) has a stationary distribution η, and Theorem 4.1 holds.
From Figure 3(a),(c), it can be seen that the population size of Phleum pratense x(t) is mostly be-

tween 0.75–1.0 and the population size of Trifolium repens y(t) is mostly between 0.3–0.4, mainly
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Figure 2. Moment boundedness of solution.
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concentrated in the middle region. Figure 3(b),(d) of the frequency histogram of populations x(t), y(t)
also shows a trend of high in the middle and low at both ends and obeys normal distribution approxi-
mately.

In a biological sense, this indicates the long-term development trend of the two grassland
species competition system (1.4) and represents the persistence of species Phleum pratense and
Trifolium repens; that is, although the model (1.4) is a competitive system, if Assumption 4.1 and

r̄1 +
3∑

i=1
h1(i)πi > 0, r̄2 +

3∑
i=1

h2(i)πi > 0 hold, then the population Phleum pratense and Trifolium repens

will continue to grow and eventually reach a stable state.
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Figure 3. Existence of stationary distribution.

Example 6.4. Let v(Z) = 1. Take the initial value of model (1.4) as x(0) = 0.5, y(0) = 0.5, r1(0) =
0.1, r2(0) = 0.1, choose the combination A4 as the parameter value of model (1.4), and use the R
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language for numerical simulation, and Figure 4 is obtained. Calculate r̄1 +
3∑

i=1
h1(i)πi ≈ −0.21 <

0, r̄2 +
3∑

i=1
h2(i)πi ≈ −0.25 < 0. According Theorem 5.1, population x(t), y(t) will be extinct.

The blue lines in Figure 4 (a) and (b) show the populations Phleum pratense and Trifolium repens,
whose growth rate is disturbed by the OU process. This indicated that if populations Phleum pratense
and Trifolium repens are affected by some subtle disturbance in the environment, such as changes in
soil pH, nutrient density, etc., and r̄1 < 0, r̄2 < 0, then population Phleum pratense and Trifolium repens
extinct at t = 25.

The green lines in Figure 4(a),(b) represent the global solution of the population under the distur-
bance of the OU process, Markov chains, and Lévy noise. Phleum pratense extinct at t = 15 and
Trifolium repens extinct at t = 10. In this example, we let γ1(i, z) < 0, γ2(i, z) < 0, i = 1, 2, 3, which
means populations Phleum pratense and Trifolium repens are subject to some adverse external distur-
bances, such as fires, floods, etc., then according remark 5.2, these adverse random disturbances in the
environment will accelerate the extinction of populations Phleum pratense and Trifolium repens. This
is also consistent with the phenomenon described in Figure 4(a),(b).
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Figure 4. Extinction.

7. Conclusions

In this paper, we study the dynamic behaviors of a stochastic Gilpin-Ayala nonautonomous compe-
tition model (1.4) driven by the mean-reverting OU process with finite Markov chain and Lévy jumps.
The existence and uniqueness of the global solution, the moment boundedness of the solution, the
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existence of the stationary distribution, and extinction of the stochastic Gilpin-Ayala nonautonomous
competition model (1.4) are proved. The properties of the stochastic Gilpin-Ayala nonautonomous
competition model (1.4) are verified by numerical examples. The existence and uniqueness of the
global solution and the moment boundedness of the solution shows that under the interference of
various random factors and the change of biological parameters with time, the population shows a
fluctuating growth trend, and the intrinsic growth rate also fluctuates around the mean level; for any
q > 0, the populations x(t) and y(t) have bounded q-th moments. The existence of stationary distribu-
tion and the extinction indicate that Markov chain and Lévy jump have a crucial impact on population
growth. Combined with numerical examples of population parameters, we find that: The existence of
stationary distribution indicates that when the jumping noise coefficient of the population is positive
under different environmental states, combined with the average growth rate of the population, that is,

r̄1 +
3∑

i=1
h1(i)πi > 0, r̄2 +

3∑
i=1

h2(i)πi > 0, it can be seen that the impact of jumping noise on the population

under different states is beneficial to the population. The system solution has a stationary distribution,
which indicates the persistence of population growth; extinction indicates that when the jumping noise
coefficient of the population is negative under different environmental states, combined with the aver-

age growth rate of the population, that is, r̄1 +
3∑

i=1
h1(i)πi < 0, r̄2 +

3∑
i=1

h2(i)πi < 0, the impact of jumping

noise under different states of the population is adverse to the population, and the population will be
extinct.

However, in model (1.4), we only considered the effects of the OU process, finite Markov chain, and
Lévy jumps on the survival of the population, and there were many factors that we did not consider,
such as seasonal changes bring periodic changes, time delays, etc.. Therefore, in future work, we will
consider more complex and realistic models to study population ecology.
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driven by Lévy noise, Commun. Nonlinear Sci. Numer. Simul.,19 (2014), 1391–1399.
https://doi.org/10.1016/j.cnsns.2013.09.013

21. M. Liu, K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl.,410
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