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Abstract: In this paper, a stochastic Leslie-Gower model with Beddington-DeAngelis functional
response driven by the Ornstein-Uhlenbeck process is studied. Some asymptotic properties of the
solution of the stochastic Leslie-Gower model are introduced: the existence and uniqueness of the
global solution of the model are demonstrated, the ultimate boundedness of the model is analyzed, the
existence of the stationary distribution of the model is proven, and the conditions for system extinction
are discussed. Finally, numerical simulations are utilized to verify our conclusions.
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1. Introduction

Predator-prey relationships are common in nature and have been the basis for the development
of numerous biomathematical models by many researchers. A well-known predator-prey model was
proposed by Leslie [1,2]. In contrast to the Lotka-Volterra model, the Leslie-Gower model provides
a superior representation of the interactions between predators and prey. This model employs a more
intricate function to depict this relationship, which more accurately mirrors the real-world situation.
Furthermore, the Leslie-Gower model takes into consideration competition among the population of
prey which is not mentioned in the Lotka-Volterra model. In order to study the dynamical behavior of
populations under certain cases, the Beddington-DeAngelis functional response was introduced to the
original model by Yu et al. [3]. This model is represented as

_ _ B ay(1)
dx(®) = x(1) (r1 b;(t()) my + myx(t) + mgy(t)) dr (1.1)
) By . .
dy(r) = y(1) (1”2 X0+ k) dr
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The natural growth rates of prey and predators are represented by r; and r,, respectively. The intraspe-
cific competition coeflicient of prey is denoted by b. The amount of food provided by prey for the
birth of predators is measured by . The maximum of the mean reduction rate of prey is denoted by a.
The degree of protection provided by the environment to predators is measured by k. All of the above
parameters are positive.

However, since any ecosystem inevitably suffers from environmental noise perturbation, the use
of stochastic differential equations can describe the dynamic behavior of populations more accurately,
and also benefit to explore the dynamic response and stability of the system under the influence of
noise [4]. There exist some methods to simulate the parameters of a varying environment. The first
approach assumes that the parameters can be adequately modeled by a linear function of white noise
(see example in [5-7]). The second approach assumes that the parameters satisfy a mean-reverting
stochastic process, i.e., each parameter satisfies a specific stochastic differential equation.

The first method is considered to have limitations [8]. In the following, mathematical methods
will be employed to demonstrate this unreasonableness. It is assumed that a certain parameter of the
population satisfies the following equation

adW(?)

=7+ :
rt) =T ”

(1.2)

where 7, which can be obtained through direct calculation, represents the average value of r over a
long term. W(#) is the independent standard Brownian motion defined on a complete probability space
{Q,F ,{Fi}is0 , P} with the o—filtration {F,},5, satisfying the usual conditions [4], and @ > O denotes
the noise density of W(z). We assume that for any time interval [0, ¢], (r(¢)) is the time average of r(¢).
According to direct calculation, we obtain the result

t 2
D)) = % f r(s)ds = F + “V‘t/(’) - N(f, 0‘7) (1.3)
0

where N (-, -) is the one dimension Gaussian distribution. It is evident that the average state (r(¢)) on

. o’ . o .
[0, 7] has a variance of e which approaches infinity as # — 0*. This leads to an unreasonable outcome

where the stochastic fluctuation of certain parameter of the population r(¢) becomes very massive for a
small time interval.

Another method is to assume that the parameters follow a mean-reverting stochastic process, i.e.
each parameter obeys a certain stochastic differential equation

dr(t) = c[Fr— r(®)] dr + cdW (1), (1.4)

where ¢ > 0 is the speed of reversion and o > 0 is the intensity of volatility, respectively. W(z) is the
independent standard Brownian motion, which is the same as above. As stated by Mao [9], r(¢) has a
unique explicit solution in the form below

r(t) =7+ [r0)—Fle™ + o f e IdW(s). (1.5)
0

It is clearly indicated by the above equation that r(r) follows the Gaussian distribution
N(E[r(1)], VAR[r(£)]) on [0, 7]. It can be easily derived that E[r(1)] = 7+ [r(0) — Fle™" and VAR[r(?)] =
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2
(2T—(1 — e72). Furthermore, it is evident that ,ILIE, E[r(r)] = ¥ and tll)rg VYAR][r(#)] = 0. Thus, for certain
tir%e intervals, the fluctuation of r(#) will be sufficiently small, which is in line with the continuous
perturbation property of environmental noise.

Many scholars have introduced standard white noise into the Leslie-Gower model, for example, a
stochastic Leslie-Gower model with standard white noise has been studied by Zhao et al. [10], and they
demonstrated some good mathematical properties with biological significance. However, little research
has been done on the Ornstein-Uhlenbeck process. Inspired by the above work, we also assume that
the growth rates of both prey and predators are influenced by two mean-reverting Ornstein-Uhlenbeck
processes

dri(t) = ¢ [Fy — ri(H)]dt + 01dBy (1), dry(2) = ¢ [Fo — ra(D)] df + 02d B (1),

where B(#) and B,(t) are two independent Brownian motions, ¢; > 0 and ¢, > 0 are the speed of
reversion, and oy > 0 and 0, > 0 are the intensities of volatility. Then we rewrite the system (1.1) as

_ _ B ay()
dx(r) = (rl (1) — bx(1) e m3y(t)) x(r)dt
_ 0]
dy(r) = (rz(t) X0+ k)y(t)dt : (1.6)
dri(t) = ¢y [Fy — ri(®] dr + 01 dB, (1)
dl"z([) = [7’2 — rz(t)] dr + O'dez(t)

The theoretical methods and techniques for dynamical analysis are well-developed. However, it
should be noted that there are many essential differences between the methods that analyze the mod-
els driven by white noise and those driven by Ornstein-Uhlenbeck. Moreover, the introduction of
Beddington-DeAngelis also increases the complexity of the models. For example, system (1.1) with
stochastic fluctuation has a unique solution that is global and positive [11]. However, the solution to
system (1.6) is not necessarily positive due to the properties of the Ornstein-Uhlenbeck process. We
attempt to develop some suitable methods and theories to obtain some dynamical properties of system
(1.6), which are analogous to those of system (1.1) with linear white noise.

Currently, in order to study the dynamical properties of stochastic predator-prey models, many
scholars have adopted the Ornstein-Uhlenbeck process as the driving force of stochastic systems. For
example, Zhang et al. studied a three species predator-prey model driven by the Ornstein-Uhlenbeck
process and demonstrated many important dynamical properties [12]. Chen et al. studied a Leslie-
Gower model driven by the Ornstein-Uhlenbeck process with a modified Holling-II functional re-
sponse and demonstrated good dynamic properties [13]. In addition, there are many applications of
Ornstein-Uhlenbeck processes to the study of other stochastic systems, for example, Song et al. stud-
ied a stochastic SVEIS model with an Ornstein-Uhlenbeck process [14], Wen et al. studied an SIB
cholera model with saturated response rate and the Ornstein-Uhlenbeck process [15], and Liu studied
a stochastic HLIV model with virus production and Ornstein-Uhlenbeck process [16].

We studied the asymptotic properties of the solution with respect to system (1.6). In subsection
2.1, the existence and uniqueness of the global solution of system (1.6) are proven. Additionally,
the ultimate boundedness of system (1.6) is given in subsection 2.2. The existence of the stationary
distribution is then shown in subsection 2.3. The extinction to the populations is discussed in subsection
2.4. Finally, our conclusions are verified by numerical simulations in subsection 2.5.

Electronic Research Archive Volume 32, Issue 1, 370-385.



373

2. Asymptotic property of the solution

2.1. Existence and uniqueness of the global solution

For convenience, we need to define two necessary sets: S, = (—n,n) X (—n,n) X (—n,n) X (-n, n)
and R} = {(xy,---, x,) € R"|x,, > 0,0 < m < n}, where || - || is the Euclidean norm. Next, we prove the
existence and uniqueness of the global solution of system (1.6).

Theorem 2.1. For any initial value (x(0), y(0), r1(0), r,(0)) € Ri x R2, there exists a unique solution
(x(t), y(t), r1(1), (1)) of system (1.6) on t > 0, and it will remain in Ri x R? with probability one.

Proof. 1t is easy to verify that Eq (1.6) satisfies the linear growth condition and the local Lipschitz
condition. So there exists a locally unique solution (x(?), y(¢), r(t), r>(¢)) defined on ¢ € [0, 7,) (see [9]).
7, 1s the explosion time, so it suffices to prove that 7, = co. We let n be sufficiently large so that both
In x(0) and In y(0), r1(0) and r,(0) are in the interval [—n, n], defining the stopping time as

7, = inf{t € [0,7.] : Inx(¢) ¢ (—n,n) or Iny(t) ¢ (—n,n) or ri(t) ¢ (—n,n) or ry(t) ¢ (—n,n)}.

Obviously 7, is monotonically increasing as n — oo. Set 7, = lim 7,; here, 7., < 7.. So, it is

n—+o0

only necessary to prove that 7, = co. If not, there exists constants 7 > 0 and & € (0, 1) such that
P{r, < T} > €. Therefore, there exists an integer n; > n, such that

P{r,<T}>¢g,n=n. 2.1

To simplify the proof, we omit all bracketed 7. For any ¢ < 7,, a non-negative Lyapunov function
Vo(x,y,71,12) : R2 X R? — R, is constructed as

A A
Vo(x,y,rl,rz):[x+y—2—lnx—lny]+zl+zz. (2.2)

Applying Ito’s formula, we have

ay
my + mpx + msy

3
)+ (= 1)(rs — %) F P F— ) + 202

LVy=(x-1)(r —bx- 7

3
+ Czl’g(l”z -1+ —0'%1*%

2
2
2 By @ 3. 320 4 -3
< (ril+b)x —bx” + (2| + By — +rl+ — +inl+car Inl” + srioy —cir| + caialr|
x+k ms 2
3,5, 4
<Ilp < o0,
where
2
. 2 By a _ 3
Iy := sup {(Ir1| + b)x — bx” + (Ir2| + B)y — z +|ril + — + || + 17|
(x,,r1,72)eRZ xR? X + ms
3,5, 4 3. 355 4
+§r101 — 1] + canalr|” + S0y,
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Following our calculations, we have
dVy < Todt + oy rdBy(t) + 02r3d By (D). (2.3)
Integrating both sides of inequality (2.3) from O to 7, A T and computing expectations, we arrive at
E[Vo(x(ty AT), y(ta AT)), 11(Ty AT), r2(ty A T)] < Vo(x(0), y(0), 71(0), r2(0)) + IoT. (2.4)

When 7, < T, we define Q, = 7, < T. From inequality (2.1), it follows that P(€2,) > &. Observe that
for any w € Q,, there exists an n such that In x(7,,, w), In y(7,, w) = —n or n and r(7,, w), r(7,, W) =
—n or n. By combining Eq (2.4), we derive

Vo(x(0), ¥(0), 11(0), r2(0)) + Lo T 2E[1g, (@) Vo(x(Th, W), Y(Tp, W), 1 (Th, W), 12(Ty, w))]

4
. _ n
Zsmm{e”—l—n,e "—1+n,z},

such that n — oo leads to
oo > V(x(0), y(0), r1(0), r2(0)) + TIpT = co. (2.5)
The proof of Theorem 2.1 is complete. O

2.2. Ultimate boundness

Since ecosystems have finite resources, population density cannot grow infinitely and will eventu-
ally converge to a certain value over time, and it is necessary to prove theoretically that system (1.6) is
ultimately bounded. First, let us give the definition of stochastically ultimate boundedness.

Definition 2.1. [17] System (1.6) is said to be stochastically ultimately bounded: if, for any € € (0, 1),
there is a positive constant y = y(w) such that for any initial value (x(0), y(0), r1(0), r,(0)), the solution
of system (1.6) has the property that

limsup P{x2 +)? > v} < &. (2.6)

1—00

Next, we present a useful lemma, from which the stochastically ultimate boundedness will follow
directly.

Lemma 2.1. Let 6 € (0, 1), then there is a positive constant M = M(0) which is independent of the
initial value (x(0), y(0), r;(0)), where i = 1,2, such that the solution of system (1.6) has the property
that

lim sup B {|(x, »)I’} < M. 2.7)

t—o0

Proof. Define a non-negative function

xg yg r29+2 r29+2
Viz—++ - — 4+ 2
0 0 20+2 20+2

Electronic Research Archive Volume 32, Issue 1, 370-385.



375

Applying the generalized Ito’s formula and mathematical expectation to 'V, we obtain

E [elglvl (X, 9,71, rz)] = E[V,(x(0), y(0), r,(0), r»(0))] + fo E {L [e/lesvl (x,y, 11, rz)]} ds, (2.8)

where 1, = 6§ min{c;, ¢,}. Note that

Ay Ay Ay Ag ay
L ﬂgtv — Agt v 6 + = (7] + 20+2 29+2 + Agt _b _
Vil = e+ Y+ 5 20+22 te ¥y = b m1+mzx+m3y)
_ 20+ 1 260 + 1
+ yg(rz — ,By ) + c(F — 1) + > %gof + 2 %90'2

r29+ 1 20+1

ci(Fy —r)+r;

A 0 0+1 0 ﬁng
< e[(cr + InDx” = bx"" + (ca + [ra])y’ — oy

+ 20+ Drifot + (260 + Drdo;

C1 )
20+1 r26+2 29+2 ]

+ clflrf + CF 21 5 1
< €"y(6),
where
) 0 0+1 0 By 20 2 20 2
W(0) = sup {(c; +|riD)x” = bx"" + (¢ + |na))y” — P + Q20+ Dri’o;+ 20+ Dr5 o,

(x.y,r1,r2)ERIXR2
C1 (&)
29+l r29+2 r29+2}

+cr1r1 '+ efor; 5" e
(2.9
Combining with Eq (2.8), we obtain
\ w(6) (e - 1)
E e Vi(x,y. 71, 12)| < E[Vi(x(0),3(0), 1 (0), r2(0)] + - .
6
Then we have
lim sup E[|(x, y)I’] < 2201im sup E[V:(x,y, 71, 7)]
t—o0 t—o0
0 4] 9 /lgl - 1
< 2461im e EIV(x(0), 50), (), )] + 246 tim LD 0 19
t—oo 96
< 299@
Ag
. IC)
By setting M(6) = 9— the result (2.7) is obtained. O
Ag

Theorem 2.2. System (1.6) is stochastically ultimately bounded.

Proof. By Lemma 2.1, there exists M > 0 such that

limsup E+/|(x,y)] < M.

t—o0
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¥(0.5)°
)

4222

Now, for any € > 0, let y = V2 Then, by Chebyshev’s inequality

E 9
PGyl > ) < VI
v

Hence,

lim sup P(|(x, y)| > x) <

t—oo

= €.

SIS

2.3. Existence of the stationary distribution

In biology, a major goal is to study the behavior of systems over long periods of time. In this
part we show that there is a stationary distribution for system (1.6) which might to make long term
predictions for system (1.6) under stochastic perturbations. The sufficient conditions for the existence
of a stationary distribution of system (1.6) is established in this part. First, let us give a useful lemma.

Lemma 2.2. (Khasminskii [18]). Consider the stochastic system
dX(r) = &, X(0))dr + Z v (t, X(1))dB;(t). (2.11)
i=1

Let the vectors &(s, x), v1(S8, X), ..., vi(s,x) (s € [ty, T],x € R™) be continuous functions of (s, x) such
that, for some constants M, the following conditions hold in the entire domain of definition:

£Cs, ) = £, + D Jo(s, 0 = vi(s, )] < Mlx -y,
j=1

m (2.12)
ECs, 01+ ) [uis, 0] < M(1+ ),
=1
Moreover, there exists a non-negative function W(x) such that
LW(x) < -1 VxeR"\H, (2.13)

where H is a compact subset defined on R™ and LW(x) is the diffusion operator of the Ito process
with respect to the non-negative functions W(x) [9]. Then, the Markov process (2.11) has at least one
stationary solution X(t), which has a stationary distribution on R™.

Remark 2.1. According to Xu et al. [19] the condition (2.12) in Lemma 2.2 can be replaced by the
existence of the globally unique solution to system (1.6).

Before we begin the proof, we define some notation and make some reasonable assumptions.
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Definition 2.2. Define Ny to be a natural number that satisfies the following conditions

No ¢ (ax] \F 2+H1}min{ 1 \/E})
m

4 4
2 3 3 ciry

2 2 2 2
2(x + k)

b 1
IT; := sup {|r1|x—§x2+(|r2|+§)y—

- 3 - 3
+c1r1r1+62r2r2+§r10']+ o, - ———=}
(x,y,r1,72)ERZ XR2

22T T
Theorem 2.3. For any initial value (x(0), y(0), r1(0), r2(0)), if 7{ + 7, > 0, then system (1.6) has at least
a stationary distribution with the definition of N,.

Proof. By Theorem 2.1, it is easy to know that there is a globally unique solution to system (1.6), so
the description of R™ in the Lemma 2.2 should be changed to R? x R?. Therefore, it is only necessary
to verify that the following conditions hold:

Y (x(0), (1), 11(1), (1)) € RS X RA\HL LW (x(1), y(1), 11(1), r2(1)) < —1.

We divide the relevant proof into the following two steps.
Step 1 Define the function

r4 r4
Vo= Nol=Inx—Iny— 2 - 24 xpys L2 (2.14)
C1 C 4 4

Applying Ito’s formula, by the definition of Ny we obtain

ay By

LV, = (x = No)(r1 — bx — )+ (v = No)(ra — ——) = No(Fy — r1) = No(72 — 12)
my + myx + mzy x+k

3 3
+ clrf(fl —-r)+ czrg(fz —r)+ —r%a% + —r%o%

2 2
< =NoFy = NoF + || x = %’xz + (|| + %)y— Z(fy:k) +C1Fir + Cofars + %r%o% + %r%o% - C12_Ff
B erg B 2(fyjk) + No(bx + mﬁ3+%)_§x2_%y_% B 62_261
< 72+ Nolbs m% " %) B gxz B %y B 2(fy+2 N qzr? B szrg'

It should be noted that the function V, tends towards co as x or y approaches the boundary of R, or as

ll(x, y, r1, r2)ll = co. Consequently, there exists a point (x°, y°, /¥, r9) in the interior of R} X R?, at which

the value of function V, is minimized. A non-negative function V;3(x, y, r1, ;) may be constructed as

V3(x5y5 rl’rZ) = VZ(X,y, rlarZ) - VZ(any()’ r(1)9 r(z))'

Combining with Ito’s formula, we have

@ Py By b, 1 arl an
LVs < =2 + No(bx + - - _2p oy A 2 2.15
yE 2 Nbx et ) T 2 2T 2 2.15)
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Step 2 Considering a closed set H, in the form

1 1 11 11
H, = (x,y,rl,rz)ERiszlxe €, — ,VE et — ,rneEl—,—.mel|l———1¢,
€2 et € € € €

we define

By b, 1 BY? carf  cr)
I1, := No(bx + — + o y— _ _ '
? (x,y,rl,iSERisz{ 0( o ms X+ k) 4x 4y 2(X + k) 4 4 }

Let € € (0, 1) be a sufficiently small number such that the following inequalities hold:

min{b, 1, cy, o} 1

2 +1I, - (=)< -1 (2.16)
4 €
1
2 I N B <. (2.17)
2 mi k
—2 + Nobé> < —1. (2.18)

After that, we will verify LV,(x,y,r;,rn) < —1 for any (x,y,r,7) € (R%r X RZ) \H.. Noting that
(R < R?) \HL = UL, B

1 1
Hi€={(x,y,rl,rz)ERixR2IXE(—Z,OO)},HEE {(x y,r1,12) € R? szlye(g,oo)},
: €
c 2 2 1 c 2 2 1
H3, ={(x,y,r1,m) EREXR [ |r| €| = = JHy = (6, r1,1) EREXR [ || € pt 00
HS, = {(y.ri.m) € R2xR? | x € (0.€)} HE, = {(x.y.r1.r2) e R2 xR |y € (0.€')}.

Below we will prove that when (x, y, ry, ,) belongs to the complement of H in (R_zF x R?), the value of
LVj is less than or equal to —1. The proof can be discussed in five cases.

Case 1If (x, y, r, 1) is located in the set defined by }H[C’e, then one can obtain the corresponding results
by combining equation (2.15) and (2.16).

b
LVs(x, y,rl,r2)<—2+H2—Zx 2+H2——( )< —1. (2.19)

Case 2 If (x,y,ry, 1) is located in the set defined by HC’E, it follows that similar conclusions could be
calculated from (2.15) and (2.16).

1 11
LV3(X,)’, r, 7'2) < -2+ II, — Zy < -2+ II, — Z(—4) < -1. (220)
€

Case 3 If (x,y, r1, rp) is located in the set defined by HC’E, consequently, from (2.15) and (2.16), we can
obtain the relevant result.

min{cl, Cg} 1

LV3(X,)7,’”1,V2)§—2+H2——V1 < 2+H2— (_)S—l (221)
4 4 et
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Case 4 If (x,y,r, 1) lie within the set demarcated by HC’E, the relevant conclusions can be deduced
through (2.15) and (2.16).

min{cl, 02} 1

LV3(x,y,r1,12) < 2+H2_Zr2< -2 +1I, - 2 (g)s—l. (2.22)

Case 5 In the event that (x,y, ry, r,) is situated within the set defined by HS . the associated findings
could be calculated by (2.15) and (2.18).

Now N,
LV5(x,y, 11, 12) < =2 + Nobx — (— _ e Lﬂ) <24 Nobx < =2+ Nobe* < -1.  (2.23)
ny

Case 6 If the point (x, y, r1, ;) belongs to the complement of the set Hy _, then we can use equations
(2.15) and (2.17) to compute the relevant results.

1 1
LV3(x,y, 71, 72) < =2 + =No2b + No(-= + é)y <ot NN+ Bt <1 224
2 m; k 2 m;  k

We summarize the above cases and, by Eqs (2.15)—(2.17), it can be concluded that there exists a
sufficiently small constant € such that LV;(x,y, ry,r,) < —1 for any (x,y,ry, 1) € (Ri X RZ) \H,, where

€ satisfies LV3(x,y, ri, ;) < —1 for any (x,y,r, 1) € (Ri X Rz) \H, where € satisfies that

_ 1N02b
€ < min{1 for any I, < 1. (2.25)
Nob No(
And, for any I1, > 1, we set
. min{l, b, ¢y, c2}
< 1, . 2.26
€ < min{ \/ X, - D) } ( )

According to the discussion above, condition (2.13) in Lemma 2.2 is verified. Therefore, system (1.6)
has at least a stationary distribution. O

2.4. Extinction

Theorem 2.4. For any initial value (x(0), y(0), r1(0), r,(0)) € Ri XR2, the solution (x(1), y(t), ri(t), r>(t))
of system (1.6) has the property that

In x(¢ In y(¢
lim sup nx(1) <7, limsup ny(©) < 7.
t— o0 1—o00
In particular, if /i < 0,7, <0, then x(t), y(t) are extinct.
Proof. Applying the Itd formula to In x(¢), In y(¢), we can get
ay()
dInx(z) = 1) — bx(1) — dz,
nx (”( ) ) + may(t))

By(1) ) d&t

dlny(r) = (rz - Ok
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Integrating from O to 7, we have

_ t _ _ ay(s)
In x(7) = In x(0) + fo (rl(s) ba(s) = e m3y(s)) ds, 2.27)
Iny(#) = Iny(0) + fo (rz - x(ﬂ sy)(i) k)ds (2.28)

Then, combining the strong law of large numbers [20] and the definition of the Ornstein—Uhlenbeck
process, we have

t—0o

1 [ 1 [
lim — ri(s)ds = 7, lim — f ry(s)ds = 7.
t 0 t—oo f 0

According to (2.25) and (2.26), we obtain

In x(¢) < In x(0) + f ri(s)ds, Iny(r) < Iny(0) + f ry(s)ds.
0 0

Then,
A
In x(t ri(s)ds
lim sup —— () slimsupfol—:fl,
t—00 t—00 t
Iy i ra(s)ds
lim sup —t < lim sup —t = 7.
t—o00 t—o00

When 7, < 0,7, < 0, implying lim x(¢) = 0,lim y(¢#) = 0, then x(¢), y(#) are extinct. Theorem 2.4 is
—o0 >0
proved. O

2.5. Numerical simulations

In this section, we will use computer simulations to verify our conclusions. Using the Milstein
higher order method [21], we obtain the discretization equation for system (1.6). The corresponding
discretization equation is as

. . . ; . j
X/ =xf+xf( ! — bx/ — L)At
my+mpx/+m3y’

= y/ +y/ (r’ - m) At

j+1

(2.29)

r —r1+ c1(r —rl) At + o VA,
j+1
ry =1+ e - r2) At + 0y VAL

where At > 0 denotes the time increment, and n; and ¢; are two independent stochastic variables
which follow the Gaussian distribution N(0, 1). Besides, (x/,y, rl, rz) is the corresponding value of
the jth iteration of the discretization Eq (2.29). We will use some different combinations of biological
parameters in Table 1 to simulate.

From Tables 1 and 2, we choose the combination (A;) as the value of the biological parameters
of system (1.6). Obviously, the existence and uniqueness of a solution of system (1.6) is shown (see
Figure 1). We choose the combination (A,) as the parameters of system (1.6), the result of Figure 2
demonstrates the 6¢th order moments of the solutions of system (1.6) are bounded, and system (1.6)
is ultimately bounded. Then, we choose the combination ((A3) as the biological parameters of system
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Table 1. List of biological parameters in system (1.6).

Parameter Description

2] Average growth rate of Prey

) Average growth rate of Predator

b Intraspecific competition coefficient of Prey

B The amount of food provided by Prey for the birth of Predator
o’ The maximum of the average reduction rate of food Prey
k A factor measuring the degree of protection to Predator
c1 The reversion speed of ry

CH The reversion speed of r,

o The intensity of volatility of r,

o The intensity of volatility of r,

Table 2. Several combinations of biological parameters of system (1.6) in Table 1.

Combinations Value

(A r=01,7n=02,b=01,a=02,m =1, m=1,m=1,=1,k=1
c1=0.3,¢,=0.5,0, =0.01, 0, =0.01

(A) rn=02,77»=03b=01,a=02m=1,m=1,m=1,=1,k=1
Cc1 = 03, Cy) = 05, g1 = 001, Oy = 0.01

(Az) rn=02,rn=04,b=01,a=02m=1,m=1,m=1,=1,k=1
Cc1 = 04, Cy = 05, g = 001, gy = 0.02

(As) r=-001,=02,b=01,a=02,m=1m=1,m=1,=1,k=1
Cc1 = 03, Cy) = 05, g1 = 001, 0y = 0.01

(As) r1=001,7=-002,b=01,a=02,m =1, m=1,m=1,=1,k=1

Cc1 = 03, Cy = 05, g = 001, ) = 0.01

(1.6), and the stationary distribution is explained in Figure 3. Finally, we simulated the extinction of
system (1.6) using the parameter combination (A4, As) (see Figure 4).

1.0

0.3 — () — Prey
' — ra(t) — Predator

0.8
0.6
0.4

0.0

ri(t), ra(t)

0 500 1000 1500 2000 0 500 1000 1500 2000
Time t Time t

Figure 1. Computer simulations of r;, r, and the population of system (1.6) with stochastic

noises (01,0,) = (0.01,0.01). The relevant parameters are determined by the combination
(A).
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0.68

0.64

0.60

0.56

M

1000
Time t

1500 2000

a

0.8

0.6

0.4

0.2

0.0

500 1000
Time t

1500

2000

Figure 2. Computer simulations of 6th order of solutions of system (1.6), which found an
upper bound M = 0.71. System (1.6) is ultimately bounded with probability below 0.8. The
relevant parameters are determined by the combination (A,).
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Figure 3. Computer simulations of stationary distributions of system (1.6). The relevant
parameters are determined by the combination (Aj3).
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Figure 4. The computer simulated the extinction of the system. When 7; < 0, the prey goes
extinct, and when 7, < 0, the predator goes extinct. All simulation parameters were selected
from combinations (Ay) and (As).

3. Discussion

This paper first introduced a two-species Leslie-Gower model and further reviewed the seminal
work of previous scholars using these models to simulate the stochastic effects of population systems.
The use of Ornstein-Uhlenbeck enables a more realistic simulation of the stochastic properties of the
environment with a relatively stable pattern of variation compared to the methods in [5—7], which are

using standard white noise.
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Therefore, we considered and studied a class of Leslie-Gower models that contain Ornstein-
Uhlenbeck and Beddington-DeAngelis functional responses in system (1.6).

We have proven many important theoretical results of system (1.6), including the existence and
uniqueness of solutions, the ultimate boundedness, the existence of stationary distributions, and the
extinction of the populations. We verified the correctness of related conclusions using numerical simu-
lation methods. These theoretical contributions serve to enrich the theory of population dynamics and
establish a mathematical basis for the practical application of population dynamics changes.

In summary, this paper proposes and studies a Leslie-Gower population model with environmental
fluctuations containing the Ornstein-Uhlenbeck mean-reverting process. This model can describe the
stochastic changes in environmental conditions more accurately than previous population models and
serves to enrich the theoretical study of the impact of random environmental factors on population
dynamics.
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