Using the approach of so-called c-sequences introduced by the fifth author in his recent work, we give much simpler and shorter proofs of multivalued Perov's type results with respect to the ones presented in the recently published paper by M. Abbas et al. Our proofs improve, complement, unify and enrich the ones from the recent papers. Further, in the last section of this paper, we correct and generalize the well-known Perov's fixed point result. We show that this result is in fact equivalent to Banach's contraction principle.
Citation: Ana Savić, Nicola Fabiano, Nikola Mirkov, Aleksandra Sretenović, Stojan Radenović. Some significant remarks on multivalued Perov type contractions on cone metric spaces with a directed graph[J]. AIMS Mathematics, 2022, 7(1): 187-198. doi: 10.3934/math.2022011
Using the approach of so-called c-sequences introduced by the fifth author in his recent work, we give much simpler and shorter proofs of multivalued Perov's type results with respect to the ones presented in the recently published paper by M. Abbas et al. Our proofs improve, complement, unify and enrich the ones from the recent papers. Further, in the last section of this paper, we correct and generalize the well-known Perov's fixed point result. We show that this result is in fact equivalent to Banach's contraction principle.
[1] | M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric space, J. Math. Anal. Appl., 341 (2008), 416–420. doi: 10.1016/j.jmaa.2007.09.070. doi: 10.1016/j.jmaa.2007.09.070 |
[2] | M. Abbas, B. E. Rhoades, T. Nazir, Common fixed points of generalized contractive multivalued mappings in cone metric spaces, Math. Commun., 14 (2009), 365–378. Available from: https://hrcak.srce.hr/44029. |
[3] | M. Abbas, B. E. Rhoades, Fixed point theorems for two new classes of multivalued mappings, Appl. Math. Lett., 22 (2009), 1364–1368. doi: 10.1016/j.aml.2009.04.002. doi: 10.1016/j.aml.2009.04.002 |
[4] | M. Abbas, T. Nazir, V. Rakočević, Common fixed points results of multivalued Perov type contractions on cone metric spaces with a directed graph, Bull. Belg. Math. Soc. Simon Stevin, 25 (2018), 331–354. doi: 10.36045/bbms/1536631231. doi: 10.36045/bbms/1536631231 |
[5] | S. Aleksić, Z. Kadelburg, Z. D. Mitrović, S. Radenović, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst., 9 (2019), 93–121. doi: 10.7251/JIMVI1901093A. doi: 10.7251/JIMVI1901093A |
[6] | C. D. Aliprantis, R. Tourky, Cones and Duality, Graduate Studies in Mathematics 84, American Mathematical Society, Providence, RI, (2007). |
[7] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181. doi: 10.4064/fm-3-1-133-181 |
[8] | K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985. |
[9] | F. Vetro, S. Radenović, Some results of Perov type on rectangular cone metric spaces, J. Fixed Point Theory Appl., 20, Article number: 41 (2018). doi: 10.1007/s11784-018-0520-y. |
[10] | G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. Vol., 16 (1973), 201–206. doi: 10.4153/CMB-1973-036-0. doi: 10.4153/CMB-1973-036-0 |
[11] | L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. doi: 10.1016/j.jmaa.2005.03.087. doi: 10.1016/j.jmaa.2005.03.087 |
[12] | J. Jachymski, J. Klima, Cantor's intersection theorem for K-metric spaces with a solid cone and a contraction principle, J. Fixed Point Theory Appl., 18 (2016), 445–463. doi: 10.1007/s11784-016-0312-1. doi: 10.1007/s11784-016-0312-1 |
[13] | J. Jachymski, J. Klima, Around Perov's fixed point theorem for mappings on generalized metric spaces, Fixed Point Theory, 17 (2016), 367–380. |
[14] | S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: A survey, Nonlinear Anal., 74 (2011), 2591–2601. doi: 10.1016/j.na.2010.12.014. doi: 10.1016/j.na.2010.12.014 |
[15] | G. S. Jeong, B. E. Rhoades, Maps for which $F\left(T\right) = F\left(T^n\right)$, In: Fixed Point Theory and Applications, Volume 6 (Eds. Yeol Je Cho et al.), Nova Science Publishers, Inc., (2007), 71–105. ISBN 1-59454-873-0. |
[16] | G. S. Jeong, B. E. Rhoades, More maps for which $F\left(T\right) = F\left(T^n\right), $ Demonstr. Math., 40 (2006), 671–680. doi: 10.1515/dema-2007-0317. |
[17] | G. Jungck, S. Radenović, S. Radojević, V. Rakoč ević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl., 2009, Article ID 643840, 1–13. doi: 10.1155/2009/643840. |
[18] | Z. Kadelburg, S. Radenović, A note on various types of cones and fixed point results in cone metric spaces, Asian J. Math. Appl., 2013, Article ID ama0104. |
[19] | A. Latif, I. Beg, Geometric fixed points for single and multivalued mappings, Demonstr. Math., 30 (1997), 791–800. doi: 10.1515_dema-1997-0410. |
[20] | N. Mirkov, S. Radenović, S. Radojević, Some new observations for F-contractions in vector-valued metric spaces of Perov's type, Axioms, 10 (2021), 127. doi: 10.3390/axioms10020127. doi: 10.3390/axioms10020127 |
[21] | A. I. Perov, On Cauchy problem for a system of ordinary differential equations, Pvibllizhen. Met. Reshen. Differ. Uravn., 2 (1964), 115–134. |
[22] | S. Radenović, F. Vetro, S. Xu, Some results of Perov type mappings, J. Adv. Math. Stud., 10 (2017), 396–409. |
[23] | S. Radenović, F. Vetro, Some remarks on Perov type mappings in cone metric spaces, Mediterr. J. Math., 14 (2017), Article number: 240 (2017). doi: 10.1007/s00009-017-1039-y. |
[24] | B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1997), 257–290. doi: 10.1090/S0002-9947-1977-0433430-4. doi: 10.1090/S0002-9947-1977-0433430-4 |
[25] | I. A. Rus, A. Petrusel, A. Sintamarian, Data dependence of fixed point set of some multivalued weakly Picard operators, Nonlinear Anal., 52 (2003), 1944–1959. doi: 10.1016/S0362-546X(02)00288-2. doi: 10.1016/S0362-546X(02)00288-2 |
[26] | S. Xu, Ć. Dolićanin, S. Radenović, Some remarks on results of Perov type, J. Adv. Math. Stud., 9 (2016), 361–369. |
[27] | P. P. Zabrejko, K-metric and K-normed linear spaces; survey, Collect. Math., 48 (1997), 825–859. Available from: http://eudml.org/doc/41051. |