Research article

Frenet curves in 3-dimensional δ-Lorentzian trans Sasakian manifolds

  • In this paper, we give some characterizations of Frenet curves in 3-dimensional δ-Lorentzian trans-Sasakian manifolds. We compute the Frenet equations and Frenet elements of these curves. We also obtain the curvatures of non-geodesic Frenet curves on 3-dimensional δ-Lorentzian trans-Sasakian manifolds. Finally, we give some results for these curves.

    Citation: Muslum Aykut Akgun. Frenet curves in 3-dimensional δ-Lorentzian trans Sasakian manifolds[J]. AIMS Mathematics, 2022, 7(1): 199-211. doi: 10.3934/math.2022012

    Related Papers:

    [1] Haiming Liu, Xiawei Chen, Jianyun Guan, Peifu Zu . Lorentzian approximations for a Lorentzian $ \alpha $-Sasakian manifold and Gauss-Bonnet theorems. AIMS Mathematics, 2023, 8(1): 501-528. doi: 10.3934/math.2023024
    [2] Haiming Liu, Jiajing Miao . Gauss-Bonnet theorem in Lorentzian Sasakian space forms. AIMS Mathematics, 2021, 6(8): 8772-8791. doi: 10.3934/math.2021509
    [3] B. B. Chaturvedi, Kunj Bihari Kaushik, Prabhawati Bhagat, Mohammad Nazrul Islam Khan . Characterization of solitons in a pseudo-quasi-conformally flat and pseudo- $ W_8 $ flat Lorentzian Kähler space-time manifolds. AIMS Mathematics, 2024, 9(7): 19515-19528. doi: 10.3934/math.2024951
    [4] Mehmet Gülbahar . Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085
    [5] Süleyman Şenyurt, Filiz Ertem Kaya, Davut Canlı . Pedal curves obtained from Frenet vector of a space curve and Smarandache curves belonging to these curves. AIMS Mathematics, 2024, 9(8): 20136-20162. doi: 10.3934/math.2024981
    [6] Beyhan YILMAZ . Some curve pairs according to types of Bishop frame. AIMS Mathematics, 2021, 6(5): 4463-4473. doi: 10.3934/math.2021264
    [7] Mohd Danish Siddiqi, Fatemah Mofarreh . Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds. AIMS Mathematics, 2024, 9(12): 36069-36081. doi: 10.3934/math.20241711
    [8] Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan . Contact CR $ \delta $-invariant: an optimal estimate for Sasakian statistical manifolds. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416
    [9] Ayşe Yavuz, Melek Erdoǧdu . Non-lightlike Bertrand W curves: A new approach by system of differential equations for position vector. AIMS Mathematics, 2020, 5(6): 5422-5438. doi: 10.3934/math.2020348
    [10] Sezai Kızıltuǧ, Tülay Erişir, Gökhan Mumcu, Yusuf Yaylı . $ C^* $-partner curves with modified adapted frame and their applications. AIMS Mathematics, 2023, 8(1): 1345-1359. doi: 10.3934/math.2023067
  • In this paper, we give some characterizations of Frenet curves in 3-dimensional δ-Lorentzian trans-Sasakian manifolds. We compute the Frenet equations and Frenet elements of these curves. We also obtain the curvatures of non-geodesic Frenet curves on 3-dimensional δ-Lorentzian trans-Sasakian manifolds. Finally, we give some results for these curves.



    The differential geometry of curves especially in contact and para-contact manifolds studied by several authors. Olszak [16], derived certain necessary and sufficient conditions for an almost contact metric (a.c.m) structure on M to be normal and point out some of their consequences. Olszak completely characterized the local nature of normal a.c.m. structures on M by giving suitable examples. Moreover Olszak gave some restrictions on the scalar curvature in contact metric manifolds which are conformally flat or of constant ϕ-sectional curvature in [15].

    Welyczko [21], generalized some of results for Legendre curves to the case of 3-dimensional normal almost contact metric manifolds, especially, quasi-Sasakian manifolds. Welyczko [20], studied the curvature and torsion of slant Frenet curves in 3-dimensional normal almost paracontact metric manifolds.

    Curvature and torsion of Legendre curves in 3-dimensional (ε,δ) trans-Sasakian manifolds was obtained in [1]. Lee defined Lorentzian cross product in a three-dimensional almost contact Lorentzian manifold. Using a Lorentzian cross product, Lee proved that the ratio of κ and τ-1 is constant along a Frenet slant curve in a Sasakian Lorentzian three-manifold. Moreover, Lee proved that γ is a slant curve if and only if M is Sasakian for a contact magnetic curve γ in contact Lorentzian three-manifold M in[11]. Lee, also gave the properties of the generalized Tanaka-Webster connection in a contact Lorentzian manifold in [12].

    Yıldırım [22] obtained curvatures of non-geodesic Frenet curves on 3-dimensional normal almost contact manifolds without neglecting α and β, and provided the results of their characterization.

    Trans-Sasakian structure on a manifold with Lorentzian metric and conformally flat Lorentzian trans-Sasakian manifolds was studied in [19].

    Siddiki [17] studied δ-Lorentzian trans-Sasakian manifolds with a semi-symmetric-metric connection and computed curvature tensors, Ricci curvature tensors and scalar curvature of the δ-Lorentzian trans-Sasakian manifold with a semi-symmetric-metric connection.

    In this framework, the paper is organized in the following way. In section 2, we give basic definitions and propositions of a δ-Lorentzian trans-Sasakian manifold. We give the Frenet-Serret equations of a curve in Lorentzian 3-manifold. In section 3, we obtain an orthonormal basis {e1,e2,e3} by using the basis (ζ,φζ,ξ) for the curve ζ in a 3-dimensional δ-Lorentzian trans-Sasakian manifold. Also we calculate the Frenet elements of a non-geodesic Frenet curve, slant curve and Legendre curve in this manifold. Then, we give the curvatures of the curve ζ on some kinds of δ-Lorentzian manifolds. In the last section, we give some examples for the spacelike curves on a 3-dimensional δ-Lorentzian trans-Sasakian manifold.

    Let ˉN be a δ-almost contact metric manifold equipped with δ-almost contact metric structure (φ,ξ,η,ˉg,δ) consisting of (1, 1) tensor field φ, a vector field ξ, a 1-form η and an indefinite metric ˉg such that

    φ2=U+η(U)ξ,   η(ξ)=1, (2.1)
       φ(ξ)=0,   ηφ=0, (2.2)
    ˉg(ξ,ξ)=δ, (2.3)
    η(U)=δˉg(U,ξ), (2.4)
    ˉg(φU,φV)=ˉg(U,V)+δη(U)η(V), (2.5)

    for all U,VˉN, where δ2=1 so that δ=1. The above structure (φ,ξ,η,ˉg,δ) is called the δ-Lorentzian structure on ˉN. If δ=1, then the manifold becomes the usual Lorentzian structure[2] on ˉN, the vector field ξ is timelike [18].

    In the classification of almost Hermitian manifolds, there appears a class W4 of Hermitian manifolds which are closely related to the conformal Kaehler manifolds [17]. The class C6C5 coincides with the class of trans-Sasakian structue of type (α,β) [13]. In fact, the local nature of the two sub classes, namely C6 and C5 of trans-Sasakian structures are charactrized completely. An almost contact metric structure on ˉN is called trans-Sasakian if (ˉN×,J,G) belongs to the class W4, where J is the almost complex structure on ˉN× defined by

    J(U,fddt)=(φUfξ,η(U)ddt), (2.6)

    for all vector fields U on ˉN and smooth functions f on ˉN× and G is the product metric on ˉN×. This may be expressed by the condition

    (Uφ)V=α(ˉg(U,V)ξη(V)U)+β(ˉg(φU,V)ξη(V)φU), (2.7)

    for any vector fields U and V on ˉN, denotes the Levi-Civita connection with respect to ˉg, α and β are smooth functions on ˉN [17]. The existence of condition (2.3) is ensure by the above discussion.

    With the above literature, the δ-Lorentzian trans-Sasakian manifolds are defined as follows.

    Definition 2.1. [2] A δ-Lorentzian manifold with structure (φ,ξ,η,ˉg,δ) is said to be δ-Lorentzian trans-Sasakian manifold of type (α,β) if it satisfies the condition

    (Uφ)V=α(ˉg(U,V)ξδη(V)U)+β(ˉg(φU,V)ξδη(V)φU), (2.8)

    for any vector fields U and V on ˉN.

    If δ = 1, then the δ-Lorentzian trans-Sasakian manifold becomes the usual Lorentzian trans-Sasakian manifold of type (α,β) [17]. δ-Lorentzian trans-Sasakian manifold of type (0,0), (0,β), (α,0) are the Lorentzian cosymplectic, Lorentzian β-Kenmotsu and Lorentzian α-Sasakian manifolds respectively. In particular if α=1, β=0 and α=0, β=1, a δ-Lorentzian trans-Sasakian manifold reduces to a δ-Lorentzian Sasakian manifold and a δ-Lorentzian Kenmotsu manifold respectively.

    From (2.4), we have

    Uξ=δ(αφ(U)β(U+η(U)ξ)), (2.9)

    and

    (Uη)V=αˉg(φU,V)+β[ˉg(U,V)+δη(U)η(V)]. (2.10)

    Further for a δ-Lorentzian trans-Sasakian manifold, we have

    δφ(gradα)=δ(n2)(gradβ), (2.11)

    and

    2αβδ(ξα)=0. (2.12)

    Let ζ:IˉN be a unit speed curve in Lorentzian 3-manifold ˉN such that ˉg(ζ,ζ)=ε1=1. The constant ε1 is called the casual character of ζ. The constants ε2 and ε3 defined by ˉg(n,n)=ε2 and ˉg(b,b)=ε3 and called the second casual character and third casual character of ζ, respectively. Thus we have ε1ε2=ε3.

    A unit speed curve ζ is said to be spacelike or timelike if its casual character is 1 or -1, respectively. A unit speed curve ζ is said to be a Frenet curve if ˉg(ζ,ζ)0. A Frenet curve ζ admits an orthonormal frame field {t=ζ,n,b} along ζ. Then the Frenet-Serret equations are given as follows

    ζt=ε2κn,ζn=ε1κtε3τb,ζb=ε2τn, (2.13)

    where κ=|ζζ| is first curvature and τ is second curvature of ζ [11]. The vector fields t, n and b are called the tangent vector field, the principal normal vector field and the binormal vector field of ζ, respectively.

    A Frenet curve ζ is a geodesic if and only if κ=0. A Frenet curve ζ with constant first curvature and zero second curvature is called a pseudo-circle. A pseudo-helix is a Frenet curve ζ whose curvatures are constant.

    A curve in a Lorentzian three-manifold is said to be slant if its tangent vector field has constant angle with the Reeb vector field, i.e., η(ζ)=ˉg(ζ,ξ)=constant. If η(ζ)=ˉg(ζ,ξ)=0, then the curve ζ is called a Legendre curve[11].

    In this section, we consider a 3-dimensional δ-Lorentzian trans-Sasakian manifold ˉN. Let ζ:IˉN be a non-geodesic (κ0) Frenet curve given with the arc-parameter s and ˉ be the Levi-Civita connection on ˉN. From the basis (ζ,φζ,ξ) we obtain an orthonormal basis {e1,e2,e3} given by

    e1=ζ,e2=φζε1+δρ2,e3=ε1ξ+δρζε1+δρ2, (3.1)

    where

    η(ζ)=δˉg(ζ,ξ)=δρ. (3.2)

    Then if we write the covariant differentiation of ζ as

    ˉζe1=νe2+μe3, (3.3)

    where ν is a certain function.

    ν=ˉg(ˉζe1,e2). (3.4)

    Moreover we obtain

    μ=ˉg(ˉζe1,e3)=δρε1+δρ2ε1δβε1+δρ2, (3.5)

    where ρ(s)=dρ(ζ(s))ds. Then we find

    ˉζe2=νe1+δ(ε1α+ρνε1+δρ2)e3, (3.6)

    and

    ˉζe3=μe1δ(ε1α+ρνε1+δρ2)e2. (3.7)

    The fundamental forms of the tangent vector ζ on the basis of the Eq (3.1) is

    [ωij(ζ)]=[0νμν0δ(ε1α+ρνε1+δρ2)μδ(ε1α+ρνε1+δρ2)0], (3.8)

    and the Darboux vector connected to the vector ζ is

    ω(ζ)=δ(ε1α+ρνε1+δρ2)e1μe2+νe3. (3.9)

    So we can write

    ˉζei=ω(ζ)εiei    (1i3). (3.10)

    Furthermore, for any vector field Z=3i=1θieiχ(ˉN) strictly dependent on the curve ζ on ˉN, there exists the following equation

    ˉζZ=ω(ζ)Z+δ3i=1εiei[θi]ei. (3.11)

    Let ζ:IˉN be a non-geodesic (κ0) Frenet curve given with the arc parameter s and the elements {t,n,b,κ,τ}. The Frenet elements of this curve are calculated as follows:

    If we consider the Eq (3.3), then we get

    ε2κn=ˉζe1=νe2+μe3. (3.12)

    From the Eqs (3.5) and (3.12) we find

    κ=ν2+(δρε1+δρ2ε1δβε1+δρ2)2. (3.13)

    On the other hand

    ˉζn=(νε2κ)e2+νε2κζe2+(με2κ)e3+με2κζe3 (3.14)
    =ε1κtε3τB. (3.15)

    By means of the Eqs (3.6) and (3.7) we obtain

    ε3τB=[(νε2κ)δμε2κ(ε1α+ρνε1+δρ2)]e2+[(με2κ)+δνε2κ(ε1α+ρνε1+δρ2)]e3. (3.16)

    By a direct computation we find

    [(νε2κ)]2+[(με2κ)]2=[(νε2κ)με2κνε2κ(με2κ)]2. (3.17)

    Taking the norm of the last equation and if we consider the Eqs (3.5) and (3.16) on (3.15) we obtain

    τ=|δ(ε1α+ρνε1+δρ2)[(νε2κ)]2+[(δρε1+δρ2ε1δβε1+δρ2ε2κ)]2|. (3.18)

    Moreover we can write the Frenet vector fields of ζ as in the following theorem.

    Theorem 3.1. Let ˉN be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a Frenet curve on ˉN. The Frenet vector fields t, n and b are in the form of

    t=ζ=e1,n=νε2κe2+με2κe3,b=1ε3τ[(νε2κ)δμε2κ(ε1α+ρνε1+δρ2)]e21ε3τ[(με2κ)+δνε2κ(ε1α+ρνε1+δρ2)]e3. (3.19)

    Moreover we have

    ξ=δε1ρt+δμε1+δρ2ε2κnδε1+δρ2ε3τ[(με2κ)δνε2κ(ε1α+ρνε1+δρ2)]b. (3.20)

    Let ζ be non-geodesic Frenet curve given with the arc-parameter s in 3-dimensional δ-Lorentzian trans-Sasakian manifold ˉN. So we can give the following theorem.

    Theorem 3.2. Let ˉN be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a Frenet curve on ˉN. ζ is a slant curve (ρ=η(ζ)=cosθ=constant) on ˉN if and only if the Frenet elements {t,n,b,κ,τ} of ζ are as follows.

    t=e1=ζ,n=e2=φζε1+δcos2θ,b=e3=ε1ξ+δcosθζε1+δcos2θ,κ=β2(ε1+δcos2θ)+ν2, (3.21)
    τ=|δ(ε1α+cosθνε1+δcos2θ)[(νε2κ)]2+[(ε1δβε1+δcos2θε2κ)]2|.

    Proof. Let the curve ζ be a slant curve in 3-dimensional δ-Lorentzian trans-Sasakian manifold ˉN. If we take into account the condition ρ=η(ζ)=cosθ=constant in the Eqs (3.1), (3.13) and (3.17) we find (3.21). If the equations in (3.21) hold, from the definition of slant curves it is obvious that the curve ζ is a slant curve.

    If we consider the Theorem (3.1), we can give the following corollaries.

    Corollary 3.1. Let ˉN be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a slant curve on ˉN. If the first curvature κ is non-zero constant, then ζ is a pseudo-helix with τ=|δ(ε1α+cosθνε1+δcos2θ)|.

    Corollary 3.2. Let ˉN be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a slant curve on this manifold ˉN. If κ is not constant and τ=0, then, ζ is a plane curve and the following equation satisfies

    ˉg(ζe2,e3)=ν2(βν)ε1+δcos2θν2+β2(ε1+δcos2θ). (3.22)

    Theorem 3.3. Let ˉN be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a spacelike Frenet curve on ˉN. ζ is a Legendre curve(ρ=η(ζ)=0) in this manifold if and only if the Frenet elements {t,n,b,κ,τ} of ζ satisfy the following equations:

    t=e1=ζ,n=e2=φζ,b=e3=ξ,κ=ν2+β2,τ=|δα+[(νε2κ)]2+[(βε2κ)]2|. (3.23)

    Proof. Let the curve ζ be a Legendre curve 3-dimensional δ-Lorentzian trans-Sasakian manifold ˉN. If we take into account the condition ρ=η(ζ)=0 in the Eqs (3.1), (3.13) and (3.17) we find (3.23). If the equations in (3.23) hold, from the definition of Legendre curves it is obvious that the curve ζ is a Legendre curve on ˉN.

    Corollary 3.3. Let the curve ζ be a Legendre curve in 3-dimensional δ-Lorentzian trans-Sasakian manifold ˉN. If κ is non-zero constant and τ is equal to zero, then ζ is a plane curve and α=0.

    If we consider the Eqs (3.13) and (3.17) and theorem (3.1) we can give the following corollaries.

    Corollary 3.4. Let ˉN be a 3-dimensional δ-Lorentzian trans-Sasakian manifold and ζ be a Frenet curve on this manifold ˉN. The first curvature of the curve ζ is not dependent on α and β.

    Corollary 3.5. From the Eqs (3.13) and (3.17) the first curvature and the second curvature of ζ on 3-dimensional δ-Lorentzian cosymplectic manifold ˉN are

    κ=ν2+(δρε1+δρ2)2, (3.24)

    and

    τ=|δρνε1+δρ2[(νε2κ)]2+[(δρε2κε1+δρ2)]2|. (3.25)

    i) If the curve ζ in 3-dimensional δ-Lorentzian cosymplectic manifold ˉN is a slant curve, then we have

    κ=ν    and   τ=|δνcosθε1+δcos2θ|. (3.26)

    ii) If the curve ζ in 3-dimensional δ-Lorentzian cosymplectic manifold ˉN is a Legendre curve, then we have

    κ=ν    and   τ=0. (3.27)

    Corollary 3.6. Let ζ be a curve on 3-dimensional δ-Lorentzian β-Kenmotsu manifold ˉN. Then, the first and second curvatures of ζ are

    κ=ν2+(δρε1+δρ2ε1δβε1+δρ2)2, (3.28)

    and

    τ=|δρνε1+δρ2[(νε2κ)]2+[(δρε1+δρ2ε1δβε1+δρ2ε2κ)]2|.

    If the curve ζ is a slant curve on ˉN, then we have

    κ=ν2+β2(ε1+δcos2θ), (3.29)
    τ=|δνcosθε1+δcos2θ[(νε2κ)]2+[(ε1δβε1+δcos2θε2κ)]2|.

    If the curve ζ is a Legendre curve on ˉN, then we have

    κ=ν2+ε1β2    and   τ=[(νε2κ)]2+ε1[(βκ)]2. (3.30)

    Corollary 3.7. Let ζ be a curve on 3-dimensional δ-Lorentzian α-Sasakian manifold ˉN. Then, the first curvature and the second curvature of ζ are

    κ=ν2+(δρε1+δρ2)2, (3.31)

    and

    τ=|δ(ε1α+ρνε1+δρ2)[(νε2κ)]2+[(δρε2κε1+δρ2)]2|.

    The curvatures of ζ are

    κ=ν    and   τ=|δ(ε1α+νcosθε1+δcos2θ)|, (3.32)

    where ζ is a slant curve in 3-dimensional δ-Lorentzian α-Sasakian manifold ˉN and

    κ=ν    and   τ=|ε1δα|, (3.33)

    where ζ is a Legendre curve in 3-dimensional δ-Lorentzian α-Sasakian manifold ˉN.

    Corollary 3.8. From the Eqs (3.13) and (3.17) the first curvature and the second curvature of ζ on 3-dimensional δ-Lorentzian Kenmotsu manifold ˉN are

    κ=ν2+(δρε1+δρ2ε1δε1+δρ2)2, (3.34)

    and

    τ=|δρνε1+δρ2[(νε2κ)]2+[(δρε1+δρ2ε1δε1+δρ2ε2κ)]2|.

    i) If the curve ζ in 3-dimensional δ-Lorentzian Kenmotsu manifold ˉN is a slant curve, then we obtain

    κ=ν2+ε1+δcos2θ, (3.35)
    τ=|δνcosθε1+δcos2θ[(νε2κ)]2+[(ε1δε1+δcos2θε2κ)]2|.

    ii) If the curve ζ in 3-dimensional δ-Lorentzian Kenmotsu manifold ˉN is a Legendre curve, then we have

    κ=ν2+ε1    and   τ=[(νε2κ)]2+ε1[(κκ)]2. (3.36)

    Corollary 3.9. Let ζ be a curve on 3-dimensional δ-Lorentzian Sasakian manifold ˉN. Then, the first and second curvatures of ζ are

    κ=ν2+(δρε1+δρ2)2, (3.37)

    and

    τ=|δ(ε1+ρνε1+δρ2)[(νε2κ)]2+[(δρε2κε1+δρ2)]2|.

    If the curve ζ is a slant curve on ˉN, then we have

    κ=ν    and   τ=|δ(ε1+νcosθε1+δcos2θ)|. (3.38)

    If the curve ζ is a Legendre curve on ˉN, then we obtain

    κ=ν    and    τ=|ε1δ|. (3.39)

    Let ˉN be a 3-dimensional manifold given

    ˉN={(x,y,z)3,z0}, (4.1)

    where (x, y, z) denote the standart co-ordinates in 3. Then

    E1=zx,    E2=zy,    E3=zz, (4.2)

    are linearly independent of each point of ˉN [17]. Let ˉg be the Lorentzian metric tensor defined by

    ˉg(E1,E1)=ˉg(E2,E2)=ˉg(E3,E3)=δ,ˉg(Ei,Ej)=0,    ij, (4.3)

    for i,j=1,2,3 and δ=1. Let η be a 1-form defined by η(Z)=δˉg(Z,E3) for any vector field ZΓ(TˉN). Let φ be the (1, 1)-tensor field defined by

    φE1=E2,   φE2=E1,   φE3=0. (4.4)

    Then using the condition of the linearity of φ and ˉg, we obtain η(E3)=1 and

    φ2Z=Z+η(Z)E3,ˉg(φZ,φW)=ˉg(Z,W)δη(Z)η(W), (4.5)

    for all Z,WΓ(TˉN).

    Now, let be the Levi-Civita connection with respect to the Lorentzian metric ˉg. Then we obtain

    [E1,E2]=0,   [E1,E3]=δE1,   [E2,E3]=δE2. (4.6)

    The Riemannian connection with respect to the metric ˉg is given by

    2ˉg(XY,Z)=Xˉg(Y,Z)+Yˉg(Z,X)Zˉg(X,Y)+ˉg([X,Y],Z)ˉg([Y,Z],X)+ˉg([Z,X],Y). (4.7)

    If we use this equation which is known as Koszul's formula for the Lorentzian metric tensor ˉg, we can easily calculate the covariant derivations as follows:

    E1E3=δE1,    E2E3=δE2,    E3E3=0,E1E2=0,    E2E2=δE3,    E3E2=0,E1E1=δE3,    E2E1=0    E3E1=0. (4.8)

    From the above relations, for any vector field X on ˉN, we have

    Xξ=δ(X+η(X)ξ), (4.9)

    for ξ=E3, α=0 and β=1. Hence the manifold ˉN under consideration is a δ-Lorentzian trans-Sasakian of type (0,1) manifold of dimension three.

    Example 4.1. Let γ be a spacelike curve defined as

    γ:IˉNsγ(s)=(2lns,2,lns),

    where the curve γ parametrized by the arc length parameter t. If we differentiate γ(t) and consider (3.1) we find

    dγdt=γ(t)=23E113E3,

    and

    e1=γ(t),
    e2=E1,
    e3=13E1+13E3,

    where ρ=η(γ(t)). If we consider the Eqs (3.2), (3.3), (3.5), (3.13) and (3.17) we can write

    ρ=δ13,   μ=23,   ν=δ23,κ=43,   τ=13. (4.10)

    Thus, the curve γ is a spacelike helix in ˉN.

    Example 4.2. Let ω be a spacelike Legendre curve defined as

    ω:IˉNsω(s)=(s22,s22,1).

    where the curve ω parametrized by the arc length parameter t. If we differentiate ω(t) and using (3.1) we find

    dωdt=ω(t)=22E1+22E2,

    and

    e1=ω(t),
    e2=22E122E2,
    e3=E3.

    If we consider the Eqs (3.2), (3.3), (3.5), (3.13) and (3.17) we obtain

    ρ=0,   μ=δβ,   ν=0,κ=2|β|,   τ=|α|. (4.11)

    The author declares that there is no competing interest.



    [1] B. E. Acet, S. Y. Perktas, Curvature and torsion of a Legendre curve in (ε,δ) trans-Sasakian manifolds, Malaya J. Mat., 6 (2018), 140–144. doi: 10.26637/MJM0601/0018. doi: 10.26637/MJM0601/0018
    [2] S. M. Bhati, On weakly Ricci ϕ-symmetric δ-Lorentzian trans-Sasakian manifolds, Bull. Math. Anal. Appl., 5 (2013), 36–43.
    [3] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer Science & Business Media, 2002.
    [4] C. Camci, Extended cross product in a 3-dimensional almost contact metric manifold with applications to curve theory, Turk. J. Math., 36 (2012), 305–318. doi: 10.3906/mat-0910-103. doi: 10.3906/mat-0910-103
    [5] G. Calvaruso, Contact Lorentzian manifolds, Differ. Geom. Appl., 29 (2011), 41–51. doi: 10.1016/j.difgeo.2011.04.006. doi: 10.1016/j.difgeo.2011.04.006
    [6] G. Calvaruso, D. Perrone, Contact pseudo-metric manifolds, Differ. Geom. Appl., 28 (2010), 615–634. doi: 10.1016/j.difgeo.2010.05.006. doi: 10.1016/j.difgeo.2010.05.006
    [7] G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279–1291. doi: 10.1016/j.geomphys.2006.10.005. doi: 10.1016/j.geomphys.2006.10.005
    [8] G. Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 127 (2007), 99–119. doi: 10.1007/s10711-007-9163-7. doi: 10.1007/s10711-007-9163-7
    [9] J. T. Cho, J. Ioguchi, J. Lee, On slant curves in Sasakian 3-manifolds, B. Aust. Math. Soc., 74 (2006), 359–367. doi: 10.1017/S0004972700040429. doi: 10.1017/S0004972700040429
    [10] K. L. Duggal, D. H. Jin, Null curves and hypersurfaces of semi-Riemannian manifolds, World Scientific Publishing Company, 2007.
    [11] J. Lee, Slant curves and contact magnetic curves in Sasakian Lorentzian 3-manifolds, Symmetry, 11 (2019), 784. doi: 10.3390/sym11060784.
    [12] J. Lee, Slant curves in contact Lorentzian manifolds with CR structures, Mathematics, 8 (2020), 46. doi: 10.3390/math8010046.
    [13] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. pur. Appl., 162 (1992), 77–86. doi: 10.1007/BF01760000. doi: 10.1007/BF01760000
    [14] B. O'Neill, Semi-Riemannian Geometry with applications to relativity, Academic Press, 1983.
    [15] Z. Olszak, On contact metric manifolds, Tohoku Math. J., 31 (1979), 247–253. doi: 10.2748/tmj/1178229842. doi: 10.2748/tmj/1178229842
    [16] Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Pol. Math., 47 (1986), 41–50. doi: 10.4064/ap-47-1-41-50. doi: 10.4064/ap-47-1-41-50
    [17] M. D. Siddiqi, On δ-Lorentzian trans Sasakian manifold with a semi-symmetric metric connection, Bol. Soc. Paran. Mat., 39 (2021), 113–135. doi: 10.5269/bspm.41108. doi: 10.5269/bspm.41108
    [18] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21 (1969), 21–38. doi: 10.2748/tmj/1178243031. doi: 10.2748/tmj/1178243031
    [19] U. C. De, K. De, On Lorentzian trans-Sasakian manifolds, Commun. Fac. Sci. Univ., 62 (2013), 37–51. doi: 10.1501/Commua1_0000000697. doi: 10.1501/Commua1_0000000697
    [20] J. Welyczko, Slant curves in 3-dimensional normal almost paracontact metric manifolds, Mediterr. J. Math., 11 (2014), 965–978. doi: 10.1007/s00009-013-0361-2. doi: 10.1007/s00009-013-0361-2
    [21] J. Welyczko, On Legendre curves in 3-dimensional normal almost contact metric manifolds, Soochow J. Math., 33 (2007), 929–937.
    [22] A. Yildirim, On curves in 3-dimensional normal almost contact metric manifolds, Int. J. Geom. Methods M., 18 (2021), 2150004. doi: 10.1142/S0219887821500043.
  • This article has been cited by:

    1. Xiawei Chen, Haiming Liu, Two Special Types of Curves in Lorentzian α-Sasakian 3-Manifolds, 2023, 15, 2073-8994, 1077, 10.3390/sym15051077
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2553) PDF downloads(154) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog