Research article

Frenet curves in 3-dimensional $ \delta $-Lorentzian trans Sasakian manifolds

  • Received: 30 May 2021 Accepted: 24 September 2021 Published: 09 October 2021
  • MSC : 53A35, 53B30

  • In this paper, we give some characterizations of Frenet curves in 3-dimensional $ \delta $-Lorentzian trans-Sasakian manifolds. We compute the Frenet equations and Frenet elements of these curves. We also obtain the curvatures of non-geodesic Frenet curves on 3-dimensional $ \delta $-Lorentzian trans-Sasakian manifolds. Finally, we give some results for these curves.

    Citation: Muslum Aykut Akgun. Frenet curves in 3-dimensional $ \delta $-Lorentzian trans Sasakian manifolds[J]. AIMS Mathematics, 2022, 7(1): 199-211. doi: 10.3934/math.2022012

    Related Papers:

  • In this paper, we give some characterizations of Frenet curves in 3-dimensional $ \delta $-Lorentzian trans-Sasakian manifolds. We compute the Frenet equations and Frenet elements of these curves. We also obtain the curvatures of non-geodesic Frenet curves on 3-dimensional $ \delta $-Lorentzian trans-Sasakian manifolds. Finally, we give some results for these curves.



    加载中


    [1] B. E. Acet, S. Y. Perktas, Curvature and torsion of a Legendre curve in $(\varepsilon, \delta)$ trans-Sasakian manifolds, Malaya J. Mat., 6 (2018), 140–144. doi: 10.26637/MJM0601/0018. doi: 10.26637/MJM0601/0018
    [2] S. M. Bhati, On weakly Ricci $\phi$-symmetric $\delta$-Lorentzian trans-Sasakian manifolds, Bull. Math. Anal. Appl., 5 (2013), 36–43.
    [3] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer Science & Business Media, 2002.
    [4] C. Camci, Extended cross product in a 3-dimensional almost contact metric manifold with applications to curve theory, Turk. J. Math., 36 (2012), 305–318. doi: 10.3906/mat-0910-103. doi: 10.3906/mat-0910-103
    [5] G. Calvaruso, Contact Lorentzian manifolds, Differ. Geom. Appl., 29 (2011), 41–51. doi: 10.1016/j.difgeo.2011.04.006. doi: 10.1016/j.difgeo.2011.04.006
    [6] G. Calvaruso, D. Perrone, Contact pseudo-metric manifolds, Differ. Geom. Appl., 28 (2010), 615–634. doi: 10.1016/j.difgeo.2010.05.006. doi: 10.1016/j.difgeo.2010.05.006
    [7] G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279–1291. doi: 10.1016/j.geomphys.2006.10.005. doi: 10.1016/j.geomphys.2006.10.005
    [8] G. Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 127 (2007), 99–119. doi: 10.1007/s10711-007-9163-7. doi: 10.1007/s10711-007-9163-7
    [9] J. T. Cho, J. Ioguchi, J. Lee, On slant curves in Sasakian 3-manifolds, B. Aust. Math. Soc., 74 (2006), 359–367. doi: 10.1017/S0004972700040429. doi: 10.1017/S0004972700040429
    [10] K. L. Duggal, D. H. Jin, Null curves and hypersurfaces of semi-Riemannian manifolds, World Scientific Publishing Company, 2007.
    [11] J. Lee, Slant curves and contact magnetic curves in Sasakian Lorentzian 3-manifolds, Symmetry, 11 (2019), 784. doi: 10.3390/sym11060784.
    [12] J. Lee, Slant curves in contact Lorentzian manifolds with CR structures, Mathematics, 8 (2020), 46. doi: 10.3390/math8010046.
    [13] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. pur. Appl., 162 (1992), 77–86. doi: 10.1007/BF01760000. doi: 10.1007/BF01760000
    [14] B. O'Neill, Semi-Riemannian Geometry with applications to relativity, Academic Press, 1983.
    [15] Z. Olszak, On contact metric manifolds, Tohoku Math. J., 31 (1979), 247–253. doi: 10.2748/tmj/1178229842. doi: 10.2748/tmj/1178229842
    [16] Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Pol. Math., 47 (1986), 41–50. doi: 10.4064/ap-47-1-41-50. doi: 10.4064/ap-47-1-41-50
    [17] M. D. Siddiqi, On $\delta$-Lorentzian trans Sasakian manifold with a semi-symmetric metric connection, Bol. Soc. Paran. Mat., 39 (2021), 113–135. doi: 10.5269/bspm.41108. doi: 10.5269/bspm.41108
    [18] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21 (1969), 21–38. doi: 10.2748/tmj/1178243031. doi: 10.2748/tmj/1178243031
    [19] U. C. De, K. De, On Lorentzian trans-Sasakian manifolds, Commun. Fac. Sci. Univ., 62 (2013), 37–51. doi: 10.1501/Commua1_0000000697. doi: 10.1501/Commua1_0000000697
    [20] J. Welyczko, Slant curves in 3-dimensional normal almost paracontact metric manifolds, Mediterr. J. Math., 11 (2014), 965–978. doi: 10.1007/s00009-013-0361-2. doi: 10.1007/s00009-013-0361-2
    [21] J. Welyczko, On Legendre curves in 3-dimensional normal almost contact metric manifolds, Soochow J. Math., 33 (2007), 929–937.
    [22] A. Yildirim, On curves in 3-dimensional normal almost contact metric manifolds, Int. J. Geom. Methods M., 18 (2021), 2150004. doi: 10.1142/S0219887821500043.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2255) PDF downloads(151) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog