Research article

Characterization of solitons in a pseudo-quasi-conformally flat and pseudo- $ W_8 $ flat Lorentzian Kähler space-time manifolds

  • Received: 02 May 2024 Revised: 30 May 2024 Accepted: 05 June 2024 Published: 13 June 2024
  • MSC : 35C08, 53C50, 53C55

  • The present paper dealt with the study of solitons of Lorentzian Kähler space-time manifolds. In this paper, we have discussed different conditions for solitons to be steady, expanding, or shrinking in terms of isotropic pressure, the cosmological constant, energy density, nonlinear equations, and gravitational constant in pseudo-quasi-conformally flat and pseudo-$ W_8 $ flat Lorentzian Kähler space-time manifolds.

    Citation: B. B. Chaturvedi, Kunj Bihari Kaushik, Prabhawati Bhagat, Mohammad Nazrul Islam Khan. Characterization of solitons in a pseudo-quasi-conformally flat and pseudo- $ W_8 $ flat Lorentzian Kähler space-time manifolds[J]. AIMS Mathematics, 2024, 9(7): 19515-19528. doi: 10.3934/math.2024951

    Related Papers:

  • The present paper dealt with the study of solitons of Lorentzian Kähler space-time manifolds. In this paper, we have discussed different conditions for solitons to be steady, expanding, or shrinking in terms of isotropic pressure, the cosmological constant, energy density, nonlinear equations, and gravitational constant in pseudo-quasi-conformally flat and pseudo-$ W_8 $ flat Lorentzian Kähler space-time manifolds.



    加载中


    [1] A. Awane, A. Chkiriba, M. Goze, E. Azizi, M. B. Bah, Vectorial polarized manifolds, Africain Journal of Mathematical Physics, 4 (2007), 33–43.
    [2] M. B. Ayed, K. E. Mehdi, M. O. Ahmedou, F. Pacella, Energy and Morse index of solutions of Yamabe type problems on thin annuli, J. Eur. Math. Soc., 7 (2005), 283–304. https://doi.org/10.4171/JEMS/29 doi: 10.4171/JEMS/29
    [3] A. M. Blaga, On gradient $\eta$-Einstein solitons, Kragujev. J. Math., 42 (2018), 229–237.
    [4] A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50 (2020), 41–53. https://doi.org/10.1216/rmj.2020.50.41 doi: 10.1216/rmj.2020.50.41
    [5] G. Catino, L. Mazzieri, Gradient Einstein solitons, Nonlinear Analysis, 132 (2016), 66–94. https://doi.org/10.1016/j.na.2015.10.021
    [6] M. C. Chaki, S. Ray, Space-times with covariant-constant energy-momentum tensor, Int. J. Theor. Phys., 35 (1996), 1027–1032. https://doi.org/10.1007/BF02302387 doi: 10.1007/BF02302387
    [7] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306. https://doi.org/10.5486/PMD.2000.2169 doi: 10.5486/PMD.2000.2169
    [8] B. B. Chaturvedi, P. Bhagat, M. N. I. Khan, Novel theorems for a Bochner flat Lorentzian Kähler space-time manifold with $\eta$-Ricci-Yamabe solitons, Chaos Soliton. Fract., 11 (2023), 100097. https://doi.org/10.1016/j.csfx.2023.100097 doi: 10.1016/j.csfx.2023.100097
    [9] H. Chtioui, K. E. Mehdi, N. Gamara, The Webster scalar curvature problem on the three dimensional CR manifolds, B. Sci. Math., 131 (2007), 361–374. https://doi.org/10.1016/j.bulsci.2006.05.003 doi: 10.1016/j.bulsci.2006.05.003
    [10] B. Chow, P. Lu, L. Ni, Hamilton's Ricci flow, Rhode Island: AMS and Science Press, 2006.
    [11] J. T. Cho, M. Kimura, Ricci solitons and real hyper surfaces in a complex space form, Tohoku Math. J., 61 (2009), 205–212. https://doi.org/10.2748/tmj/1245849443 doi: 10.2748/tmj/1245849443
    [12] U. C. De, G. C. Ghosh, On weakly Ricci symmetric spacetime manifolds, Radovi Matematicki, 13 (2004), 93–101.
    [13] A. De, C. Özgür, U. C. De, On conformally flat almost pseudo-Ricci symmetric spacetimes, Int. J. Theor. Phys., 51 (2012), 2878–2887. https://doi.org/10.1007/s10773-012-1164-0 doi: 10.1007/s10773-012-1164-0
    [14] U. C. De, Y. J. Suh, S. K. Chaubey, Semi-symmetric curvature properties of Robertson-Walker spacetimes, J. Math. Phys. Anal. Geo., 18 (2022), 368–381. https://doi.org/10.15407/mag18.03.368 doi: 10.15407/mag18.03.368
    [15] P. Debnath, A. Konar, On quasi-Einstein manifolds and quasi-Einstein spacetimes, Differ. Geom. Dyn. Syst., 12 (2010), 73–82.
    [16] R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–262.
    [17] A. Haseeb, M. Bilal, S. K. Chaubey, A. A. H. Ahmadini, $\xi$-Conformally flat LP-kenmotsu manifolds and Ricci-Yamabe solitons, Mathematics, 11 (2022), 212. https://doi.org/10.3390/math11010212 doi: 10.3390/math11010212
    [18] A. Haseeb, S. K. Chaubey, F. Mofarreh, A. A. H. Ahmadini, A solitonic study of riemannian manifolds equipped with a semi-symmetric metric $\xi$-connection, Axioms, 12 (2023), 809. https://doi.org/10.3390/axioms12090809 doi: 10.3390/axioms12090809
    [19] V. R. Kaigorodov, Structure of space-time curvature, J. Math. Sci., 28 (1985), 256–273. https://doi.org/10.1007/BF02105213 doi: 10.1007/BF02105213
    [20] Venkatesha, H. A. Kumara, Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Mat., 30 (2019), 725–736. https://doi.org/10.1007/s13370-019-00679-y doi: 10.1007/s13370-019-00679-y
    [21] S. Kundu, On P-Sasakian manifolds, Math. Rep., 15 (2013), 221–232.
    [22] H. Mohajan, Minkowski geometry and space-time manifold in relativity, Journal of Environmental Treatment Techniques, 1 (2013), 101–109.
    [23] B. O'Neill, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, 1983.
    [24] P. Pandey, B. B. Chaturvedi, On a Lorentzian complex space form, Natl. Acad. Sci. Lett., 43 (2020), 351–353. https://doi.org/10.1007/s40009-020-00874-7 doi: 10.1007/s40009-020-00874-7
    [25] G. P. Pokhariyal, Relativistic significance of curvature tensors, International Journal of Mathematics and Mathematical Sciences, 5 (1982), 133–139. https://doi.org/10.1155/S0161171282000131 doi: 10.1155/S0161171282000131
    [26] D. G. Prakasha, S. R. Talawar, K. K. Mitji, On the pseudo-quasi-conformal curvature tensor of P-Sasakian manifolds, Electronic Journal of Mathematical Analysis and Applications, 5 (2017), 147–155.
    [27] B. Prasad, R. P. S. Yadav, S. N. Pandey, Pseudo $W8$ curvature tensor $W\tilde{8}$ on a Riemannian manifold, Journal of Progressive Science, 9 (2018), 35–43.
    [28] M. M. Praveena, C. S. Bagewadi, On almost pseudo Bochner symmetric generalized complex space forms, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 32 (2016), 149–159.
    [29] M. M. Praveena, C. S. Bagewadi, On almost pseudo symmetric Kähler manifolds, Palestine Journal of Mathematics, 6 (2017), 272–278.
    [30] A. K. Raychaudhuri, B. Sriranjan, A. Banerjee, General relativity, astrophysics, and cosmology, New York: Springer, 1992.
    [31] A. A. Shaikh, S. K. Jana, A pseudo quasi-conformal curvature tensor on a Riemannian manifold, South East Asian J of Mathematics and Mathematical Sciences, 4 (2005), 15–20.
    [32] M. D. Siddiqi, S. A. Siddiqi, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods M., 17 (2020), 2050083. https://doi.org/10.1142/S0219887820500838 doi: 10.1142/S0219887820500838
    [33] Y. J. Suh, V. Chavan, N. A. Pundeer, Pseudo-quasi-conformal curvature tensor and spacetimes of general relativity, Filomat, 35 (2021), 657–666. https://doi.org/10.2298/FIL2102657S doi: 10.2298/FIL2102657S
    [34] Venkatesha, S. Chidananda, $\eta$-Ricci soliton and almost $\eta $-Ricci soliton on almost coKähler manifolds, Acta Math. Univ. Comenianae, 2 (2021), 217–230.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(486) PDF downloads(25) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog