In this paper, we studied the existence of solutions for a coupled system of nonlinear sequential proportional $ \psi $-Hilfer fractional differential equations with multi-point boundary conditions. By using a Burton's version of the Krasnosel'ski$\breve{{\rm{i}}}$'s fixed-point theorem we established sufficient conditions for the existence result. An example illustrating our main result was also provided.
Citation: Ayub Samadi, Sotiris K. Ntouyas, Jessada Tariboon. Coupled systems of nonlinear sequential proportional Hilfer-type fractional differential equations with multi-point boundary conditions[J]. AIMS Mathematics, 2024, 9(5): 12982-13005. doi: 10.3934/math.2024633
In this paper, we studied the existence of solutions for a coupled system of nonlinear sequential proportional $ \psi $-Hilfer fractional differential equations with multi-point boundary conditions. By using a Burton's version of the Krasnosel'ski$\breve{{\rm{i}}}$'s fixed-point theorem we established sufficient conditions for the existence result. An example illustrating our main result was also provided.
[1] | K. Diethelm, The analysis of fractional differential equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of the fractional differential equations, New York: Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5 |
[3] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[4] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[5] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[6] | T. T. Soong, Random differential equations in science and engineering, New York: Academic Press, 1973. https://doi.org/10.1016/s0076-5392(08)x6011-4 |
[7] | K. Kavitha, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Methods Appl. Sci., 44 (2021), 1438–1455. https://doi.org/10.1002/mma.6843 doi: 10.1002/mma.6843 |
[8] | R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. https://doi.org/10.1016/j.aej.2020.01.055 doi: 10.1016/j.aej.2020.01.055 |
[9] | D. Luo, Q. Zhu, Z. Luo, A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients, Appl. Math. Lett., 122 (2021), 107549. https://doi.org/10.1016/j.aml.2021.107549 doi: 10.1016/j.aml.2021.107549 |
[10] | K. Ding, Q. Zhu, Impulsive method to reliable sampled-data control for uncertain fractional-order memristive neural networks with stochastic sensor faults and its applications, Nonlinear Dyn., 100 (2020), 2595–2608. https://doi.org/10.1007/s11071-020-05670-y doi: 10.1007/s11071-020-05670-y |
[11] | H. M. Ahmed, Q. Zhu, The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps, Appl. Math. Lett., 112 (2021), 106755. https://doi.org/10.1016/j.aml.2020.106755 doi: 10.1016/j.aml.2020.106755 |
[12] | S. K. Ntouyas, A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions, Foundations, 1 (2021), 63–98. https://doi.org/10.3390/foundations1010007 doi: 10.3390/foundations1010007 |
[13] | J. V. C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[14] | F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 303. https://doi.org/10.1186/s13662-020-02767-x doi: 10.1186/s13662-020-02767-x |
[15] | R. Pandurangan, S. Shanmugam, M. Rhaima, H. Ghoudi, The generalized discrete proportional derivative and its applications, Fractal Fract., 7 (2023), 838. https://doi.org/10.3390/fractalfract7120838 doi: 10.3390/fractalfract7120838 |
[16] | I. Ahmed, P. Kumam, F. Jarad, P. Borisut, W. Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 2020 (2020), 329. https://doi.org/10.1186/s13662-020-02792-w doi: 10.1186/s13662-020-02792-w |
[17] | F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7 |
[18] | F. Jarad, M. A. Alqudah, T. Abdeljawad, On more general forms of proportional fractional operators, Open Math., 18 (2020), 167–176. https://doi.org/10.1515/math-2020-0014 doi: 10.1515/math-2020-0014 |
[19] | C. Kiataramkul, S. K. Ntouyas, J. Tariboon, An existence result for $\psi$-Hilfer fractional integro-differential hybrid three-point boundary value problems, Fractal Fract., 5 (2021), 136. https://doi.org/10.3390/fractalfract5040136 doi: 10.3390/fractalfract5040136 |
[20] | R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004). https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 |
[21] | G. M. Zaslavsky, Hamiltonian chaos and fractional dynamics, Oxford: Oxford University Press, 2004. https://doi.org/10.1093/oso/9780198526049.001.0001 |
[22] | H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: Theory and application, London: Academic Press, 2017. |
[23] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of $\psi$-Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. https://doi.org/10.1016/j.rinam.2021.100142 doi: 10.1016/j.rinam.2021.100142 |
[24] | B. Ahmad, S. Aljoudi, Investigation of a coupled system of Hilfer-Hadamard fractional differential equations with nonlocal coupled Hadamard fractional integral boundary conditions, Fractal Fract., 7 (2023), 178. https://doi.org/10.3390/fractalfract7020178 doi: 10.3390/fractalfract7020178 |
[25] | A. Samadi, S. K. Ntouyas, J. Tariboon, Nonlocal coupled system for $(k, \varphi)$-Hilfer fractional differential equations, Fractal Fract., 6 (2022), 234. https://doi.org/10.3390/fractalfract6050234 doi: 10.3390/fractalfract6050234 |
[26] | A. Samadi, S. K. Ntouyas, J. Tariboon, On a nonlocal coupled system of Hilfer generalized proportional fractional differential equations, Symmetry, 14 (2022), 738. https://doi.org/10.3390/sym14040738 doi: 10.3390/sym14040738 |
[27] | I. Mallah, I. Ahmed, A. Akgul, F. Jarad, S. Alha, On $\psi$-Hilfer generalized proportional fractional operators, AIMS Mathematics, 7 (2022), 82–103. https://doi.org/10.3934/math.2022005 doi: 10.3934/math.2022005 |
[28] | T. A. Burton, A fixed point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85–88. https://doi.org/10.1016/s0893-9659(97)00138-9 doi: 10.1016/s0893-9659(97)00138-9 |