In this paper, we present some fixed point theorems for generalized nonlinear contractions involving a new pair of auxiliary functions in a metric space endowed with a locally finitely $ T $-transitive binary relation. Our newly proved results generalize some well-known fixed point theorems existing in the literature. We also provide an example which substantiates the utility of our results.
Citation: Faruk Sk, Faizan Ahmad Khan, Qamrul Haq Khan, Aftab Alam. Relation-preserving generalized nonlinear contractions and related fixed point theorems[J]. AIMS Mathematics, 2022, 7(4): 6634-6649. doi: 10.3934/math.2022370
In this paper, we present some fixed point theorems for generalized nonlinear contractions involving a new pair of auxiliary functions in a metric space endowed with a locally finitely $ T $-transitive binary relation. Our newly proved results generalize some well-known fixed point theorems existing in the literature. We also provide an example which substantiates the utility of our results.
[1] | A. Aghajani, S. Radenović, J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized $(S, T)$-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012), 5665–5670. https://doi.org/10.1016/j.amc.2011.11.061 doi: 10.1016/j.amc.2011.11.061 |
[2] | A. Alam, M. Arif, M. Imdad, Metrical fixed point theorems via locally finitely T-transitive binary relations under certain control functions, Miskolc Math. Notes, 20 (2019), 59–73. https://doi.org/10.18514/MMN.2019.2468 doi: 10.18514/MMN.2019.2468 |
[3] | A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y |
[4] | A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421–4439. https://doi.org/10.2298/FIL1714421A doi: 10.2298/FIL1714421A |
[5] | A. Alam, M. Imdad, Nonlinear contractions in metric spaces under locally $T$-transitive binary relations, Fixed Point Theory, 19 (2018), 13–24. https://doi.org/10.24193/fpt-ro.2018.1.02 doi: 10.24193/fpt-ro.2018.1.02 |
[6] | A. Alam, F. Sk, Q. H. Khan, Discussion on generalized nonlinear contractions, Communicated. |
[7] | Y. I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, In: New results in operator theory and its applications, Vol. 98, Basel: Birkhäuser, 1997. https://doi.org/10.1007/978-3-0348-8910-0_2 |
[8] | H. Aydi, E. Karapınar, W. Shatanawi, Coupled fixed point results for ($\psi$, $\phi$)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl., 62 (2011), 4449–4460. https://doi.org/10.1016/j.camwa.2011.10.021 doi: 10.1016/j.camwa.2011.10.021 |
[9] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[10] | M. Berzig, E. Karapınar, Fixed point results for ($\alpha$$\psi$, $\beta$$\varphi$)-contractive mappings for a generalized altering distance, Fixed Point Theory Appl., 2013 (2013), 1–18. https://doi.org/10.1186/1687-1812-2013-205 doi: 10.1186/1687-1812-2013-205 |
[11] | M. Berzig, E. Karapınar, A. F. Roldán-López-de-Hierro, Discussion on generalized-($\alpha$$\psi$, $\beta \varphi$)-contractive mappings via generalized altering distance function and related fixed point theorems, Abstr. Appl. Anal., 2014 (2014), 259768. https://doi.org/10.1155/2014/259768 doi: 10.1155/2014/259768 |
[12] | W. D. Boyd, J. S. Wong, On nonlinear contractions, P. Am. Math. Soc., 20 (1969), 458–464. https://doi.org/10.2307/2035677 doi: 10.2307/2035677 |
[13] | F. E. Browder, On the convergence of successive approximations for nonlinear functional equations, Indag. Math., 30 (1968), 27–35. |
[14] | H. S. Ding, L. Li, S. Radenović, Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–10. https://doi.org/10.1186/1687-1812-2012-96 doi: 10.1186/1687-1812-2012-96 |
[15] | P. Dutta, B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008), 1–8. https://doi.org/10.1155/2008/406368 doi: 10.1155/2008/406368 |
[16] | V. Flaška, J. Ježek, T. Kepka, J. Kortelainen, Transitive closures of binary relations. i., Acta Univ. Carol. Math. Phys., 48 (2007), 55–69. |
[17] | Z. Golubović, Z. Kadelburg, S. Radenović, Common fixed points of ordered g-quasicontractions and weak contractions in ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–11. https://doi.org/10.1186/1687-1812-2012-20 doi: 10.1186/1687-1812-2012-20 |
[18] | J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal.: Theory, Methods Appl., 72 (2010), 1188–1197. https://doi.org/10.1016/j.na.2009.08.003 doi: 10.1016/j.na.2009.08.003 |
[19] | E. Karapinar, K. Sadarangani, Fixed point theory for cyclic ($\phi$-$\psi$)-contractions, Fixed Point Theory Appl., 2011 (2011), 1–8. https://doi.org/10.1186/1687-1812-2011-69 doi: 10.1186/1687-1812-2011-69 |
[20] | E. Karapınar, Fixed point theory for cyclic weak $\phi$-contraction, Appl. Math. Lett., 24 (2011), 822–825. https://doi.org/10.1016/j.aml.2010.12.016 doi: 10.1016/j.aml.2010.12.016 |
[21] | Q. H. Khan, F. Sk, Fixed point results for comparable Kannan and Chatterjea mappings, J. Math. Anal., 12 (2021), 36–47. |
[22] | Q. H. Khan, F. Sk, Some coincidence point theorems for Prešić-Ćirić type contractions, Nonlinear Funct. Anal. Appl., 26 (2021), 1091–1104. |
[23] | M. A. Krasnosel'ski$\check{\mathrm{i}}$, G. M. Va$\check{\mathrm{i}}$nikko, P. P. Zabre$\check{\mathrm{i}}$ko, G. M. Rutitski$\check{\mathrm{i}}$, V. Y. Stetsenko, Approximate solution of operator equations, Dordrecht: Springer, 1972. https://doi.org/10.1007/978-94-010-2715-1 |
[24] | B. Kolman, R. C. Busby, S. Ross, Discrete mathematical structures, 3 Eds., PHI Pvt. Ltd., New Delhi, 2000. |
[25] | G. Lin, X. Cheng, Y. Zhang, A parametric level set based collage method for an inverse problem in elliptic partial differential equations, J. Comput. Appl. Math., 340 (2018), 101–121. https://doi.org/10.1016/j.cam.2018.02.008 doi: 10.1016/j.cam.2018.02.008 |
[26] | S. Lipschutz, Schaum's outline of theory and problems of set theory and related topics, McGraw-Hill, New York, 1964. |
[27] | R. Maddux, Relation algebras, In: Studies in logic and the foundations of mathematics, 150 (2006) 289–525. https://doi.org/10.1016/S0049-237X(06)80028-5 |
[28] | J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. https://doi.org/10.1007/s11083-005-9018-5 doi: 10.1007/s11083-005-9018-5 |
[29] | A. C. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, P. Am. Math. Soc., 132 (2004), 1435–1443. |
[30] | B. Samet, M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal., 13 (2012), 82–97. |
[31] | K. Sawangsup, W. Sintunavarat, A. F. R. L. de Hierro, Fixed point theorems for $F_{\mathcal{R}}$-contractions with applications to solution of nonlinear matrix equations, J. Fixed Point Theory Appl., 19 (2017), 1711–1725. https://doi.org/10.1007/s11784-016-0306-z doi: 10.1007/s11784-016-0306-z |
[32] | H. L. Skala, Trellis theory, Algebra Univ., 1 (1971), 218–233. https://doi.org/10.1007/BF02944982 doi: 10.1007/BF02944982 |
[33] | A. Stouti, A. Maaden, Fixed points and common fixed points theorems in pseudo-ordered sets, Proyecciones (Antofagasta), 32 (2013), 409–418. http://dx.doi.org/10.4067/S0716-09172013000400008 doi: 10.4067/S0716-09172013000400008 |
[34] | M. Turinici, Abstract comparison principles and multivariable gronwall-bellman inequalities, J. Math. Anal. Appl., 117 (1986), 100–127. https://doi.org/10.1016/0022-247X(86)90251-9 doi: 10.1016/0022-247X(86)90251-9 |
[35] | M. Turinici, Fixed points for monotone iteratively local contractions, Demonstr. Math., 19 (1986), 171–180. |
[36] | M. Turinici, Contractive maps in locally transitive relational metric spaces, Sci. World J., 2014 (2014), 169358. https://doi.org/10.1155/2014/169358 doi: 10.1155/2014/169358 |