Addressing the boundary value problems of fractional-order differential equations hold significant importance due to their applications in various fields. The aim of this paper was to approximate solutions for a class of boundary value problems involving Caputo fractional-order differential equations employing the AA-iterative scheme. Moreover, the stability and data dependence results of the iterative scheme were given for a certain class of mappings. Finally, a numerical experiment was illustrated to support the results presented herein. The results presented in this paper extend and unify some well-known comparable results in the existing literature.
Citation: Mujahid Abbas, Cristian Ciobanescu, Muhammad Waseem Asghar, Andrew Omame. Solution approximation of fractional boundary value problems and convergence analysis using AA-iterative scheme[J]. AIMS Mathematics, 2024, 9(5): 13129-13158. doi: 10.3934/math.2024641
Addressing the boundary value problems of fractional-order differential equations hold significant importance due to their applications in various fields. The aim of this paper was to approximate solutions for a class of boundary value problems involving Caputo fractional-order differential equations employing the AA-iterative scheme. Moreover, the stability and data dependence results of the iterative scheme were given for a certain class of mappings. Finally, a numerical experiment was illustrated to support the results presented herein. The results presented in this paper extend and unify some well-known comparable results in the existing literature.
[1] | M. Abbas, M. W. Asghar, M. De la Sen, Approximation of the solution of delay fractional differential equation using AA-iterative scheme, Mathematics, 10 (2022), 273. https://doi.org/10.3390/math10020273 doi: 10.3390/math10020273 |
[2] | M. Abbas, T. Nazir, Some new faster iteration process applied to constrained minimization and feasibility problems, Matematicki Vesnik, 66 (2014), 223–234. |
[3] | R. P. Agarwal, D. O. Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[4] | J. Ali, F. Ali, A new iterative scheme to approximating fixed points and the solution of a delay differential equation, J. Nonlinear Convex Anal., 21 (2020), 2151–2163. |
[5] | M. W. Asghar, M. Abbas, C. D. Eyni, M. E. Omaba, Iterative approximation of fixed points of generalized $\alpha_m$-nonexpansive mappings in modular spaces, AIMS Mathematics, 8 (2023), 26922–26944. https://doi.org/10.3934/math.20231378 doi: 10.3934/math.20231378 |
[6] | M. W. Asghar, M. Abbas, B. D. Rouhani, The AA-viscosity algorithm for fixed-point, generalized equilibrium and variational inclusion problems, Axioms, 13 (2024), 38. https://doi.org/10.3390/axioms13010038 doi: 10.3390/axioms13010038 |
[7] | G. V. R. Babu, K. N. V. V. Vara Prasad, Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators, Fixed Point Theory Appl., 2007 (2006), 097986. https://doi.org/10.1155/2007/97986 doi: 10.1155/2007/97986 |
[8] | I. Beg, M. Abbas, M. W. Asghar, Convergence of AA-iterative algorithm for generalized $\alpha$-nonexpansive mappings with an application, Mathematics, 10 (2022), 4375. https://doi.org/10.3390/math10224375 doi: 10.3390/math10224375 |
[9] | V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl., 2004 (2004), 716359. https://doi.org/10.1155/S1687182004311058 doi: 10.1155/S1687182004311058 |
[10] | V. Berinde, Iterative approximation of fixed points, Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-72234-2 |
[11] | M. Caputo, Elasticit'a e dissipazione, Bologna: Zanichelli, 1969. |
[12] | V. Daftardar-Gejji, H. Jafari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026–1033. https://doi.org/10.1016/j.jmaa.2006.06.007 doi: 10.1016/j.jmaa.2006.06.007 |
[13] | S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.2307/2039245 doi: 10.2307/2039245 |
[14] | U. Kifayat, A. Muhammad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U |
[15] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Boston: Elsevier, 2006. |
[16] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3 |
[17] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[18] | A. M. Ostrowski, The round-off stability of iterations, ZAMM-Z. Angew. Math. Mech., 47 (1967), 77–81. https://doi.org/10.1002/zamm.19670470202 doi: 10.1002/zamm.19670470202 |
[19] | E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, Journal de Mathématiques pures et appliquées, 6 (1890), 145–210. |
[20] | I. Podlubny, Fractional differential equations, USA: Academic Press, 1998. |
[21] | D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, 12 (2011), 187–204. |
[22] | T. B. Singh, T. Dipti, P. Mihai, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. https://doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T |
[23] | S. M. Soltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl., 2008 (2008), 242916. https://doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916 |
[24] | Y. F. Sun, Z. Zeng, J. Song, Existence and uniqueness for the boundary value problems of nonlinear fractional differential equation, Applied Mathematics, 8 (2017), 312–323. https://doi.org/10.4236/am.2017.83026 doi: 10.4236/am.2017.83026 |
[25] | H. L. Tidke, G. S. Patil, Existence and uniqueness of solutions of a boundary value problem of fractional order via S-iteration, Creat. Math. Inform., 32 (2023), 97–120. https://doi.org/10.37193/CMI.2023.01.10 doi: 10.37193/CMI.2023.01.10 |