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1. Introduction and preliminaries

The potential to simulate complex processes including memory effects, anomalous diffusion, and
non-local interactions is one of the key benefits of the fractional calculus. The modeling of physical
systems appearing in materials science, fluid mechanics, and signal processing makes fractional
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calculus extremely valuable. A family of boundary value problems of fractional-order differential
equations involves conditions that are defined at the boundaries of the domain of their definitions. In
recent years, these problems have attracted the attention of several mathematicians due to their
applications to different fields of mathematics and beyond. These problems include non-local effects
and memory features, and hence pose considerable analytical and numerical hurdles. Addressing
these problems is critical not only for advancing our understanding of complex phenomena but also
for implementation of fractional calculus in practical applications.

Boundary value problems of fractional order also play a crucial role in the development of
numerical methods for approximating the solution of fractional differential equations. Evaluating,
approximating, and characterizing the solution of these problems have become active areas of
research, with applications in numerous branches of science and engineering. Moreover, it is
anticipated that further research in this area will lead to significant discoveries and breakthroughs. For
more details in this direction, we refer to [4, 15,20].

Consider the fractional boundary value problem [24] as follows:

(1.1)

Dip(1) = G(t, p(1), forte T =[0,6l, n—1<¢<n
PP =cr, k=0,1,2,...,n=2; p" (@) = ¢y,

where, CDg denotes the Caputo fractional derivative, G : J X R — R is a continuous function and
Co,C1,C2, - - ., Cn_p, Cp are real constants and » is an integer.

A function p € C" V(7 X) that satisfies (1.1) is called a solution of (1.1).

We assume that there exists a function K € C(R,) such that

16, u1) — G, v)ll < K@D [luy —vill. (1.2)

Throughout this paper, we assume that the (1.2) satisfies.

The techniques for approximations to the solutions of fractional differential equations that cannot
be solved analytically, are helpful in simulating and analyzing complicated systems. Moreover, the
research work carried out in this direction has provided some useful tools and mathematical methods
in the setup of fractional calculus in general and fractional differential equations in particular. These
methods are now being applied in different fields of mathematical and engineering sciences.

Throughout this work, the set {0, 1, 2, ...} is denoted by Z*. Let X be a normed space with norm ||.|,
C a non-empty closed convex subset of X and T a self mapping on C. The set {p* € C : p* = Tp*} of
all fixed points of T is denoted by F(T).

There is a variety of fixed-point iteration schemes that approximate the solution of fixed-point
equations, specially linear/nonlinear differential or integral equations. There are many factors that
help to decide the preference of one iterative scheme over the others. One of the most important
factors is to choose an iterative scheme that improves the rate of convergence of comparable existing
schemes, that is, an iterative scheme that approximates the solution in a lower number of steps when
compared with its counterparts.

One of the simplest iterative schemes [19], known as Picard iteration scheme, is defined as: Choose
a point py in C and obtain the successive approximations {p, : n € Z"} of the solution of fixed-point
equation involving a certain operator T by

Pn+1 = Tpna neZ.
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The convergence of Picard iterative scheme depends not only on topological properties of the domain
of an operator T but also on the nature of 7 itself. A well-known Banach contraction principle provides
the necessary conditions for its convergence. However, it does not converge to the solution of fixed-
point equation involving nonexpansive mapping.

We now recall some other known iterative schemes.

Let us choose an initial guess p in C. Then, the sequence {p, : n € Z*} defined by

DPn+1 = (1 - kn)pn + knTpn» nez’

is known as Mann iterative sequence [16], where the sequence {k,} of parameters satisfies certain
conditions.
The sequence {p, : n € Z*} defined by

Po € C
Pn+1 = (l - kn)pn + knTQn
qn = (1 - On)pn + OnTpm nezZ*

is known as Ishikawa iterative scheme [13], where {o,} and {k,} are some appropriate sequences in
(0, 1).
Noor [17] proposed a three-steps iterative scheme given by a sequence {p, : n € Z*} as follows:

po€C
Pn+1 = (- kn)pn + knTCIn
qn = (1 - On)pn + OnTrn
Iy, = d-wop,+w,Tp,, YneZ"

where {w,}, {0,}, {k,} in (0, 1) satisfy certain conditions.
In 2007, Agarwal et al. [3] proposed an iterative scheme {p, : n € Z*} known as S -iteration scheme,
given by

poeC
Pn+1 = (1 - kn)Tpn + kann
Gn = (1 = 0.)pn +0,Tpy, n€Z*

where {0,}, {k,} are appropriate sequences in (0, 1).

The convergence behavior of § -iterative scheme is the same as the Picard iterative scheme but faster
than the Mann iterative scheme [3].

An iterative scheme {p, : n € Z'} introduced by Abbas and Nazir in [2] has a faster rate of
convergence than S - iteration. This three-steps iterative scheme is given as:

po€C

Pni1 = (I =k)Tq, +k,Tr,

gn= (1 =0)Tp,+0,Tr,

r, = A=-w)p,+w,Tp,, YneZ*
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where {w,}, {0,}, and {k,} in (0, 1) satisfy certain appropriate conditions.
Thakur et al. [22] defined a three-steps iterative scheme that has a better rate of convergence than
the scheme in [2]. An iterative sequence {p, : n € Z*} defined in [22] is given by

poeC

Pui1 = (I =k)Tr,+kTqy

gn= (1 =o0n)ry+0,Tr,

r, = A =wop, +w,Tp,, YneZt,

where the sequences {w,}, {0,}, and {k,} are given sequences in (0, 1).
In 2018, Ullah et al. [14] defined M-iteration sequence {p, : n € Z*} by

poeC

DPn+1 = TQn

Gn = Tr,

r, = A =w)p,+w,Tp,, YneZ*

for approximating the fixed points of Suzuki’s generalized nonexpansive mappings, where {w,} C
(0, 1).

Let {k,}, {0,}, and {w,} be real sequences in (0, 1) suchthatk <k, <1l,0<o0,<landw <w, <1
for all n € N and for some k,0,w > 0. For a given py € C, the AA-iterative scheme {p, : n € Z*} is
defined as follows:

Pn+1 = an
. . qn = T((l - kn)TSn + knTrn)-
AA-iteration process : (1.3)
ry = T((l - On)sn + OnTsn)a

s, =0 =-w)p,+w,Tp,, ¥neZ*.

It was shown in [1] that the A A-iteration scheme is faster than all the other iteration processes presented
before.

Moreover, numerous research, such as [5, 6, 8], have featured the extensively used AA-iterative
scheme, which keeps innovating computational methods in approximating the solution of fixed points
and some other nonlinear problems.

Let us now recall some known definitions and results needed in this sequel.

Throughout this paper, we denote J = [o, 6] an interval in the set R of all real numbers. Consider
the normed space of all n — 1 times continuously differentiable functions from J into X denoted by
C"Y(J,X) = B and is equipped with the norm given by

Iplls = supllp(®ll : p € B}.

Definition 1.1. [/1] The Riemann-Liouville fractional integral of a function G of order { € R* is
defined by

1 !
Clgg(t):m fg (t-5)"'G(s)ds, 1>0.
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Definition 1.2. [11] The Caputo fractional derivative of a function G of order { € R” is defined by

“DiG(1) = f (t = sy G (s)ds,
o

1
I'(n-29)
Where n is a positive integer and n — 1 < { < n, and the symbol I" stands for the Gamma function
given by
I'Q) = f exp(=s)s*~'ds, T +1)={T(Q), Re{l}>0.

o
Also, note that if —n < Re{{} < —n + 1, then

I'(¢ +n)
[+ DE+2)...(C+n=-1)

If 0 < ¢ < 1, then the above Caputo fractional derivative of order { > 0 becomes

I') =

‘DG (1) =

_ 4
ke f (t - 57°G (5)ds.

Lemma 1.3. [24] If { > O, then the differential equation
“DiG(1) =
has solutions
G(t) = co+ci(t—p)+er(t—0) +c3(t—0) ++ - +cui(t—0)"", ¢ €R,i=0,1,2,...,n-1, n=[{]+].
Lemma 1.4. If{ > 0, then
IDSG(1) = Gt +co+ci(t—0) + et =0 + c3(t =0 + -+ + ¢t — )"
Lemma 1.5. [24] The relation
‘DIEGH) = G1), LIPG) = IEPG(1)

is valid for
Re(0) >0, Re(B)>0,G(t) € L'(0,6).

As a consequence of Lemmas 1.3—1.5, the following results can be established:

Lemma 1.6. [12, 24] A function p is a solution of the fractional boundary value problem defined
in (1.1) if and only if p(t) is a solution of the fractional integral equation

) (t—o)""

n-2
O G Co G(o, p(©)(0 — o)™™'
P _Z:;Jk_t_g) (( T )T —nt2)

~ t-o"!  em 1 )
- DT —n+ I)L(G $)°7"G (s, p(s))ds + F({)f(t 5)¢"VG(s, p(s))ds.
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Recently, Tidke and Patil [25] used the S -iteration to approximate the solution of a boundary value
problem of fractional order.

This paper is organized as follows: In first place we highlighted the need to address boundary value
problems related to fractional-order differential equations. We will then describe our technique, which
uses the AA-iterative scheme to approximate solutions of the boundary value problems for Caputo
fractional differential equations given in (1.1). We then discuss the stability and data dependence
features of the iterative scheme used herein. Finally, we give a numerical experiment that validates our
technique, extending and unifying certain well-known results from the current literature.

2. Solution approximation

We now present the following result.

Theorem 2.1. Suppose that (1.2) holds, and if

(6 = 0)*K(0) 0=

= LK) + LK ] 1,
[(n—Z)!F({—n+2) Faonr e KO+ LKD) <

then the AA-iteration scheme (1.3) converges to the solution of BVP (1.1).

Proof. Let p € C"VY(J, X). Define the operator T on C"V(J, X) by

-2
_\ G k Co G0, p(0)(0 — o) ! et
(Tp)(t)_zk_t_g) +(( D - -n+2) )(I_Q)

2.1

—o" ¢ t @1
(n—l)'l“({ n+1)f(9_s) G(s, P(S))d”@fg(tﬂ) G(s, p(s))ds.

Let {p,} >, be an iterative process generated by the AA-iteration method (1.3) for the operator given
by (2.1). We need to show that p,, = p asn — oo.
From (1.3) and (2.1), we have

1Pn41(8) = pOIl = (T gn) (@) = (T p)D|

G0, 4.(0)( = o) !
n-2)T¢—-—n+2)

n-2
—(t-o)f+ +
- =) ((n— !

) t-o""

t-o"! e )
T-DINC—n+ 1) fg O Gl mlonds + F{)f(t_ DG s

n-2
Gy [ Ger@O-0 Ty
=9 - (n—l)!+ (n—2)!F(§—n+2))(t )

J k!

(n— 1)'F(§ “a+ ) f (6 —9)"G(s, p(s))ds — F({) f(t §)¢7VG(s, p(s))ds
IG (0, 4.(0)) = Glo, P))II (0 — 0)* " (t— o'
(n—2)\T( —n +2) Q

(t—oy"!
(n— DI —n+1)

n=

f (0 = )" G (s, gu($) = G(s, p())ll ds
o
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- %{) fg (1 = 9V NG(s, 4u(5)) = G(s, p(s))ll ds

< (W(Q) Ig:(0) = p()II (6 — 0)* ™!

(n—2)T( —n+2)
(t—o)"!
(n— DT —n+1)

+ %{) L (1t = )TVK() llgu(s) = p(s)llds.

)(t -0

0
f (0 — ) "K(5) Igu(s) — p(s)ll ds
%

Taking norm on both sides of the above inequality, we have

(t—0)""llgn — pllig
(n- DT —n+1)

Ko)t—o0)" 10— o) !
-2\ —n+2)

1Pne1 = Pllp < ( )Ilqn - plls+

N % fg (t — 9 VK (s)ds

K@) —0) 10— 0!
(n-2)T( —n+2)

O —0"llgn — pllg
n- DT -n+1)

<

)Ilqn -pllg+

+ ”an;gl)?”B L(t_ S)({—l)q((s)ds

B (7< ©)(6 - 0)'"'(6— ) "'
S\ =D -n+2)

@-o0)!
n- DT —n+1)

)nqn ~ plls +|

IR R AP _
+F({) fg (t—5) W(s)ds]llqn Plig

- [ O-0fK@  O-0""
“ln-2)TC-n+2) (-1 ¢

= ®@lig, = plls,

K(6) + 157<<r>] lgn = Pl

we get

|pne1 = Pllg =IITqn — Tpllg < @lig, — pllg < llg, — Pllg -

Note that,

Is, = pllg = I(1 = wo)pn + waTp, — plig
= (1 = wp)pn + WnT py = wWup + Wap — pllg
= I(1 =w)pn — (1 =wa)p + w,Tp, — wypllp
< =w)llpn = pllp + wallpn — Pllg
= |lpn — pllg -

6
f 0 — $)°"K(s)ds
o
0
f 0 — $)*"K(s)ds
o

0
f 0 — $)"K(s)ds
o

(2.2)
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From the AA-iterative process (1.3), we obtain that

lro = pllg = IT((1 = 0n)sn + 04T s,) — pllg
<|IC1 = 0,)8, +0,Ts, — plig
< (I =0 sy = pllg + 0uITs, — pllg
< (1 =0, lls, = pllg + 0ullsn — plig
= |lsn — pllg

<llp. = pllg  (since [Is, = pllz < llp. — pllp)-
Also,

lg. — pllp = IT((1 = k)T, + ki Tr,) — pllg
<A = k)T s, + k,Tr = pllg
<A = k)Ts, +k,Tr, —kop + kup — pllg
<A =k)Ts, — (1 —k)p + ki Tr, — kupllp
<A =k)ITsy = pllg + ku IT7, = pllg
< (1 =ky)llsw = pllg + kn llrn = pllg
< =k)llpa = pllg + knllpn = Pllg
= lpn — pllg -
Now, by (2.2), we have
Ipns1 — pllg < @lign — plip < @llpa — pllg -

By induction, we have
1Pns1 = plly < @ ipo = plls - (2.3)

As ® < 1, we conclude that lim,,_,« |[py+1 — Pllz = 0.
3. Convergence analysis

3.1. Stability analysis

Let us recall the following Definition.

Definition 3.1. [18] Suppose that the iteration scheme p,,; = ¢(T, p,) defined by some function ¢ and
mapping T converges to a fixed point p of self mapping T on C"~V(J, X) and {s,} is an approximate
sequence of {p,) in a subset C""V(J, X) of a Banach space C™(J, X). Then, the sequence p, is said
to be T-stable or stable with respect to T provided that lim,_,., z, = 0 if and only if lim,_, ¢, = p,
where {z,,} is given by

Zn = llsns1 = $(T, 6a)lls, Y n € Z7.

Lemma 3.2. [9] Let {u,} and {z,} be sequences of positive real numbers satisfying the following
inequality:
Ups] < (1 - Un)un + Zns

where v, € (0,1) foralln € Z* with X" v, = co. If lim,,_,, Iii =0, then lim, . u, = 0.
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Theorem 3.3. If C"~V(J, X) is non-empty closed and convex subset of a Banach space C"(J, X) and
T is defined as in Theorem 2.1, then the iterative scheme given in (1.3) is T-stable.

Proof. Let {g,} be an approximate sequence of {p,} in C"V(J,X). The sequence defined by
iteration (1.3) is: p,y1 = (T, p,) and z, = [I§ue1 — &(T, 6)ll, n € N.

We now show that lim,,_,, z, = 0 if and only if lim, . ¢, = p.

Suppose that lim,,_,, z, = 0. It follows from (1.3) that

ISas1 = PllB < Sne1 — ¢(T, sl + IA(T, 50) — plls
=Zn+ ||pn+l - p”B

By Theorem 2.1, we have

O- K@ _ O=0"" (0

¢ _
-2 -n+2) (-1 ° K©O) + Ig(K(t)]llcn plis.

ngﬁ—mm$@+[
Let
O-orKle) , 0-0""
-2l -n+2) (=D ¢

&= lln = plls, and 5, = | K0) + 15K

Then,
é’(n < (1 _ﬁn)gn + Zn-

As lim,_,., z, =0, ;— — 0 as n — oo, Lemma 3.2 gives that lim, ., {, = 0 and hence lim, ., ¢, = p.

n

Now, if lim, . ¢, = p, then we have

Zn :”gn+l - ¢(T’ gn)”B
<Suse1 = plia + 16T, 5) = plis

(0 — 0)*K(0) N 0-o0)" ot
n-2)T(-n+2) (-1 °

< lsnsr = plls + K(O) + LKD) |l = plis,

which implies that lim,_,, z, = 0 and hence the iterative scheme (1.3) is T-stable.

3.2. Dependence on boundary data

Definition 3.4. [10] Let T\, T, : C""(J,X) — C"" (T, X). Then, T is said to be an approximate
operator of T, if there exists € > 0 such that

ITip = Toplls < &V p € C"" (T, X).
Suppose p and p are solutions of (1.1) with boundary data

p(k)(g) = Cg, k =, 1, 2, RN (A 2, p(n_l)(e) = Cy,
) =di, k=,1,2,....,n=2; p"(0) = &,

where, ¢, di (k=0,1,2,...n—2), cy, Cg are given elements in X.
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Define an operator T as follows:

2 _ _
_ k Co G0, p(0))(0 — o) ! -
(77 (t)_;k_t_g) (n—l)!+ (n—2>!r<§—n+2>)(’_9)

-0 ! ton 1)
_(n—l)!r(g—nﬂ)fg(e_s) G(s, p(s))dwﬁ)f(t—s) G(s, p(s))ds.

To establish the continuous dependence of solutions of Eq (1.1) on the given boundary data, we prove
the following result according to [23].

Theorem 3.5. Let {p,}" , be an iterative sequence generated by the AA-iteration (1.3) associated with
the operator T defined in (2.1). Define an approximate sequence {p,}>, generated by the AA-iterative
scheme as follows

Purt = TGy

Gn=T((1 = k)T5, + k,T7,).

o = T((1 = 0,)5, + 0,T5,),

S0 = (1 =w)pu + W, TPy, n €N,

with the real sequences {k,} ", {0,}, and {w,}> , in (0,1) satisfying k,o0, > %for all n € N. If the
sequence {p,}, , converges to p, then we have

— Pl <
lp = plls < T—5-
where,
n-2 —
—d _
=Sl JeamBll
= ! (n—-1)

Proof. Suppose the sequences {p,}*, and {p,} , with the real sequences {k,} >~ ., {0,} ", and {w,} , in
(0, 1) satisfying 1 5 <¢,.pB, foralln e N.
Note that,

1Ps1®) = Buri @I = ||(Tg)(®) — (TGO
n—-2

L . G g.@)@ - ™"\
-9 +((n—1)!+ (n-2)IT —n+2) )(t o)

(t - Q)”‘1 o oy ' “n

—Z—@- o) _( &, @) -0 !
(n—-1)! (n-2)IT( -n+2)

)(t —o)!

n=0

(t-o" fon ! b -
(n—1)vr(§—n+1)f( —5)"G(s, qn(S))dS—@fQ(t—s) G(s,Gu(s5))ds

-2 _

d _
Z |Ck kll ® —Q)k + llce Ce'||(9 —Q)"_l
P ! (n-1)!
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N 1G (0, 4.(0)) — G(0, Gu(@))I| (0 — 0)* !
(n—-2)I0( —n+2)
(t—o)"!
(n-DIIC-n+1)

)(t -o)!

0
f (0 = )" G (s, gu(5)) = G(s,@u(5))ll ds
4

+ %{) fg (t = 9V NG(s, 4u(5)) = G5, Gu()ll ds
K@) 11g:(0) = (o)l (8 — o)™ n-1
SM*( (n—2)IT( —n+2) )(I_Q)

(t—o0)!
(n— DT —n+ 1)

+ %g) fg (t = ) TVK(5) lIgn(s) = Gu()ll ds.

0
f (0 = $)""K(9) ga(s) = Gu()ll ds
©

Taking supremum norm on both sides of the above inequality, we have

(t - Q)n_l ”qn - QHHB
n-DITC—n+1)

Ko)(t — )" (0 — o) !
(n-2)T( —n+2)

||Pn+l _I_Jn+l||3 < M+( )HCIn_QnHB"'

+ ||C]nr—(gn||3 L(t_ s)“‘”?((s)dS

K@@ =06 -0 ™!
-2 -n+2)

0 —0)""llgn — Gullg
(n—-DITC —n+1)

< M+( )HQn_EIn”B"'

. ||61nr—(£n||3 L(t_ 9 DH(5)ds

K(0)(0—0)"' (6 — 0)* !
n-2)TC —n+2)

0—o)!
n-DITC-n+1)

=M+( )||qn—c7n||3+[

L e .
'O fg (t—s) W(s)ds]nqn dnlls

(0 — 0)*K(0) L= 0! s
-2 —n+2) (-1 °

(6 - 0)*K(0) L= oy e
“)IN(C-n+2)  (n-1 ¢

=M+ @llgn = Gullp -

x(0) + 157«0] gn = Gl

M [(n KO + 1K) lan - Gl

Now, if u, = (1 - k,)s, + k,Tr,, then we get

g = Gallg = ||Tun — T,
< M + q)llun - un”B ’

and

ltn = allp = ||(1 = ks + kaTr = (1 = k)3, — ka TF,
<A -k)||Ts,—T5, Tr,—TF7,

B

B+@

B*

)
f (0 — ) "K(s)ds
1
9
f (6 — 5K (s)ds
o

6
f 0 — 5 "K(s)ds
o
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Forv, = (1 —0,)s, + 0,Ts,, we get

||Trn ~T7,

BSM+q)||rn_fn”B
=M+®|Tv, - T7,

B

=M+ M+(D||Vn—\_/n||3:|

=M+ OIM + (D[”(l - On)sn + OnTSn - (1 - On)En - OnTEn”B]]

B

§M+®M+®m—wW%—MMHMM+®Mr$Mﬂ

Ts,— T35,

=M+ DM+ D[(1 -0, ||, — 5ullg + 0,

:M+QM+®MM+U—wU—®N%—MM}

Also,

”un - ﬁn”B < (1 - kn) Tsn - Tin Trn - Tfn

B+k” B

<(1- kn)[M +@lls, 5,,||B] + &, |5, - TF,

B
< (1= k[ M+ 0o, M o+ (1= w1 = O 1, = il )|

+ ky —M + <I)(M + Qlo,M + (1 = 0,(1 — D)) |5, — EnllB])]

< (1= K[ M+ 0o, Mo+ (1= w1 = O 1, = il |

+ k,,>M + CI)(M + CI)[onM + (1 —0,(1 — D))

X (wa + (1= w1 = D)l = il )}
Therefore, we have

Mm—nMMSM+®@—hﬁM+qu+a—ma—®wm—mmﬂ

+ kn[M + cD(M + cD[onM + (1 = 0,(1 - @) X (WnM + (L= wi(L = @) lpn = Pulls )])])

<M+ MD+ (1 - k)M + (1 - k,,)(wnM + (1 —wy(1 - cD))) lpn = Pallp + kM

+ k,®M + k,®*Mo, + D*k,(1 — 0,(1 — d)))(wnM + (I =w,(1 - d)))) lpn — Pallp -
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As @ < 1, we obtain that
UPwer — Pustlly < 3M — koM + (1 - kn>(wnM+ (1 = wy(1 - cD)))upn — Pally + kaM

kM + kyMoy + k(1 — 0,(1 - cb))(wnM £ (1= wal - cD))) 1Pn = ulls

< {1 = kyou(1 = @)} (1 = wu(1 = @) [|pn — Pallp + B + ky + ko) M
< {1 - knon(l - (D)} (1 - Wn(l - (D)) ”pn - ﬁn”B + (3kn0n + 3kn0n + knon)M

Tkno,(1 = D)M
< {1 = k0,(1 = )} (1 = wy(1 = @) [Ipn = Pallg + (21(— D) )

Note that w,M <1 = (1 —w,(1 — ®)) < 1 and we get that

Tk,0,(1 — D)M
(1-)

||pn+l - pn+l||3 < {1 - knon(l - Q))} ”pn - pn”B +

Setting u,, = k,0,(1 — @), results in

||pn+l - Pn+1||3 < (1 _,Un) ”pn - ﬁn“B +:u”(1 _ (D)

Let us denote ||p, — pullz by ¢, and % by w,. Obviously, u, € (0,1) foralln e N, > i, = oo and

w, > 0. Thus, assumptions of the Lemma 3.2 are satisfied, and hence we have

0 < lim sup ¢, < lim sup w,

7
= 0<limsup [Ip, = pilly < lim sup ——=.
= 0 < limsup || Dallp < -

< u n~— FPn = 1_d)
P T 0)

Since {p,} ., converges to p, and {p,} ., converges to p, we have

™
(1-0)

lp = pllp <

3.3. Error bounds of solutions of two boundary value problems

Let us recall a fractional boundary value problem as follows,

“Dip(t) = G(t, p(1), fort € T =[0,6], n—1<{ <n o

p(k)(Q):Cka k:0,1,2,.-.,n—2; p(n_l)(g):CQ. ’
We now consider another fractional boundary value problem given as:

Dipr) = G, pr)), forte T =[0,6], n—1<¢<n o)

PP = e k=,1,2,...,n=2; p"N(O) = &, '

where, G : J X X — X is a continuous function.
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Define the operator T corresponding to 3.2 as follows:

Co G(o, p(0))(0 - 9)4‘”“) el
+ (t-0)
£ n-1! (-2 —-n+2) (33)

(t—0)""! ? fon “n
_M—MHpm+lewﬂ)g“mmw+ﬁajb—® G(s, p(s))ds.

Suppose that,

(1) The conditions of Theorem 2.1 hold and p and p are solutions of (3.1) and (3.2), respectively.
(i1) There exists positive constant € such that

|6t uw) - Gtup)|| <evied.

Then, the following result gives an upper bound of the error between the solutions of two fractional
boundary value problems provided that the error between the G and G in (3.1) and (3.2) is given.

Theorem 3.6. Consider the sequences {p,} ., and {p,} ., defined with the operators T in (2.1) and T
in (3.3), respectively, such that (i) — (ii) hold, where the real sequences {k,};" , 0.}, and {w,} ", are
in (0, 1) satisfying % < ky, 0, for all n € N. If the sequence {p,},. | converges to p, then

1 1 1
) 5|M + €0 - o) ((n—z)!r(g—n+2) T ooty T r(g+1))]
llp = pllp < — o . (3.4)

Proof. Note that,

1Ps1®) = Buri @I = ||(Tg)(®) = (TG @)

n-2

o, G a:,)0 - o) !
-1 (-0 —n+2)

%(t—e)" +( )(r—g)"-‘

(I_Q)n_l ¢ -n -1
T-DITC-n+ D fg O oG aond W)f” G oy

2 = > = _ A\{—n+l
Z k_k (- o) - ( ¢, 60,30 -0) )( R
n=0

(n—1)! =2 (-n+2)

—o" _ g L PNty
(n—l)'r(f n+1)f(9 )G, qn(5))ds r(g)L(Z s) G(s, Gu(s))ds

-2 _
m Al gy Moo =Bl
Z O e TR

W@%@)Q@%@MW@VM(F)H
- —n+2) ¢

G(5,qu(5)) = G(s5,Gn(s))| ds

(l_Q)n_l ’ [-n
T - DIC—n+ 1) fg =)
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N %g) f = 9605, 4u(5)) Gl a5 ds

||Ck dk” llco — Coll e
Z O-0)f + -0

(IIQ@, 3.(0)) — 6(0. 4n(0))]| (6 - 0y ! ) N
" (t-0)
n-2)'T( —n+2)

N (IIQ(Q, 4:(0)) = G(0, ()l (0 — 0!
(n=2)I(-—n+2)

(t_Q)nl l-n
MCEE +1>f(9_s)

(l Q)n 1 ton
+(n—1)‘F({— +1)f(9 871G (s, gn(8)) — G (s, Gn(s))l ds

F@ f (t = 9|65, Gun(5) — G(s.Gu(s))|| ds

)(l -o0)""

G(5.Gu(5)) = G(s.Gu(5))|| ds

f(l— $)CVNG(s, gu(5) — G(s, Gu(s))l ds
€0 — o) ! -1
((n )T —n+ 2))0 —0

K(©0) llgn(0) — Gu(o)Il (6 — 0)* ™! el
+( (-2 —n+2) )(I_Q)

(l _Q)n—l 9 .
m—-DIIC-n+1) fg (6 —s)"eds

-0 / rn )
- DITC-n+ D) fg 0 = 9K (5) llgu(s) - Gu(o)ll ds

+ %{) f (t— s)(g_l)eds

F({)f(t ) VK$) gn(s) = Gu() ds.

O
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Therefore,

||pn+l(t) - ﬁn+l(t)|| <M+

(-0

€@ -0 "0 -0 R,
+("—1)'F(§—n+1)£(9—s) eds

(n=2)I(-n+2)

=2 -n+2)

= _ A\{—n+l
‘5 f (1 — )¢ Veds +(7<<g)||qn<g) 3.0l (6 - 0) )(t_g)n_l

(t—oy"!
(n “ DT —n+1)

o f (& = 95K () lgas) — Gu(s)ll ds
B G OO -0 e@—0)(O - ) !

= -2 -n+2) (- DI -n+2)

= _ N\{—n+l
. (7((@)||Qn(g) g (6 - 0) )(t_g)n—l
(n-2)IT( -n+2)
(t— o)
(n- DT —n+1)

1ﬂ(é,)f(t IKS) lgn(s) = Gu() ds.

f (0 = 5" K($) lgn(s) — Gu(s)l ds

€0 - 0)*
T+ 1)

0
f (0 — K (5) Iga(s) — Gu(s)ll ds

Taking supremum norm on both sides of the above inequality and simplifying, we have

UPust = Pusilly < M +e(9—g>‘f(

1

1

=2 -n+2)

+
m-DIC-n+2)

)
+ +
I'e+1

Following arguments similar to those given in the proof of Theorem 3.5, we get

90 = Gl = || Tun = Tl < M+ e0 - o)

And

Also,

R
=M+ e- Q).«“(
=M+e@- Q)é(
+ (D[M + €0 - 9)4(
=M+e@- Q)é(
+ (D[M + €0 - Q).f(

+ CD[on(M + €0 - Q)g(

et

1

1

_ﬁn”B < (1 — Rn

1

—DITC—n+2)  n-DITC-n+2)

-T5, 5

1
+ + D ||u, — iyl .
D) @l il

-Tr, 5

1

q)”rn - Fn“B

n=-2)IT( —n+2)
1

T DT —n+2)

D)
+ +
Irec+1
1

- —n+2)
1

(n—DITC -n+2)

1 .
* R 1)) +®||Tv, - T5 |,

-2 -n+2)
1

+ ! + ! )
n-DITC-n+2) T+1)

1

- —n+2)
1

m-DIC-n+2)

+ r@i )+ @l =l

n=-2)I(-n+2)
1

+ ! + ! )
m-DIC-n+2) T+1)

(n—2)T( —n+2)
1

1 1
T - DTC-n+2) T+ 1))

+(1+ou(1 = O)lsy = 5l )|
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Therefore,

”un - ﬁn”B < (1 — Rn

= (1= k(M + €0 - 0|

— T35, + — TT|,

1 1 1 )
+ +

-2 -n+2) m-DIOEC-n+2) TEC+1)

+ (1M + (1 = w1 = 0))lpy = Pl )

{ ! 1 1
+"(M+E(9 9)( 2)zr(g—n+2)+<n—1)!r<§—n+2)+r<§+1))

{ ! 1 1
+O|M+el- 9)( DT —n+2) (n—l)!r<§—n+2>+F<é“+“)

+

1 1 1
[ 2)!F({—n+2)+(n—1)!F({—n+2)+F({+1))

+ (1 + 0,1 = )ls, = 5l )|

(M + €(6 — Q)g(

Also,
1 1 !
— P - § ~4
Pns1 — Pusilly < M + €(6 Q)((n—2)!1"({—n+2)+(n—l)!F(éV—”+2)+r(§+1))+®”qn Gnllg
1 1 !
—_ A~
s M+ e 9)((n_znr(g-mz)+<n—1)!r<é—n+2>+F<é+1>)
1 1 !
Y4
“D(M”(@ 2 ((n—z)!r(é—n+2)+(n—l)!F({—n+2)+r(4”))
+ 0, — )
<M+e(9—Q)§( : + 1 * 1 )
< M=) -n+2) (m-DIT(C-n+2) TC+1)
1 1 !
Y4
+ (M +e0-0) ((n—z)zr(g—n+2)+(n—l)!F(é—n+2>+F(4+1))
1 1 !
B _ o)
cD[(l k,,)(M+ €6 - o) ((n O —n+2) * (n-DIIC -n+2) * I'({ + 1))

+ (M o+ (1= (1= @) l1p, = Pl )

1 1 1
+k(M+E(9 Q)g( 2)!F({—n+2)+(n—1)!F(§—n+2)+F(§+1))
; 1 1 1
+(D[M+€(0 Q)( DTC —n+2) (n—1)!r(g—n+2)+r(g+1))
; 1 1 1
+(D[ (M+€(6 9)( 2)!F(§—n+2)+(n—1)!F(§—n+2)+F(§+l))

+ 1+ 0,1 - o) s, - 54 )| )

< 1 = kyou(1 - @)](wnM +(1—wy(l - cb)))upn — Bully + 3+ K,
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. 1 1 1 )
+0"(M+6(9 ©) ((n—2)!F(§—n+2)+(n—l)!F(§—n+2)+F({+1) )

Now, by taking u, = k,0,(1 — ®), we have

— ) 1 1 1
5 [M + € -0) ((n—z)!r(g—mz) * oohrey + r(g+1))]

||pn+l - ﬁn+l”B < (1 _:un) ”pn - anB +,un 1—-®

Using the Lemma 3.2, we arrive at

Y 1 1 1
S|M + €6 - 0) ((n—2)!F(g“—n+2) t ooore—y T r(§+1))]

llp = pllg < (3.5)

1-®

The inequality (3.5) shows the relationship between solutions of the BVP (3.1) and (3.2), in the sense
that if € — 0, that is, G and G are sufficiently close to each other, then not only will the solutions of the
two BVPs be close to each other, but will also depend continuously on the functions involved therein
and the boundary data.

3.4. Dependence on parameters

Consider the fractional boundary value problems

Dip(t) = G(t, p(O), 1), forte T =[0,0l, n—1<¢<n
p(k)(Q) = Cg, k =, 1,2’ N (s 2; p(n_l)(e) = Cog,

and
D5p(1) = G(t, p(D), pra), forte J =[0.0], n—1<{<n
PP =d, k=,1,2,...,n=2; p" () = &y

Let p and p € C"V(J, X) as given in the previous Theorem. Define the operators T and T as follows:

-2
=N S ot Co Glo, p@),u)@ -0\
T ® _]Zlk -0 +((n—1)!+ (-2 —n+2) )(t 0)

(t—o"! ’ {on t 7))
f 0 —9)7"G(s, p(s), u)ds + —— f (t = 9)*""G(s, p(s), u1)ds
o o

(=D —n+1) T
and
n—-2 - —
- dy . ¢ G0, plo) pa)(0 — o) ™! i1
(T5) 0 = 2ipmo ((n O T -2 —n+2) )(t_g)

)n 1 . 1 £ . .
T s 1)'F(§ P f (0 — 5)*"G(s, P(s), wo)d's + @f( — 9)VG(s, p(s), wr)ds.

Assume that, )
NG, ur, 1) — Gt vi, u)ll < K@) lluy —will
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and
NG, ur, 11) — Gt uy, wo)ll < (@) |l — wall,

where, K,r € C(R,). The following result establishes the continuous dependency of solutions on
parameters.

Theorem 3.7. Consider the sequences {p,},. , and {p,} | as in the previous Theorem and satisfy the
assumptions given above. If the sequence {p,}" | converges to p, then we have

11—z | (6—0)° (o
(n=2)'T'({-n+2) ) + (n—1)!
1-®

() 41—

5| M + ( L) +

i = el )|

lp = plip <

where,

- [ (0-0fK() 0-0"" i >
O = [(n—Z)!F({—n+2) + =D I; ‘K(9)+IQ7<(t)] < 1.

Proof. Consider,

1P+1(8) = Bus1 DI = |[(Tgu)(®) = (T3)0)||

& G(0, 4n(0), 11)(6 — 0)< !

TP
o +((n—l)!+ n-2)T( —n+2)

) t-o0)"'

n=0

- - e )
(n_l)w_nﬂ)f(e 96, qn<s)m>ds+r(of<r 9EDG(5, qu() u)ds
n-2

k k Co G0, 3n(0), 12)(0 — 0)* ! el
_Z_(t_g) _((n—l)!+ -2 —n+2) )“‘9)

t-o"'
(n- DI —n+1)

<"22||ck—dk||(9_ oy oo =aill o
2w o 0

1
rQ)

f (0 — ) "G(s, Gu(s), i2)ds — (t — )G, Guls), u2)ds

(n—1)!

. (IIQ(Q, 42(0), 1) = G(0, Gn(0), p2)II (6 — 0)* ! ) (t— oy
-2 —n+2) 0

(t—o)"!
(n DT —n+1)

f (t = VNG, gu(s), 1) — G(s, Gu(s), )l ds

f(é’ = TGS, gu(5), t1) = G(s, @u(s), pro)ll ds

1"(4“ T

||ck 2] [ P—
_Z e O e TRAnl 4

N (IIQ(Q, 3n(0). 1) — G(0, Gn(0), )| (6 — )" ) -
-0
(n=)T(-n+2)

. (IIQ(Q, 4n(0), 1) — G(0, Gn(0) I (8 — 0)* !
n=-2D'T( -n+2)

-0 -n = =
- -n+D) Jj(e = NG, @u(5), 1) = G(s, Gu($)u)ll ds

) t-o0)"
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(t—o)"!

T (0= 9 G5, 4n(5). ) = G5, 25 )

r@ f (t-s) 1>||g(s Gn(5), 1) — G(s, Gu($)p2)ll ds
*To f (t = VNG, gu(s), 1) = G(s, @u(s), )l ds

rO)1 — po|@ - o) *!
<M+ (t—0)"!

-2 (-n+2)

L (K@ lgn(0) — §u (NI (6 - o
(n-2)I0( —n+2)

(1= o) ﬁ -
Yo -nsn ), @7

(t—o)"!
(n “DITC—n+1)

) f (¢ 90

) (=0

1 — po|ds

f (0 — 9 "K($) llgn(s) = Gu($)ll ds

M1 — H2

"”F@ f (t = EVK($) llgn(s) = Gu(s)ll ds.

Therefore,

r(Q)‘/JI — |0 — o) (B — o) !
(n=2DI({-n+2)

)n 1 ton
+(n—1)vr(§ n+1)f(9_s) r(s)
K (0) l1gu(0) — Gu(@)I] (8 — Q)]
-1
r@)f“ RS “2‘1”( (- —n+2)
Q)n 1 f fon
+(n—1)'r(§— Y (0 — ) "K($) llgn(s) = gu(9)ll ds
" 5O f (t = ) KS) 1gu(s) = Gu(s)ll ds

||pn+1(t) - ﬁn+1(t)|| <M+

1 — po|d

rie)u — |0 — 0 ™ O -0 r@O — e

@ —0)'(@-o)™!

<M+ =2 -n+2) " n-DIT( —n+2)

r(1)

— — o)

S N (7«@) 14:(0) = 3@ (6 = )"
I'e+1 -2 -n+2)

L -0
(n-DI-n+

+%§) f (& = 95K5) lgn(s) - au()l ds.

) t-o""

f(Q = Y TK($) gn(s) = Gu($)ll ds
) J,

)(t —o)"!
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Taking supremum norm on both sides and simplifying, we have

r(g)'m —w|@ =) O -0 HO|u — |0 — )" (O - o) !
||pn+1 - ﬁn+1”B < M + +
(n—-2)I0( —n+2) (n—- DI —n+2)
r®u — |0 -0 )
T+ 1) + @ lg, — gnllp -

Following arguments similar to those given in the Theorem 3.5, we get

’”(Q)'#l — i2|(6 — 0)°
n__n = Tn_T_n SM+( )
gn — Gullp ” u Un||p -2 -n+2)
i — | (0 — o) )
ot O = | or() + @l = Tl
and
s = fallp < (1= ko) | Ts0 = TS|, + b || T 70 = T, -

Also,

rO — | -0F . |1 — |- o)

(n—2)'1"(§—n+2))+ n-1! Ig_n+1r(9)+ M1 — M2 Igr(t)+<5llrn—?nllg

|77, = T7,, < M + (

I

rOu1 — 2|0 — ) |u1 — 2|0 — )"
(n—z)!r(g—n+2))+ -1

=M+ ( Ig_"ﬂr(e) + (U — 2 Iér(t) +d ”Tvn - T‘_}"”B

rOu — |0 -0 |1 — |0 —0)"!
=M+ +
((n—Z)!F({—n+2)) n—1)!

157" HO) + | = oI5 (1)

_ r(Q)'un — |0 - 0)F '/J] —pf@-ot _
+®[M+((n_2)!r(§_n+2))+ o ) + = @) + Bl = Tl
rur — 2|0 — ) |1 — 2|0 — o) o ,
+((n—2)!F({—n+2))+ -1 e MO+ = p)lor@)
i @ —m|@-0)f - pl@=ot
+CD[ +((n—2)!r(§—n+2) MY 15O+ = oo o)
r — |0 -0 |u —m|@-o)!

Lr(r)

+é[o”(m((n—z)!r(g—mz))* -1 15‘"”r(9>+‘m—u2

+ (1 + 0,1 = Bl = 5l )|
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Thus,
||un - ﬁn”B < (1 - kn) Tsn - TE,, B + kn ||Trn - Tfn B
rOu — 2|0 — 0 |1 — 2|0 — o)
= (= + ((n S —n+ 2)) O = kel
+ (s + (1 = w1 = D)) 190 = Bills )
ro)|u1 — p2|(6 — 0)* 'ul — 2|0 —0)"! 1
+k”(M+ ((n— 2)!r(§—n+2))+ DTl e+ "“ ~ ta|fgr(@)
i rl — |0 -0 | — |0 —0)"! 1
" CD[M " ((n )T —n+ 2)) My sy ORI TR E )
ru — |0 —0)F |1 — 2|0 — )"

" é[o"(MJr ((n )T -n +2))+
+(1+0(1= B)lls, - 5l )

(n—1)!

AIMS Mathematics
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Therefore,

7(9)‘#1 — 1|0 - o) ‘/11 —pl@-ort )
lprst — Pusillp SM+((n—2)'F(§—n+2))+ o Ig—n+ r0) + [u; — ya Igr(t)+(1)||qn_q”||3
r — |0 -0 |ur — | -0y o (
SM-'-((11—2)!1"(4“—;1+2))+ n-1! Iy ’(9)+’ﬂl—#2lgr(l)
- r| — pa|(@ -0 i — )@ - 0" l-n+1 s
' (D(M ' ((” ~ )N —n+2) ) P e MO i pe|ler@)
+ @ llus = Tl )
@l a0 -0 -pmf@-ort (
=i ((n OrC-n+2) T monr e MO el ®)
”(Q)‘,Ul — 2|(6 = 0)* ‘,Ul — 2|6 — o) . g
+q>( +((n_2)yr(§_n+2) * n-1)! I 7 1(0) + |1 = po|lgr(2)
i} rO — | -0F . |1 —p|@ - o)™ 1
’ (D[(l - k")(M ’ ((n )T -n+2) ) Ay 157" r(6) + w1 = o Tor(0)
+. (M + (1= w1 = ) s = Pl ))
r)u =)@ =0 |1 — pa|( =)™ {1 ¢
’ k”(M " ((n ~2)IT( —n+2) ) T o e TOF = pafler®
- )1 — pa| (0 =) |u1 = 2|6 = 0)"! rontl 7
+(D[M+((n—2)!l"(§—n+2) - (n-1)! o 7 r(0) + |y = pa| L (D)
= r@ - m|@-0F |u - )@= {-n+l ¢
' (D[On(M ' ((” —DM¢-n+2) ) P am e O pa)lr(@)
cent- o)
< [1 = kyou(1 - é))](w,,M + (1 = wy(1 - ci>))) pn = Bullp + 3 + ks
’(Q)‘#l—/tz (6-0) 'm—ﬂz (GO . ,
) S[M +( 2T (C—n+2) )+ D1 Ib n r@) + (u; — up Iér(t)]
+04(1 — D) _ .
1-0
By setting Mn = knon(l - (i)), we have
r(y)'m—ﬂz’(é?—g)! ‘#1—}12 0-0! .
S|\ M +( -2 (C-n+2) )+ =1 L7 o) + 'pl — i Iér(r)]
IPa+1 = Pusllp < (1= ) 1P = Pullp + o — .
-0
As n — oo, then by assumptions and from the Lemma 3.2, we get that
(0|1 —p2|(6-0) 12| (0—0)! o g
\M + ( (=2)'T(¢~n+2) ) + (=1 I, r0) + 'ﬂl yy) IQr(t)]
— D < _ '
Ip = pllg —%
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4. Numerical experiment

We now present a numerical example that not only shows the applicability but also substantiate our
results presented herein. We have used MATLAB version R2018a. For a given contraction mapping,
we compare our iteration scheme with other existing comparable iterative schemes. Additionally, we
compare various hypotheses and parameters.

Example 4.1. Consider the set R of all real numbers with the usual norm, that is, ||p|| = |p|. Define
a mapping f : R — R by f(p) = (p* +2p + 5)%. Note that, f is a contraction mapping. We plot the
behavior of the convergence of different iterative schemes for f. It is evident from Figures 1—4 that the
AA-iteration not only converges faster but is also more stable than the comparable iteration schemes in
case of contraction mapping. Note that the other iterative schemes change their convergence behaviors
as the parameters are changed.
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In order to compare convergence rates between two iterative processes, we use the following
Definition from [9].

Definition 4.2. Suppose that sequences {a,} and {5,} converge to the same point [* with the following
error estimates

”an - l*” < Pn»

18, = Il < g
If lim,,_, ‘;ﬁ = 0, then {a,} converges faster than {§3,}.
Example 4.3. We consider the following boundary value problem:

3

(Da) p(t) - = [t - Sil’l(p(l))

> ],tE[O,l],n—1<a£n,n€N 4.1)

t
5
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with the given boundary conditions
pP0)=0,j=0,1,2,---,n=2,p" (1) = 1.
Comparing this equation with the equation (1.1), we get

G € C(J xR, R), with G(t, p(¢)) = ? [ﬂ] . 4.2)

Now, we have

H —sin(p(7))) l—Sln(p(t))
2

< —I sin(p(1)) — sin(p(0))| (4.3)

G, p()) = G(1, p())| <

< 1 0 Ip(t) p@)l,

where K(t) = %
Note that,

[ (0-0)fK(o) O-0"" ¢
el Py S S (R 7((9)”97((”]
p(0)

= » 1 {—n+1 74
“loorc-—n+ T ot POFIPO

: ‘ 1
“|la—orc—nry Tmon PO 1419(0] (p(0) = 0) (4.4)

_3 1 1 o o
_E[(n—l)!r(g—nu)fo(l_s) Sd“@f(t—s) sds]

<3 3 1 1 <1
O[(n=DIT(-n+3) F({+2) <.

If=3%|emre n+3)+m+2)]<1 then® < 1. Ifweset,{ =3, thenn = [{]+1 = [3|+1=2+1=3

and
3| 1 1
(DSE_(3—1)!F(§—3+3)+r(§+2)

_ 3 [1 s i] (4.5)
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Define the operator T : B — B as follows

(Tp)t) =

2 2
2 2

r(l

[

(I-95"2—

1 3s [s sm(p(s))]ds

13s [s sm(p(s))]

2

ds,te 9.

(4.6)

Since all conditions of Theorem 2.1 are satisfied, we get the sequence {p,} generated by
AA-iteration (1.3) converges to the solution of BVP for the operator T defined in (4.6), which
converges to a unique solution p € B. Moreover, the Table 1 shows that the convergence of
AA-iteration scheme is faster than the Picard, Mann, Ishikawa, and S-iteration processes.

Indeed, from Eqs (16) and (17) from [1] and by [7, 13,21], we get that

(l) a, =

(iii) yn = [1 = (

(iv) v = [1= (1= &% lIp: -
() dp = &"[1 = (1 = &)k +w — kw)"lIpy

where € € [0, 1) is contraction constant. The convergence of sequences {a,}

g'[1 = (1 - &kw]"llp,
(it) Bn = €"llp1 =

Pl
1= &)k]" lpr =

- p*”’

P,

P,

- p'lls

{Bn ’{

v}, and {,}

depend only on @, = &'[1 — (1 — e)kw]", @, = &, @3 = [1 — (1 — &)k]", and ®4 = [1 - (1 - g)zk]" and

s = &1

— (1 -¢&)k+w—kw)]", respectively.

Table 1 shows the respective iteration for the example discussed above with € = ® = 0.138629441

and k, = w, = 1

E.

Table 1. Comparison of different iterative schemes.

Iteration (n) S-iteration (®;) Picard (d,) Mann (®3) Ishikawa (®4) AA-iteration (Ds)
1 0.108776611 0.138629441 0.569314720 0.629020380  0.000943051
2 0.011832351 0.019218122 0.324119251 0.395666639  0.000000889
3 0.001287083 0.002664197 0.184525861 0.248882379  0.000000000
4 0.000140004 0.000369336 0.105053289 0.156552089  0.000000000
5 0.000015229 0.000051201 0.059808384 0.098474454  0.000000000
6 0.000001656 0.000007098 0.034049793 0.061942439  0.000000000
7 0.000000180 0.000000984 0.019385049 0.038963056  0.000000000
8 0.000000019 0.000000136 0.011036193 0.024508557  0.000000000
9 0.000000002 0.000000019 0.006283067 0.015416382  0.000000000
10 0.000000000 0.000000003 0.003577043 0.009697218  0.000000000

According to the Definition 4.2 and by the Table 1, the AA-iteration process converges faster than
the Picard, Mann, Ishikawa, and S -iteration processes.
Error estimate. Now, from (2.3) we have
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<[ 1"Yipo — plis. 4.7)

3
175 V7

The estimate obtained in the Eq (4.7) is called a bound for the error.
5. Conclusions

In this paper, we approximated the unique solution of boundary value problem (1.1) using the
AA-iteration scheme. Moreover, the properties of solutions, such as continuous dependence on the
boundary data, closeness of solutions, dependence of solutions on parameters, and functions involved
therein, have also been discussed. Finally, we presented a numerical examples, comparing the behavior
of the AA-iteration with other known iteration schemes. The simulations show that the AA-iteration
converges faster than the M-iteration, S-iteration, Abbas-iteration, Thakur, and Noor-iterations. Thus,
our results are generalizations and improvements of comparable results in the existing literature. In the
future, one could explore the extension of the proposed AA-iterative scheme to nonlinear and multi-
dimensional systems to obtain vast applications in science and engineering.

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Acknowledgments

Authors are grateful to reviewers for their useful comments, which helped us to improve the
presentation of this paper. This work was supported by a grant from the National Program for
Research of the National Association of Technical Universities - GNAC ARUT 2023.

Conflict of interest

The authors declare no conflict of interest.

References

1. M. Abbas, M. W. Asghar, M. De la Sen, Approximation of the solution of delay
fractional differential equation using AA-iterative scheme, Mathematics, 10 (2022), 273.
https://doi.org/10.3390/math10020273

2. M. Abbas, T. Nazir, Some new faster iteration process applied to constrained minimization and
feasibility problems, Matematicki Vesnik, 66 (2014), 223-234.

3. R. P. Agarwal, D. O. Regan, D. R. Sahu, Iterative construction of fixed points of nearly
asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61-79.

4. J. Ali, F. Ali, A new iterative scheme to approximating fixed points and the solution of a delay
differential equation, J. Nonlinear Convex Anal., 21 (2020), 2151-2163.

AIMS Mathematics Volume 9, Issue 5, 13129-13158.


http://dx.doi.org/https://doi.org/10.3390/math10020273

13157

e

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

M. W. Asghar, M. Abbas, C. D. Eyni, M. E. Omaba, Iterative approximation of fixed points of
generalized a,,-nonexpansive mappings in modular spaces, AIMS Mathematics, 8 (2023), 26922—
26944. https://doi.org/10.3934/math.20231378

M. W. Asghar, M. Abbas, B. D. Rouhani, The AA-viscosity algorithm for fixed-
point, generalized equilibrium and variational inclusion problems, Axioms, 13 (2024), 38.
https://doi.org/10.3390/axioms 13010038

G. V. R. Babu, K. N. V. V. Vara Prasad, Mann iteration converges faster than Ishikawa
iteration for the class of Zamfirescu operators, Fixed Point Theory Appl., 2007 (2006), 097986.
https://doi.org/10.1155/2007/97986

I. Beg, M. Abbas, M. W. Asghar, Convergence of AA-iterative algorithm for
generalized a-nonexpansive mappings with an application, Mathematics, 10 (2022), 4375.
https://doi.org/10.3390/math10224375

V. Berinde, Picard iteration converges faster than Mann iteration for a class
of quasi-contractive operators, Fixed Point Theory Appl, 2004 (2004), 716359.
https://doi.org/10.1155/S1687182004311058

V. Berinde, [terative approximation of fixed points, Berlin: Springer, 2007.
https://doi.org/10.1007/978-3-540-72234-2
M. Caputo, Elasticit’a e dissipazione, Bologna: Zanichelli, 1969.

V. Daftardar-Gejji, H. Jafari, Analysis of a system of nonautonomous fractional differential
equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026-1033.
https://doi.org/10.1016/j.jmaa.2006.06.007

S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147-150.
https://doi.org/10.2307/2039245

U. Kifayat, A. Muhammad, Numerical reckoning fixed points for Suzuki’s generalized
nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187-196.
https://doi.org/10.2298/FIL1801187U

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Boston: Elsevier, 2006.

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
https://doi.org/10.1090/S0002-9939-1953-0054846-3

M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl.,
251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042

A. M. Ostrowski, The round-off stability of iterations, ZAMM-Z. Angew. Math. Mech., 47 (1967),
77-81. https://doi.org/10.1002/zamm. 19670470202

E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des
approximations successives, Journal de Mathématiques pures et appliquées, 6 (1890), 145-210.

L. Podlubny, Fractional differential equations, USA: Academic Press, 1998.

D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split
feasibility problems, Fixed Point Theory, 12 (2011), 187-204.

AIMS Mathematics Volume 9, Issue 5, 13129-13158.


http://dx.doi.org/https://doi.org/10.3934/math.20231378
http://dx.doi.org/https://doi.org/10.3390/axioms13010038
http://dx.doi.org/https://doi.org/10.1155/2007/97986
http://dx.doi.org/https://doi.org/10.3390/math10224375
http://dx.doi.org/https://doi.org/10.1155/S1687182004311058
http://dx.doi.org/https://doi.org/10.1007/978-3-540-72234-2
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2006.06.007
http://dx.doi.org/https://doi.org/10.2307/2039245
http://dx.doi.org/https://doi.org/10.2298/FIL1801187U
http://dx.doi.org/https://doi.org/10.1090/S0002-9939-1953-0054846-3
http://dx.doi.org/https://doi.org/10.1006/jmaa.2000.7042
http://dx.doi.org/https://doi.org/10.1002/zamm.19670470202

13158

22.T. B. Singh, T. Dipti, P. Mihai, A new iteration scheme for approximating fixed points of
nonexpansive mappings, Filomat, 30 (2016), 2711-2720. https://doi.org/10.2298/FIL1610711T

23. S. M. Soltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like
operators, Fixed Point Theory Appl., 2008 (2008), 242916. https://doi.org/10.1155/2008/242916

24.Y. F. Sun, Z. Zeng, J. Song, Existence and uniqueness for the boundary value problems
of nonlinear fractional differential equation, Applied Mathematics, 8 (2017), 312-323.
https://doi.org/10.4236/am.2017.83026

25.H. L. Tidke, G. S. Patil, Existence and uniqueness of solutions of a boundary value
problem of fractional order via S-iteration, Creat. Math. Inform., 32 (2023), 97-120.
https://doi.org/10.37193/CM1.2023.01.10

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

% AIMS Press

AIMS Mathematics Volume 9, Issue 5, 13129-13158.


http://dx.doi.org/https://doi.org/10.2298/FIL1610711T
http://dx.doi.org/https://doi.org/10.1155/2008/242916
http://dx.doi.org/https://doi.org/10.4236/am.2017.83026
http://dx.doi.org/https://doi.org/10.37193/CMI.2023.01.10
http://creativecommons.org/licenses/by/4.0

	Introduction and preliminaries
	Solution approximation
	Convergence analysis
	Stability analysis
	Dependence on boundary data
	Error bounds of solutions of two boundary value problems
	Dependence on parameters

	Numerical experiment
	Conclusions

