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1. Introduction

Due to recent technological advancements, nonlinear evolution equations have become crucial in
modeling various physical processes across different fields, including fluid dynamics, pulse
propagation, optical media, and the telecommunication sector, to mention a few [1, 2]. One notable
equation on which this study focuses on is the classical Boussinesq equation, introduced by Joseph
Boussinesq in 1871 [3]. This equation is renowned for representing the propagation of surface waves
in water under conditions of long wavelength and small amplitude. Additionally, it has been widely
utilized in literature to model concepts related to water, including coastal and harbor engineering, tide
and tsunami simulations, and others [4]. Moreover, several variants of the Boussinesq equation exist,
including the fourth-order Boussinesq equation [4], the sixth-order Boussinesq equation [4, 5], the
coupled variant of Boussinesq equations [6], the (2 + 1)-dimensional Boussinesq equation [7], and the
class of higher-order Boussinesq Burgers equations [8, 9], among others. In this context, it is worth
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noting that the Boussinesq equation is the first nonlinear evolution equation to mathematically explain
the concept of solitons, or solitary waves, which were first described in the 1830s by Scottish naval
architect and civil engineer John Scott Russell [10].

The exploration of nonlinear evolution equations cannot be completed without considering the
mathematical methods proposed to solve the governing equations. This requires a thorough
investigation of the inherent physical and significant theoretical features underlying these equations.
In light of this, many scientists have proposed different methods, including analytical, semi-analytical,
and numerical techniques, to solve various equations. The Kudryashov method [11], the modified
auxiliary equation method [12, 13], the modified direct algebraic method [14], the bilinear
transformation method [15,16], the exponential ansatz method [17], and the modified tan method [18]
are examples of analytical methods. Additionally, some well-known semi-analytical methods include
the Adomian decomposition methods [19, 20], the modified decomposition approach [21], the
semi-inverse variational principle [22], the collective variable method [23], and the variational
iteration approach [24]. Relevant numerical approaches for evolution equations can be found
in [25–27].

The importance of the Boussinesq equations, specifically the sixth-order Boussinesq
equation [4, 5], has been discussed by several authors; see the work by Christov et al. [28], which
presents insightful research on the sixth-order Boussinesq equation, demonstrating its stability and
accuracy in modeling water wave propagation and nonlinear elastic crystal media evolution. This
study utilizes two promising analytical techniques, the Kudryashov method [11] and the modified
auxiliary equation method [12], to seek various exact wave solutions of the governing sixth-order
Boussinesq equation. The present study aims to expand the existing literature by providing additional
diverse exact solutions for computational validation, addressing a current gap in the research.
Additionally, references [29, 30] and the studies cited within them provide various investigations
related to the sixth-order Boussinesq equation, covering topics such as well-posedness, blow-up
phenomena, global roughness, and inversion dynamics, which do not concentrate on a range of exact
solutions. Additionally, complete solution sets for each approach will be determined for the model,
and several obtained wave solutions will be graphically illustrated, taking into account the fixed
parameter values of the model. Furthermore, the selection of these two methods is linked to their
reliability and effectiveness in revealing various wave solutions for a wide range of both real and
complex valued evolution equations; see [31–34]. The current paper is organized as follows: Section
2 presents the governing model, while Sections 3 and 4 outline the proposed methods. Section 5 is
devoted for the application of the adopted methods. Section 6 provides the graphical depictions and
discussion, and concluding remarks are given in Section 7.

2. Governing nonlinear equation

The current study aims to extensively examine the sixth-order Boussinesq equation. This equation
is free from ill-posedness and effectively models the propagation of water waves and the evolution of
lattice nonlinear elastic crystal media, to name a few. The explicit expression for the equation is given
as follows [4, 5]:

utt − uxx + βuxxxx − uxxxxxx + (u2)xx = 0, t > 0, (2.1)
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where β is a real constant. Certainly, this equation is among the famous evolution equations used in
modelling nonlinear lattice dynamics and the movement of water waves. The equation originates from
the classical Boussinesq equation [6], which is given by

utt − uxx − uxxxx + (u2)xx = 0, (2.2)

as introduced in 1871 by Joseph Boussinesq. It models the propagation of surface waves in water under
conditions of long wavelengths and small amplitude.

This equation has been highly examined by various scientists and subsequently modified to yield
several interesting models, such as the “good” fourth-order Boussinesq equation, proposed by Li et
al. [4], which is expressed as

utt − uxx + uxxxx + (u2)xx = 0, (2.3)

and the coupled Boussinesq-Burgers’ equations which are expressed as follows [8, 9]
ut −

1
2vx + 2uux = 0,

vt −
1
2uxxx + 2(vu)x = 0.

(2.4)

In this regard, Eq (2.1) is a higher-order equation, where higher-order equations are generally
characterized by several underlying physical assumptions. Therefore, the current study examines the
sixth-order Boussinesq equation expressed in (2.1) using two analytical techniques: the Kudryashov
method [11] and the modified auxiliary equation method [12]. Furthermore, this study aims to
contribute to the limited literature on diverse exact solutions for computational validation. Studies
in [28, 29] regarding the relevance of the sixth-order Boussinesq equation, including aspects such as
well-posedness, blow-up, global roughness, and inversion dynamics, focus on the model’s analysis.
Additionally, other researchers have examined several Boussinesq-like equations from different
perspectives [35, 36] Complete solution sets for each of the employed approaches will be determined
and further graphically examined for some fixed parameters of interest, providing insight into the
effects of the involved parameters.

3. Kudryashov method (KM)

The steps of the KM are summarized here. Consider a nonlinear partial differential equation
(NPDE) in the form

Ω(ν, νx, νt, νxt, νxx, ...) = 0, (3.1)

such that Ω is a polynomial in ν and its partial derivatives.
Step 1. We start by applying the transformation

ν(x, t) = U(ξ), ξ = kx − ct, (3.2)

where ξ is a new variable and k, c are constants. The transformation (3.2) converts the NPDE (3.1) to
the nonlinear ordinary differential equation (ODE) as follows

Φ(U,U′′, ...) = 0, (3.3)
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and Φ is a polynomial in U and its derivatives.
Step 2. The solution of Eq (3.3) is assumed to be in the form

U(ξ) =

n∑
i=0

ρi φ
i(ξ), (3.4)

where n is a positive integer, and ρi are arbitrary constants (not all equal to zero) to be determined.
Moreover, φ(ξ) satisfies the following ODE

φ′(ξ) = φ2(ξ) − φ(ξ). (3.5)

Further, Eq (3.5) has the following solution

φ(ξ) =
1

1 + µeξ
, (3.6)

where µ is a non-zero arbitrary constant known as the Kudryashov-index. In addition, when µ > 0,
stable solutions are obtained; while for µ < 0, one gets singular unstable solitons.

Step 3. Next, the value of n, which appears in the summation of (3.4), can be obtained using the
balancing principle.

Step 4. By substituting (3.4) together with (3.5) into (3.3) and putting all terms with the same power
of φ(ξ) to zero, this yields a set of over-determined systems of algebraic equations for ρi.

Step 5. Consequently, one then solves the obtained set of over-determined system of algebraic
equations for ρ0, ρ j, for j = 1, 2, ..., n, to get hold of the possible solution sets for ρ j, for j = 0, 1, 2, ..., n.

Step 6. Lastly, the wave transformation in (3.2) is reversed, along with the application of Eq (3.1),
to derive the exact solutions for the governing nonlinear partial differential equations. In fact, such
procedures are implemented using Mathematica software in the present study.

4. Modified auxiliary equation method (MAEM)

We start by considering the nonlinear PDE expressed in (3.1) and proceed to apply the Step 1. in
the previous section.

Step 2. The solution of Eq (3.3) is assumed to be in the form

U(ξ) =

n∑
i=0

ρi φ
i(ξ), (4.1)

where ρi are unknown constants (not all equal to zero, to be determined), and φ(ξ) satisfies the following
differential equation

φ′2(ξ) = µ2φ
2(ξ) + µ4φ

4(ξ) + µ6φ
6(ξ), (4.2)

where µ2, µ4, and µ6 are constants. The solution of Eq (4.2) takes the following forms:

Case 1. If µ2 > 0, then Eq (4.2) has solutions in the forms

φ1(ξ) =

√
−µ2 µ4 sech2(

√
µ2ξ)

µ2
4 − µ2 µ6(1 + ε tanh(

√
µ2ξ)2

, (4.3)
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φ2(ξ) =

√
−µ2 µ4 csch2(

√
µ2ξ)

µ2
4 − µ2 µ6(1 + ε coth(

√
µ2ξ)2

, (4.4)

φ3(ξ) = 4

√
µ2e2ε

√
µ2ξ

(e2ε
√
µ2ξ − 4µ4)2 − 64µ2µ6

, (4.5)

where ε = ±1.
Case 2. If µ2 > 0,∆ > 0, then (4.2) has a solution in the form

φ4(ξ) =

√
2µ2

ε
√

∆ cosh(2
√
µ2 ξ) − µ4

, (4.6)

where ε = ±1 and ∆ = µ2
4 − 4µ2µ6.

Case 3. If µ2 < 0,∆ > 0, then (4.2) has solutions in the forms

φ5(ξ) =

√
2µ2

ε
√

∆ cos(2
√
−µ2 ξ) − µ4

, (4.7)

φ6(ξ) =

√
2µ2

ε
√

∆ sin(2
√
−µ2 ξ) − µ4

, (4.8)

where ε = ±1 and ∆ = µ2
4 − 4µ2µ6.

Step 3. Next, the value of n can be obtained using the balancing principle.
Step 4. By substituting (4.1) together with (4.2) into (3.3) and putting all terms with the same power

of φ(ξ) to zero, yields a set of over-determined systems of algebraic equations for ρi.
Step 5. Consequently, one then solves the obtained set of over-determined systems of algebraic

equations for ρ j, where j = 0, 1, 2, ..., n.
Step 6. Finally, one can reverse the wave transformation used in Eq (3.2) and apply Eq (4.1) along

with the solutions from Cases 1–3 to derive the exact solutions for the governing nonlinear partial
differential equations.

5. Applications

This section shows the application of the Kudryashov and modified auxiliary methods for
constructing distinct types of solutions for the sixth-order Boussinesq equation. Thus, to begin with,
the wave transformation given in Step 1. is used on the governing sixth-order Boussinesq equation in
(2.1) to obtain the corresponding nonlinear ODE as follows(

c2 − k2
)

U′′ + βk4U (iv) + k6U (vi) + k2(U2)′′ = 0. (5.1)

Based on the balance principle, the value of n is given by

n + 6 = 2n + 2, =⇒ n = 4. (5.2)
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Therefore, with the determination of n = 4 above, the assumed solution from (3.4) and (4.1)
concerning the application of both the Kudryashov and modified auxiliary methods for the governing
Boussinesq equation takes the following solution form

U(ξ) = ρ0 + ρ1φ(ξ) + ρ2φ
2(ξ) + ρ3φ

3(ξ) + ρ4φ
4(ξ), (5.3)

where ρ0, ρ1, ρ2, ρ3 and ρ4 are constants to be determined later.

5.1. Application of Kudryashov method

Now, with the use of the present Kudryashov method, Eq (5.3) is substituted into (5.1) to obtain the
following over-determine system of algebraic equations

c2ρ1 − ρ1k6 + βρ1k4 + 2ρ0ρ1k2 − ρ1k2 = 0,
− 3c2ρ1 + 4c2ρ2 + 63ρ1k6 − 64ρ2k6 − 15βρ1k4 + 16βρ2k4+

4ρ2
1k2 − 6ρ0ρ1k2 + 3ρ1k2 + 8ρ0ρ2k2 − 4ρ2k2 = 0,

2c2ρ1 − 10c2ρ2 + 9c2ρ3 − 602ρ1k6 + 1330ρ2k6 − 729ρ3k6 + 50βρ1k4

− 130βρ2k4 + 81βρ3k4 − 10ρ2
1k2 + 4ρ0ρ1k2 − 2ρ1k2 − 20ρ0ρ2k2

+ 18ρ1ρ2k2 + 10ρ2k2 + 18ρ0ρ3k2 − 9ρ3k2 = 0,
6c2ρ2 − 21c2ρ3 + 16c2ρ4 + 2100ρ1k6 − 8106ρ2k6 + 10101ρ3k6 − 4096ρ4k6 − 60βρ1k4+

330βρ2k4 − 525βρ3k4 + 256βρ4k4 + 6ρ2
1k2 + 16ρ2

2k2 + 12ρ0ρ2k2−

42ρ1ρ2k2 − 6ρ2k2 − 42ρ0ρ3k2 + 32ρ1ρ3k2 + 21ρ3k2 + 32ρ0ρ4k2 − 16ρ4k2 = 0,
12c2ρ3 − 36c2ρ4 − 3360ρ1k6 + 21840ρ2k6 − 48972ρ3k6 + 46116ρ4k6 + 24βρ1k4

− 336βρ2k4 + 1164βρ3k4 − 1476βρ4k4 − 36ρ2
2k2 + 24ρ1ρ2k2 + 24ρ0ρ3k2

− 72ρ1ρ3k2 + 50ρ2ρ3k2 − 12ρ3k2 − 72ρ0ρ4k2 + 50ρ1ρ4k2 + 36ρ4k2 = 0,
20c2ρ4 + 2520ρ1k6 − 29400ρ2k6 + 113400ρ3k6 − 195020ρ4k6 + 120βρ2k4 − 1080βρ3k4+

3020βρ4k4 + 20ρ2
2k2 + 36ρ2

3k2 + 40ρ1ρ3k2 − 110ρ2ρ3k2 + 40ρ0ρ4k2 − 110ρ1ρ4k2

+ 72ρ2ρ4k2 − 20ρ4k2 = 0,
− 720ρ1k6 + 19440ρ2k6 − 136800ρ3k6 + 409200ρ4k6 + 360βρ3k4 − 2640βρ4k4

− 78ρ2
3k2 + 60ρ2ρ3k2 + 60ρ1ρ4k2 − 156ρ2ρ4k2 + 98ρ3ρ4k2 = 0,

− 5040ρ2k6 + 83160ρ3k6 − 457800ρ4k6 + 840βρ4k4 + 42ρ2
3k2 + 64ρ2

4k2+

84ρ2ρ4k2 − 210ρ3ρ4k2 = 0, 72k2ρ2
4 − 60480k6ρ4 = 0

− 20160ρ3k6 + 262080ρ4k6 − 136ρ2
4k2 + 112ρ3ρ4k2 = 0.

(5.4)

Hence, on solving the resulting algebraic system expressed in (5.4), one gets the following solution
set:

Set 1.

ρ0 =
−36β3 + 169β − 2197c2

338β
, ρ1 = 0, ρ2 =

840β2

169
,

ρ3 = −
1

169

(
1680β2

)
, ρ4 =

840β2

169
, k = ±

√
β
√

13
, c = c.

(5.5)
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Therefore, with the above solution set, the governing one-dimensional sixth-order Boussinesq
equation admits the following solution

u1±(x, t) =
−36β3 + 169β − 2197c2

338β
+

840β2

169(1 + µeξ)2 −
1680β2

169(1 + µeξ)3 +
840β2

169(1 + µeξ)4 , (5.6)

where

ξ = ±

√
β
√

13
x − ct. (5.7)

Remarkably, the solution set described above is not the only one uncovered by the adopted
Kudryashov method. However, it is considered the most physically relevant because it satisfies all the
underlying assumptions of the model. In fact, several complex-valued solutions were also revealed by
the method, but these complex-valued solutions violate the physical assumptions of the model.
Additionally, various solitonic solutions can be constructed using modified methods of the standard
Kudryashov method; see [31, 32]. In this regard, the nonlinear ODE in (3.5) can be modified to
either [31].

φ′(ξ) = [φ2(ξ) − φ(ξ)] ln(η), η , 1, (5.8)

or [32]
φ′2(ξ) = φ2(ξ) − ζφ4(ξ). (5.9)

The latter ODEs are admitted the following exact exponential solutions, respectively,

φ(ξ) =
1

1 + µηξ
, (5.10)

or
φ(ξ) =

4µ
4µ2eξ + ζe−ξ

, (5.11)

where ζ is a non-zero arbitrary constant, while µ is the Kudryashov-index. Furthermore, based on the
modifications made to the Kudryashov method, the following supplementary solution sets are obtained.

Set 2.

ρ0 =
−36β3 + 169β − 2197c2 ln2(η)

338β
, ρ1 = 0, ρ2 =

840β2

169
,

ρ3 = −
1

169

(
1680β2

)
, ρ4 =

840β2

169
, k = ±

√
β

√
13 ln(η)

.

(5.12)

Thus, the solution for the sixth-order Boussinesq equation is given by

u2±(x, t) =
−36β3 + 169β − 2197c2 ln2(η)

338β
+

840β2

169(1 + µηξ)2 −
1680β2

169(1 + µηξ)3 +
840β2

169(1 + µηξ)4 , (5.13)

where

ξ = ±

√
β

√
13 ln(η)

x − ct, and η , 1. (5.14)
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Set 3.

ρ0 =
−36β3 + 169β − 8788c2

338β
, ρ1 = 0, ρ2 = 0, ρ3 = 0, ρ4 =

105β2ζ2

338
, k = ±

√
β

2
√

13
. (5.15)

This gives the following solution

u3±(x, t) =
−36β3 + 169β − 8788c2

338β
+

13440β2ζ2µ4

169(4µ2eξ + ζe−ξ)4 , (5.16)

where

ξ = ±

√
β

2
√

13
x − ct. (5.17)

Moreover, the solutions in (5.16) can also be seen as bright solitonic solution (see [32]), which are
significant in optical media.

Similarly, it is worth to mention the strong connection - or rather similarity- between the employed
Kudryashov method used here and the tanh-coth method [37–39], which is an important analytical
method primarily used to construct various periodic and dark solitonic solutions. In fact, both methods
complement each other when manipulating the constant coefficients {ζ1, ζ2, ζ3} of the associated Riccati
equation, expressed as φ′(ξ) = ζ1 + ζ2φ(ξ) + ζ3φ

2(ξ). For further details, we refer interested reader(s)
to the work of Kudryashov and Shilnikov [40], which deeply analyzed all the possible of the involving
Riccati equation to reveal various exact analytical solutions.

5.2. Application of modified auxiliary equation method

Accordingly, substitution of (5.3) together with (4.2) into (5.1) and putting the coefficients of φ(ξ)
to zero gives the following system of algebraic equations

βρ1µ
2
2 + c2ρ1µ2 − ρ1µ

3
2 + 2ρ0ρ1µ2 − ρ1µ2 = 0,

16βρ2µ
2
2 + 4c2ρ2µ2 − 64ρ2µ

3
2 + 4ρ2

1µ2 + 8ρ0ρ2µ2 − 4ρ2µ2 = 0,
81βρ3µ

2
2 + 20βρ1µ4µ2 + 9c2ρ3µ2 + 2c2ρ1µ4 − 729ρ3µ

3
2 − 182ρ1µ4µ

2
2

+ 18ρ1ρ2µ2 + 18ρ0ρ3µ2 − 9ρ3µ2 + 4ρ0ρ1µ4 − 2ρ1µ4 = 0,
256βρ4µ

2
2 + 120βρ2µ4µ2 + 16c2ρ4µ2 + 6c2ρ2µ4 − 4096ρ4µ

3
2 − 2016ρ2µ4µ

2
2

+ 16ρ2
2µ2 + 32ρ1ρ3µ2 + 32ρ0ρ4µ2 − 16ρ4µ2 + 6ρ2

1µ4 + 12ρ0ρ2µ4 − 6ρ2µ4 = 0,
24βρ1µ

2
4 + 408βρ3µ2µ4 + 12c2ρ3µ4 − 840ρ1µ2µ

2
4

+ 50ρ2ρ3µ2 + 50ρ1ρ4µ2 − 11172ρ3µ
2
2µ4 + 24ρ1ρ2µ4 + 24ρ0ρ3µ4 − 12ρ3µ4 = 0,

120βρ2µ
2
4 + 1040βρ4µ2µ4 + 20c2ρ4µ4 − 6720ρ2µ2µ

2
4 + 36ρ2

3µ2 + 72ρ2ρ4µ2

+ 20ρ2
2µ4 − 42560ρ4µ

2
2µ4 + 40ρ1ρ3µ4 + 40ρ0ρ4µ4 − 20ρ4µ4 = 0,

360βρ3µ
2
4 − 720ρ1µ

3
4 − 29880ρ3µ2µ

2
4 + 60ρ2ρ3µ4 + 60ρ1ρ4µ4 + 98ρ3ρ4µ2 = 0,

840βρ4µ
2
4 − 5040ρ2µ

3
4 − 97440ρ4µ2µ

2
4 + 42ρ2

3µ4 + 84ρ2ρ4µ4 + 64ρ2
4µ2 = 0,

112ρ3ρ4µ4 − 20160ρ3µ
3
4 = 0,

72ρ2
4µ4 − 60480ρ4µ

3
4 = 0.

(5.18)

Consequently, solving the above system gives the following set:
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Set 1.

ρ0 =
1
2

(
−c2 − 576µ2

2 + 1
)
, ρ1 = ρ2 = ρ3 = 0, ρ4 = 840µ2

4, β = 52µ2, µ6 = 0, k = 1. (5.19)

Hence, on substituting these values into Eq (5.3) through (4.3)–(4.5) as enshrined in the modified
auxiliary method procedure, various exact solutions can be contracted as in the following cases:

Case 1. If µ2 > 0, then Eq. (2.1) has solutions in the form

u1(x, t) =
1
2

(
−c2 − 576 µ2

2 + 1
)

+ 840µ2
2 sech4 (√

µ2(x − ct)
)
, (5.20)

u2(x, t) =
1
2

(
−c2 − 576 µ2

2 + 1
)

+ 840µ2
2 csch4 (√

µ2(x − ct)
)
, (5.21)

u3(x, t) =
1
2

(
−c2 − 576µ2

2 + 1
)

+
215040 µ2

2 µ
2
4 e4

√
µ2(x−ct)(

e2
√
µ2(x−ct) − 4µ4

)
4

. (5.22)

Case 2. If µ2 > 0,∆ > 0, then Eq. (2.1) has a solution in the form

u4(x, t) =
1
2

(
−c2 − 576 µ2

2 + 1
)

+
3360 µ2

2 µ
2
4(

µ4 cosh
(
2
√
µ2(x − ct)

)
− µ4

)
2
. (5.23)

Case 3. If µ2 < 0,∆ > 0, then Eq. (2.1) has solutions in the form

u5(x, t) =
1
2

(
−c2 − 576µ2

2 + 1
)

+
3360µ2

2µ
2
4(

µ4 cos
(
2
√
−µ2(x − ct)

)
− µ4

)
2
, (5.24)

u6(x, t) =
1
2

(
−c2 − 576µ2

2 + 1
)

+
3360µ2

2µ
2
4(

µ4 sin
(
2
√
−µ2(x − ct)

)
− µ4

)
2
. (5.25)

Notably, the application of the modified auxiliary method revealed some interesting solutions,
including bright solitonic solutions, exponential function solutions, and periodic function solutions.
Indeed, by fully implementing the method, one can derive a wealth of exact solutions; see [12] for
more details on the diverse solutions provided by the method. Additionally, the implementation of the
classical auxiliary method, which reveals fewer exact solutions, can be enhanced by considering the
right-hand side of (4.2) as a polynomial of order 2 while maintaining the same procedure.

6. Graphical depictions and discussion

This section provides the graphical representation and discussion of the exact analytical solutions
obtained for the governing sixth-order Boussinesq equation. The Kudryashov and modified auxiliary
methods have yielded several exponential, periodic, and solitonic solutions, which are reported and
examined in this section.
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6.1. Depictions and discussion of Kudryashov method’s solutions

Three sets of solutions are obtained, in which both the modified and enhanced Kudryashov methods
were deployed to construct more exact solutions for the governing sixth-order Boussinesq equation. In
this regard, Figures 1-7 depict various graphical illustrations, consisting mainly of the two-dimensional
(2D) and three-dimensional (3D) depictions. To begin with, Figure 1 gives the 3D illustration for the
exponential solution (u1+

) obtained in (5.6), which is a kink shape. In addition, Figures 2 and 3 show
the corresponding 2D plots for solution (u1+

) in 5.6 with variation in the temporal variable and the
Kudryashov-index parameter, respectively. Indeed, Figure 2 examines the evolution of the solution
(u1+

) in (5.6) with time variation, where it is noted that an increase in time accelerates the movement of
the wave in the governing medium. Moreover, Figure 3 analyses the impact of the Kudryashov-index
µ on the solution (5.6), where it is observed that an increase in the index decelerates the propagation of
waves. Additionally, when β = −1, one obtains solution (u1−) from (5.6), which is a complex-valued
solution; see Figure 4 (a), (b) for the graphical depiction of both the real and imaginary components of
the solution.

Concurrently, Figure 5 analyses the variation of η in the u2+
solution in (5.13), where it is noted from

the figure that η decreases the wave profile. Moreover, when η = e, where e is the Euler’s constant,
the modified Kudryashov method [31] reduces to the classical Kudryashov method. Furthermore,
Figures 6 and 7 examine the 3D and 2D plots, respectively, for the obtained solution u3+

in (5.16),
which further differs from the classical Kudryashov method’s solution due to the parameters η and ζ.
This solution is specially posed by an enhanced version of the Kudryashov method that works with
two parameters η and ζ [32]. Thus, in light of this, Figure 6 shows a kink-type profile while Figures
7 (a),(b) examine the effects of these added parameters. Certainly, one notes from Figure 7 (a) that an
increase in µ, the Kudryashov-index opposes the wave’s movement, while an increase in ζ positively
alters the propagation of the wave.

u 1
+

(x
,t

)

t

x

Figure 1. 3D plot for u1+
(x, t) determined in (5.6) when β = 1, c = k and µ = 4.

AIMS Mathematics Volume 9, Issue 11, 30972–30988.



30982

u 1
+
(x
,t

)

x
Figure 2. 2D plot for the u1+

(x, t) determined in (5.6) with variation in x when β = 1, c = k
and µ = 4.

u
(x
,t

)

t

x
Figure 3. 2D plot for u1+

(x, t) determined in (5.6) with variation in x for different values of
Kudryashov-index µ when β = 1, c = k, t = 1 and µ = 4.

<
{u

1 −
(x
,t

)}

t

x

(a) 3D plot for<{u1−(x, t)} in (5.6).

=
{u

1 −
(x
,t

)}

t

x

(b) 3D plot for ={u1−(x, t)} in (5.6).

Figure 4. 3D plots for the real and imaginary parts of u1−(x, t) determined in (5.6) when
β = −1, c = k and µ = 4.
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u 2
+
(x
,t

)

x
Figure 5. 2D plots for the u2+

(x, t) determined in (5.13) for different values of η when t =

1, β = 1, c = k and µ = 4.

u 3
+

(x
,t

)

t

x

Figure 6. 3D plot for u3+
(x, t) determined in (5.16) when β = 1, ζ = 7, c = k and µ = 4.

u 3
+
(x
,t

)

x
(a) 2D plot for u3+

(x, t) in (5.16) when
ζ = 1.

u 3
+
(x
,t

)

t
(b) 2D plot for u3+

(x, t) in (5.16) when µ = 4.

Figure 7. 2D plots for the u3+
(x, t) determined in (5.16) for different values of Kudryashov-

index µ in (a) and different values of ζ in (b) when β = 1, t = 1 and c = k.
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6.2. Depictions and discussion of modified auxiliary method’s solutions

This subsection graphically examines some of the obtained solutions for the model with the help of
the modified auxiliary method [12]. This method revealed several exponential, periodic, and
hyperbolic (solitonic) function solutions; see (5.20)–(5.25). Thus, Figures 8–10 show 3D plots for the
selected solutions in (5.20)–(5.25), and their 2D plots can be obtained as in the case of the
Kudryashov method. Therefore, without much delay, the bright solitonic solution u1(x, t) determined
in (5.20) is plotted in Figure 8, which happens to be a kink-type shape. Further, Figures 9 and 10
show the obtained periodic solitonic solutions, earlier determined in (5.24), and (5.25), respectively,
for u5(x, t) and u6(x, t). In the same way, one may equally plot the remaining solutions put forward by
the modified auxiliary method. Moreover, upon implementing the full generalized auxiliary
method [12, 13], several other exact solutions can be determined which shed more light on unearthing
the governing model’s dynamics; besides, these exact solutions can be used to ascertain both the
experimental and numerical results.

u 1
(x
,t

)

t

x

Figure 8. 3D plot for u1(x, t) determined in (5.20) when c = 1 and µ2 = 1/52.

u 5
(x
,t

)

t

x

Figure 9. 3D plot for u5(x, t) determined in (5.24) when c = 2, µ2 = 1/52 and µ4 = 1.
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u 6
(x
,t

)

t

x

Figure 10. 3D plot for u6(x, t) determined in (5.25) when c = 2, k = 1, µ2 = −1/52 and
µ4 = 1.

7. Conclusions

In conclusion, the Kudryashov method and the modified auxiliary equation method have been used
due to their analytical precision in deriving several exact wave solutions for the sixth-order
Boussinesq equation. These approaches have produced a wealth of valid solution sets, resulting in a
diverse of exact wave solutions. Additionally, the study provides graphical illustrations based on
specific fixed parameter values. Given the limited literature on the governing model, this research
significantly expands the existing knowledge. It also offers insights into the global and local
roughness, blow-up, and well-posedness of the model’s valid solutions when appropriate initial and
boundary conditions are applied. The obtained solutions could serve as benchmark solutions for
numerical examinations of the model. Finally, due to the high precision of the employed analytical
methods, this study recommends their use for higher-order evolution equations when seeking
efficiency, reliability, and robustness.
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