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Abstract: The objective of this research is to propose a new concept known as rational (αη-ψ)-
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theorems help to generalize and unify various established fixed point results from the existing literature.
To demonstrate the practical effectiveness of our approach, we provide a significant example that
confirms our findings. In addition, we introduce a generalized multivalued (α-ψ)-contraction concept
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1. Introduction

Fixed point (FP) theory, a key area in both topology and analysis, is a powerful tool used in
many fields of science. Establishing essential concepts and schemes, it acts as a driving force for
continuous exploration and progress. The foundation of this field rests on the analysis of metric
spaces (MSs), where distances within sets are precisely defined. This fundamental notion finds
myriad elegant and impactful applications across diverse scientific domains [1, 2]. To expand its
utility, mathematicians have extended the scope of MSs, giving rise to fruitful advancements in this
theory. Branciari [3] proposed a novel concept: the generalized metric space. This framework departs
from the traditional triangle inequality, adopting a more adaptable four-point “rectangular inequality”.
Bakhtin [4] pioneered the notion of b-metric space (b-MS), that Czerwik [5] further elaborated on in
1993. A key distinction between b-MSs and classical metrics is the absence of a continuity requirement
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within their defined topology. The most recent development came in 2018 with Jleli et al.’s introduction
of the F -metric space (F -MS) [6], encompassing these prior advancements. By generalizing the
concept of metrics, these novel approaches provide a more adaptable framework for modeling real-
world phenomena, tackling issues beyond the reach of traditional metric structures.

Stefan Banach [7] was the pioneer researcher in FP theory, having given the conception of
contraction and proved a result known as Banach contraction principle (BCP). A lot of research
work in this field has been given to the improvement and generalization of BCP in different ways.
Samet et al. [8] introduced the idea of α-admissibility which is a crucial concept in FP theory. This
advancement incorporates a “weighting” function, α(e, c), which assigns flexible significance to the
contractive nature between various point pairings. These innovative functions enhance adaptability
and allow for FP analysis within a wider range of mathematical structures. In this direction, they gave
the notion of (α-ψ)-contraction and proved some results to generalize certain FP theorems. Later on,
Salimi et al. [9] gave the notion of α-admissible mapping with respect to η and modified the concept
of α-admissibility in the context of MS. Building on the concept of (α-ψ)-contractions, Hussain et
al. [10] introduced the generalized idea of Ćirić type (α-ψ)-contractions within the surroundings of
F -MS. Subsequently, Al-Mezel et al. [11] proved FP results for generalized (α-ψ)-contraction and
discussed the solution of the differential equation by applying their leading theorem. Faraji et al. [12]
presented some emerging theorems for self mappings satisfying (α, β)-admissibility in an F -MS and
they applied their results to solve integral equations.

Nadler [13] proved an FP theorem for multivalued mapping and extended the BCP. Latif et al. [14]
presented FP theorems for multivalued mappings satisfying generalized contraction conditions in the
context of metric type spaces equipped with a generalized distance. Asl et al. [15] generalized Nadler’s
FP theorem by introducing (α-ψ)-contractive multifunctions in the MSs. Recently, Isık et al. [16]
extended the above concept to the setting of F -MS and obtained end point theorems for weakly
contractive mappings. Mlaiki et al. [17] established some end point results for generalized contractions
in the context of F -MS and discussed the solution of the integral equation as application. Mudhesh
et al. [18] defined the notion of α∗-ψ-Λ-contraction multivalued mappings in an F -MS and proved FP
results along with an application of existence and uniqueness of a solution of a functional equation.
Zhao [19] investigated the existence of solutions and generalized Ulam-Hyers stability for a nonlinear
fractional coupled system involving the Atangana-Baleanu-Caputo (ABC) fractional derivative and a
Laplacian operator, utilizing F-contractive mapping techniques. Zhao et al. [20] presented a unified
framework for investigating the solvability and stability of multipoint boundary value problems (BVPs)
for Langevin and Sturm-Liouville equations involving Caputo-Hadamard (CH) fractional derivatives
and impulses, utilizing coincidence theory. For a thorough investigation of these developments and
their consequences, a review of the cited references [21–26] is recommended.

On the other hand, FP theory has emerged as a powerful tool for analyzing and solving synaptic
delay differential equations. Synaptic delay differential equations are employed to model the behavior
of neurons, where synaptic delays play a pivotal role. These delays, arising from the finite
transmission time of neurotransmitters across the synaptic gap, significantly impact the dynamics of
neural networks. Understanding synaptic delays is crucial for comprehending the stability, oscillatory
behavior, and synchronization of neuron firing patterns. Bocharov et al. [27] investigated the numerical
modeling in biosciences using delay differential equations involving simulating biological processes
that depend on past states, such as population dynamics or neural activity with synaptic delays, to better
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understand complex temporal interactions. Spek et al. [28] conducted a comprehensive investigation
into neural field models that incorporate both transmission delays and diffusion, exploring how the
interplay between delayed signal propagation and spatial spread of neural activity affects patterns of
brain dynamics, such as wave propagation, stability, and synchronization in neural networks. Rehan
et al. [29] presented a detailed analysis of the applications of delay differential equations in biological
systems, highlighting their significance in understanding complex biological phenomena.

Motivated by the main results of Faraji et al. [12] and Mudhesh et al. [18], this paper presents two
new concepts: rational (αη-ψ)-contractions and generalized multivalued (α, ψ)-contractions. We then
utilize these concepts within the framework of F -MS to establish FP theorems. As consequences of
leading results, we deduce some well-known FP results of the literature. We also supply a meaningful
example to validate our established results.

2. Preliminaries

This section presents the necessary preliminary definitions, theorems, and lemmas that will be used
in the paper. Throughout this article, we will use the following notation: N for the set of natural
numbers, R+ for the set of positive real numbers, and R for the set of real numbers.

Bakhtin [4] defined the concept of b-metric space in this way.

Definition 1. ( [4]) Let P be a nonempty set and s ≥ 1 be a constant. A function d : P × P → [0,∞)
is called a b-metric if the following assertions hold:

(b1) d(e, c) = 0⇔ e = c;
(b2) d(e, c) = d(c, e);
(b3) d(e, ν) ≤ s[d(e, c) + d(c, ν)],

for all e, c, ν ∈ P.
The pair (P, d) is then said to be a b-metric space.
Very recently, Jleli and Samet [6] introduced an interesting generalization of metric space and b-

metric space in the following way.
Let F be the set of continuous functions ⋏ : (0,+∞)→ R satisfying the following conditions:

(F1) ⋏ is nondecreasing, i.e., 0 < e < c implies ⋏(e) ≤ ⋏(c),
(F2) for every sequence {en} ⊆ R+, limn→∞ en = 0⇐⇒ limn→∞ ⋏(en) = −∞.

Definition 2. ( [6]) Let P , ∅ and let dF : P × P → [0,+∞). There exists (⋏, h) ∈ F × [0,+∞) such

that

(D1) (e, c) ∈ P ×P, dF (e, c) = 0⇔ e = c,
(D2) dF (e, c) = dF (c, e), for all (e, c) ∈ P ×P,
(D3) for each (e, c) ∈ P ×P and (e1, e2, ..., en) in P such that e1 = e and en = c, we have

dF (e, c) > 0⇒ ⋏(dF (e, c)) ≤ ⋏(
n−1∑
i=1

dF (ei, ei+1)) + h,

where n ≥ 2 is natural number. Then, dF is said to be an F -metric on P, and the pair (P, dF ) is said to
be an F -MS.
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Remark 1. They showed that any metric space is an F -MS but the converse is not true in general,
which confirms that this concept is more general than the standard metric concept.

Example 1. ( [6]) Let P= N. Define dF : N × N→ [0,+∞) by

dF (e, c) =
{

(e − c)2 if (e, c) ∈ [0, 3] × [0, 3]
|e − c| if (e, c) < [0, 3] × [0, 3]

with ⋏(t) = ln(t) and h = ln(3), then (P,dF ) is an F -MS.

Definition 3. ( [6]) Consider (P, dF ) as an F -MS and {en} is a sequence in P.

(i) {en} exhibits F -convergence to an element e in P if it converges to e regarding dF .
(ii) {en} is considered an F -Cauchy if the limit of dF (en, em) approaches zero as n and m tend to

infinity.
(iii) The F -completeness of (P, dF ) implies that any F -Cauchy sequence within P converges to a

specific element within P using the F -metric dF .

Theorem 1. ( [6]) Let O be self-mapping on F -complete F -MS (P, dF ). Suppose that there exists
k ∈ (0, 1) such that

dF (Oe,Oc) ≤ kdF (e, c).

Then, O has a unique fixed point e∗ ∈ P.
Samet et al. [8] proposed the concepts of α-ψ-contractive and α-admissible mappings, utilizing

them to demonstrate fixed point theorems within complete metric spaces.
Let Ψ represent the collection of nondecreasing functions ψ : [0,+∞) → [0,+∞) such that∑∞

n=1 ψ
n(t) < +∞, for all t > 0.

To establish our main result, we will leverage the following well-established lemma:

Lemma 1. ( [8]) If ψ belongs to Ψ, then the following conditions are satisfied:

(i) The sequence (ψn(t))n∈N approaches 0 as n→ ∞,
(ii) ψ(t) < t, for all t > 0,
(iii) ψ(t) = 0, if and only if, t = 0.
Samet et al. [8] introduced the concept of an α-admissibility of the self mapping in such fashion:

Definition 4. ( [8]) Let α : P × P → [0,+∞) be a function. A function O : P → P is considered as
an α-admissible if it satisfies the following condition:

α(e, c) ≥ 1 =⇒ α(Oe,Oc) ≥ 1

for all e, c ∈ P.
Salimi et al. [9] generalized the aforementioned idea of an α-admissible mapping as follows.

Definition 5. ( [9]) Let α, η : P × P → [0,+∞). A function O : P → P is termed as an α-admissible
with respect to η if
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α(e, c) ≥ η(e, c) =⇒ α(Oe,Oc) ≥ η(Oe,Oc)

for all e, c ∈ P.
If η(e, c) = 1, then Definition 5 reduces to Definition 4.
Recently, the concept of a Ćirić type (α-ψ)-contraction in the background of F -MS was presented

by Hussain et al. [10] and established the corresponding fixed point result.

Theorem 2. ( [10]) Let O be self-mapping on F -complete F -MS (P, dF ) provided that the following
conditions have been met:

(i) O : P→ P is an α-admissible mapping,
(ii) there exist two functions α : P ×P→ [0,+∞) and ψ ∈ Ψ such that

α(e, c)dF (Oe,Oc) ≤ ψ(M(e, c)),

where
M(e, c) = max{dF (e, c), dF (e,Oe), dF (c,Oc)}

for e, c ∈ P,
(iii) there exists e0 ∈ P such that α(e0,Oe0) ≥ 1.
Then, O has a fixed point e∗ ∈ P.

3. Results and discussions

This section is devoted to presenting some new fixed point results for self-mappings satisfying
generalized contractions within the framework of F -complete F -MS.

Definition 6. Let (P, dF ) be an F -MS and O : P → P. Then, O is defined as a rational (αη-ψ)-
contraction if there exist α, η : P ×P→ [0,∞) and ψ ∈ Ψ such that α(e,Oe)α(c,Oc) ≥ η(e,Oe)η(c,Oc)
implies

dF (Oe,Oc) ≤ ψ
(
max

{
dF (e, c),min

{
dF (e,Oe)dF (c,Oc)

1 + dF (e, c)
,

dF (e,Oc)dF (c,Oe)
1 + dF (e, c)

}})
(3.1)

for all e, c ∈ P.

Theorem 3. Let (P, dF ) be an F -complete F -MS. Suppose that O : P → P is an α-admissible
mapping with respect to η and rational (αη-ψ)-contraction such that the following assertions hold:

(i) there exists e0 ∈ P such that α(e0,Oe0) ≥ η(e0,Oe0),
(ii) if either O is continuous or α(en, en+1) ≥ η(en, en+1) for all sequences {en} in P converging to e,

then α(e,Oe) ≥ η(e,Oe).
Then, there exists e∗ ∈ P such that e∗ = Oe∗.

Proof. Let e0 ∈ P such that α(e0, e1) = α(e0,Oe0) ≥ η(e0,Oe0) = η(e0, e1). Define a sequence {en} in P
by en+1 = O

ne0 = Oen, for all n ∈ N. Since the mapping O : P → P is an α-admissible mapping with
respect to η, we have

α(e1, e2) = α(Oe0,Oe1) ≥ η(Oe0,Oe1) = η(e1, e2).
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Continuing in this way, we get

α(en−1, en) = α(Oen−2,Oen−1) ≥ η(Oen−2,Oen−1) = η(en−1, en),

and
α(en, en+1) = α(Oen−1,Oen) ≥ η(Oen−1,Oen) = η(en, en+1),

for all n ∈ N. We can express these inequalities in this way

α(en−1, en) = α(en−1,Oen−1) ≥ η(en−1,Oen−1) = η(en−1, en), (3.2)

and
α(en, en+1) = α(en,Oen) ≥ η(en,Oen) = η(en, en+1), (3.3)

for all n ∈ N. By (3.2) and (3.3), we have

α(en−1,Oen−1)α(en,Oen) ≥ η(en−1,Oen−1)η(en,Oen), (3.4)

for all n ∈ N. Clearly, if there exists n0 ∈ N for which en0+1 = en0 , then Oen0 = en0 , and we have
proven the claim. Consequently, we assume that en+1 , en or dF (Oen−1,Oen) > 0, for all n ∈ N. Since
O satisfies the properties of a rational (αη-ψ)-contraction, we obtain the following inequality:

dF (en, en+1) = dF (Oen−1,Oen)

≤ ψ

max

dF (en−1, en),min

 dF (en−1,Oen−1)dF (en,Oen)
1+dF (en−1,en) ,

dF (en−1,Oen)dF (en,Oen−1)
1+dF (en−1,en)





= ψ (dF (en−1, en)) ,

for all n ∈ N, that is,
dF (en, en+1) ≤ ψ (dF (en−1, en)) , (3.5)

for all n ∈ N. Proceeding in this manner, we find

dF (en, en+1) ≤ ψn (dF (e0, e1)) , (3.6)

for all n ∈ N. Given a pair (⋏, h) ∈ F × [0,+∞) satisfying condition (D3), let ϵ be a positive constant.
By virtue of property (F2), we can identify a positive constant δ such that

0 < t < δ =⇒ ⋏(t) < ⋏(δ) − h. (3.7)

Let n(ϵ) be a natural number such that 0 <
∑

n≥n(ϵ) ψ
n(dF (e0, e1)) < δ. Therefore, by (3.7) and

conditions (F1), we obtain

⋏(
m−1∑
i=n

ψi(dF (e0, e1))) ≤ ⋏(
∑

n≥n(ϵ)

ψn(dF (e0, e1))) < ⋏(ϵ) − h, (3.8)

for m > n ≥ n(ϵ). Leveraging the triangle inequality (D3) and the inequality (3.8), we can deduce
dF (en, em) > 0, for m > n ≥ n(ϵ). It yields

⋏(dF (en, em)) ≤ ⋏(
m−1∑
i=n

dF (ei, ei+1)) + h
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≤ ⋏(
m−1∑
i=n

ψi(dF (e0, e1))) + h

≤ ⋏(
∑

n≥n(ϵ)

ψn(dF (e0, e1))) + h

< ⋏(ϵ).

By (F1), we have dF (en, em) < ϵ, for m > n ≥ n(ϵ). This establishes that the sequence {en} is F -Cauchy.
The F -completeness of (P, dF ) guarantees the existence of an element e∗ ∈ P such that {en} converges
to e∗ under the F -metric, which can be written as

lim
n→∞

dF (en, e∗) = 0. (3.9)

Next, as en → e∗ and α(en, en+1) ≥ η(en, en+1), then α(e∗,Oe∗) ≥ η(e∗,Oe∗). Thus,

α(e∗,Oe∗)α(en,Oen) ≥ η(e∗,Oe∗)η(en,Oen).

To establish a contradiction, let’s assume that dF (Oe∗, e∗) > 0. Based on properties (F1) and (D3),
we obtain

⋏(dF (Oe∗, e∗)) ≤ ⋏(dF (Oe∗,Oen) + dF (Oen, e∗)) + h
= ⋏(dF (Oe∗,Oen) + dF (en+1, e

∗)) + h.

By the inequality (3.1), we have

⋏(dF (Oe∗, e∗)) ≤ ⋏(dF (Oe∗,Oen) + dF (en+1, e
∗)) + h

≤ ⋏

 ψ
max

dF (e∗, en),min

 dF (e∗,Oe∗)dF (en,Oen)
1+dF (e∗,en) ,

dF (e∗,Oen)dF (en,Oe∗)
1+dF (e∗,en)





+dF (en+1, e∗))

 + h,
= ⋏

 ψ
max

dF (e∗, en),min

 dF (e∗,Oe∗)dF (en,en+1)
1+dF (e∗,en) ,

dF (e∗,en+1)dF (en,Oe∗)
1+dF (e∗,en)





+dF (en+1, e∗))

 + h,
= ⋏(ψ (dF (e∗, en)) + dF (en+1, e∗)) + h
< ⋏(dF (e∗, en) + dF (en+1, e∗)) + h,

for n ∈ N. Upon taking the limit as n approaches infinity and using the Eq (3.9), we derive

lim
n→∞
⋏(dF (Oe∗, e∗)) ≤ lim

n→∞
⋏ (dF (e∗, en) + dF (en+1, e∗)) + h = −∞.

Then, by (F2), we get that dF (Oe∗, e∗) = 0,which is a contradiction to the assumption that dF (Oe∗, e∗) >
0. Consequently, dF (Oe∗, e∗) = 0, implying Oe∗ = e∗. As a result, e∗ ∈ P serves as the fixed point of
O. □

Example 2. Considering set of natural numbers (N), we equip it with an F -metric denoted by dF ,
defined as follows:
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dF (e, c) =

(e − c)2, (e, c) ∈ [0, 3] × [0, 3],
|e − c|, (e, c) < [0, 3] × [0, 3]

with ⋏(t) = ln (t) and h = ln (3). Then, (P, dF ) is F -complete F -MS. Define the continuous mapping
O : P→ P by

Oe =

 e2 + 1, e ≥ 0,
0, e < 0,

and α, η : P ×P→ [0,∞) by

α(e, c) = η(e, c) =

1, e, c ∈ [0,∞),
0, otherwise.

Define ψ : [0,+∞)→ [0,+∞) by ψ(t) = 1
2 t. Now, we need to show that O is an α-admissible mapping

with respect to η.
Now, we have to discuss the following two cases.

Case 1. If e, c ∈ [0, 3], then α(e, c) = η(e, c) = 1, then Oe,Oc ∈ [0,∞). Hence, it is obvious to prove that
the mapping O is an α-admissible mapping with respect to η and α(e,Oe)α(c,Oc) ≥ η(e,Oe)η(c,Oc).
Now, we prove that the mapping O : P→ P is a rational (αη-ψ)-contraction.

dF (Oe,Oc) =
(
e

2
+ 1 −

c

2
− 1

)2
=

(
e

2
−
c

2

)2

=

(
1
2

)2

(e − c)2 =
1
4

(e − c)2

≤
1
2

max

(e − c)2,min


(e− e2−1)2(c− c2−1)2

1+(e−c)2 ,
(e− c2−1)2(c− e2−1)2

1+(e−c)2


 .

Hence,

dF (Oe,Oc) ≤ ψ

max

dF (e, c),min

 dF (e,Oe)dF (c,Oc)
1+dF (e,c) ,

dF (e,Oc)dF (c,Oe)
1+dF (e,c)



 .

Case 2. If e, c < [0, 3], then α(e, c) = η(e, c) = 1 implies that

dF (Oe,Oc) =
∣∣∣∣∣ e2 + 1 −

c

2
− 1

∣∣∣∣∣ = ∣∣∣∣∣ e2 − c2
∣∣∣∣∣ = 1

2
|e − c|

≤
1
2

max

|e − c| ,min


|e− e2−1||c− c2−1|

1+|e−c| ,
|e− c2−1||c− e2−1|

1+|e−c|


 .

Hence,

dF (Oe,Oc) ≤ ψ

max

dF (e, c),min

 dF (e,Oe)dF (c,Oc)
1+dF (e,c) ,

dF (e,Oc)dF (c,Oe)
1+dF (e,c)



 .

Moreover, there exists e0 = 0 ∈ P such that α(e0,Oe0) = 1 = η(e0,Oe0). Thus, all the conditions of
Theorem 3 are satisfied and the mapping O has a fixed point, which is 2.
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Corollary 1. Let (P, dF ) be an F -complete F -MS. Suppose that O : P→ P is an α-admissible such
that α(e,Oe)α(c,Oc) ≥ 1 implies

dF (Oe,Oc) ≤ ψ
(
max

{
dF (e, c),min

{
dF (e,Oe)dF (c,Oc)

1 + dF (e, c)
,

dF (e,Oc)dF (c,Oc)
1 + dF (e, c)

}})
for e, c ∈ P such that for all e, c ∈ P. Let’s proceed under the following assumptions:

(i) There exists e0 ∈ P such that α(e0,Oe0) ≥ 1.
(ii) If either O is continuous or α(en, en+1) ≥ 1 for all sequences {en} in P converging to e, then

α(e,Oe) ≥ 1.
Then, there exists e∗ ∈ P such that e∗ = Oe∗.

Proof. Within Theorem 3, we introduce a function η : P × P → [0,+∞) such that η(e, c) = 1, for all
e, c ∈ P. □

Building upon Theorem 3, the following corollaries can be directly inferred.

Corollary 2. Let (P, dF ) be an F -complete F -MS. Suppose that O : P → P is an α-admissible such
that

(dF (Oe,Oc) + l)α(e,Oe)α(c,Oc)
≤ ψ

max

dF (e, c),min

 dF (e,Oe)dF (c,Oc)
1+dF (e,c) ,

dF (e,Oc)dF (c,Oc)
1+dF (e,c)



 + l

for all e, c ∈ P, where l > 0. Let’s proceed under the following hypotheses
(i) There exists e0 ∈ P such that α(e0,Oe0) ≥ 1.
(ii) If either O is continuous or α(en, en+1) ≥ 1 for all sequences en in P converging to e, then

α(e,Oe) ≥ 1.
Then, there exists e∗ ∈ P such that e∗ = Oe∗.

Corollary 3. Let (P, dF ) be an F -complete F -MS. Suppose that the mapping O : P → P is an
α-admissible such that

(α(e,Oe)α(c,Oc) + 1)dF (Oe,Oc)
≤ 2

ψ

max

dF (e,c),min


dF (e,Oe)dF (c,Oc)

1+dF (e,c) ,
dF (e,Oc)dF (c,Oc)

1+dF (e,c)





for all e, c ∈ P. Suppose that these conditions are met:
(i) There exists e0 ∈ P such that α(e0,Oe0) ≥ 1.
(ii) If either O is continuous or α(en, en+1) ≥ 1 for all sequences {en} in P converging to e, then

α(e,Oe) ≥ 1.
Then, there exists e∗ ∈ P such that e∗ = Oe∗.

Corollary 4. Let (P, dF ) be an F -complete F -MS. Suppose that the mapping O : P → P is an
α-admissible such that
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α(e,Oe)α(c,Oc)dF (Oe,Oc) ≤ k max

dF (e, c),min

 dF (e,Oe)dF (c,Oc)
1+dF (e,c) ,

dF (e,Oc)dF (c,Oc)
1+dF (e,c)




for all e, c ∈ P. Suppose that these conditions are met:
(i) There exists e0 ∈ P such that α(e0,Oe0) ≥ 1.
(ii) If either O is continuous or α(en, en+1) ≥ 1 for all sequences {en} in P converging to e, then

α(e,Oe) ≥ 1.
Then, there exists e∗ ∈ P such that e∗ = Oe∗.
In the special case where α(e, c) = 1, the following corollaries hold.

Corollary 5. Let (P, dF ) be an F -complete F -MS. Suppose that the mapping O : P → P is η-sub-
admissible such that η(e,Oe)η(c,Oc) ≤ 1 implies

dF (Oe,Oc) ≤ ψ

max

dF (e, c),min

 dF (e,Oe)dF (c,Oc)
1+dF (e,c) ,

dF (e,Oc)dF (c,Oc)
1+dF (e,c)





for all e, c ∈ P. Assume that the following assertions hold:
(i) There exists e0 ∈ P such that η(e0,Oe0) ≤ 1.
(ii) If either O is continuous or η(en, en+1) ≤ 1 for all sequences {en} in P converging to e, then

η(e,Oe) ≤ 1.
Then, there exists e∗ ∈ P such that e∗ = Oe∗.

Corollary 6. Let (P, dF ) be an F -complete F -MS. Suppose that the mapping O : P → P is η-sub-
admissible such that

dF (Oe,Oc) + l ≤

ψ max

dF (e, c),min

 dF (e,Oe)dF (c,Oc)
1+dF (e,c) ,

dF (e,Oc)dF (c,Oc)
1+dF (e,c)



 + l

η(e,Oe)η(c,Oc)

for all e, c ∈ P, where l > 0. Suppose that these hypotheses are met:
(i) There exists e0 ∈ P such that η(e0,Oe0) ≤ 1.
(ii) If either O is continuous or η(en, en+1) ≤ 1 for all sequences {en} in P converging to e, then

η(e,Oe) ≤ 1.
Then, there exists e∗ ∈ P such that e∗ = Oe∗.

Corollary 7. Let (P, dF ) be an F -complete F -MS. Suppose that the mapping O : P → P is η-sub-
admissible such that

2dF (Oe,Oc) ≤ (η(e,Oe)η(c,Oc) + 1)
ψ

max

dF (e,c),min


dF (e,Oe)dF (c,Oc)

1+dF (e,c) ,
dF (e,Oc)dF (c,Oc)

1+dF (e,c)





for all e, c ∈ P. Suppose that these hypotheses are met:
(i) There exists e0 ∈ P such that η(e0,Oe0) ≤ 1.
(ii) If either O is continuous or η(en, en+1) ≤ 1 for all sequences {en} in P converging to e, then

η(e,Oe) ≤ 1.
Then, there exists e∗ ∈ P such that e∗ = Oe∗.
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Corollary 8. Let (P, dF ) be an F -complete F -MS. Suppose that the mapping O : P → P is η-sub-
admissible such that

dF (Oe,Oc) ≤ ψ

η(e,Oe)η(c,Oc) max

dF (e, c),min

 dF (e,Oe)dF (c,Oc)
1+dF (e,c) ,

dF (e,Oc)dF (c,Oc)
1+dF (e,c)





for all e, c ∈ P. Suppose that these hypotheses are met:
(i) There exists e0 ∈ P such that η(e0,Oe0) ≤ 1.
(ii) If either O is continuous or η(en, en+1) ≤ 1 for all sequences {en} in P converging to e, then

η(e,Oe) ≤ 1.
Then, there exists e∗ ∈ P such that e∗ = Oe∗.

4. Fixed point results for multivalued mappings

In FP theory, we know that the famous theorem, which is the BCP, has aroused the interest of
significant mathematical scientists because of its importance and impressive achievements. It has been
expanded and extended to a larger scope, called multivalued mapping, by Nadler [13]. However,
significant authors have established different theorems to extend, unify, and generalize multivalued
mapping under different contractive conditions.

Definition 7. ( [16]) Let P and Y be two nonempty sets. A mapping O is said to be multivalued
mapping from P to Y if O is a function for P to the power set of Y. We denote a multivalued mapping
by O : P → 2Y . A point e ∈ P is said to be a fixed point of the multivalued mapping O : P → 2P if
e ∈ Oe.

Definition 8. ( [16]) Let (P, dF ) be an F -MS. A Hausdorff metric HF on CB(P) induced by the F -
metric dF is defined by

HF (A, B) = max
{

sup
e∈A

dF (e, B), sup
c∈A

dF (c, A)
}

for all A, B ∈ CB(P), where CB(P) denotes the family of all nonempty closed and bounded subsets of
P and dF (e, B) = inf{dF (e, c) : c ∈ B}, for all e ∈ P.

Theorem 4. ( [16]) Let (P, dF ) be an F -complete F -MS and let O : P → CB(P) be a multivalued
mapping. If there exists a constant k ∈ (0, 1) such that

HF (Oe,Oc) ≤ kdF (e, c)

for all e, c ∈ P, then O has a FP.

Definition 9. ( [16]) A multivalued mapping O : P → 2P is said to be multivalued α-admissible if
there exists a function α : P ×P→ [0,∞) such that

α(e, c) ≥ 1 implies α(u, v) ≥ 1,

for u ∈ Oe and v ∈ Oc.
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Lemma 2. ( [16]) Let (P, dF ) be an F -MS and B ∈ CL(P). Then, for each e∈P with dF (e, B) > 0 and
r > 1, there exists an element c ∈ B such that

dF (e, c) ≤ rdF (e, B).

In this way, we define the notion of generalized multivalued (α, ψ)-contraction in the framework of
F -MS.

Definition 10. Let (P, dF ) be an F -MS and let Y be a nonempty set of P. A mapping O : P→ CB(P)
is said to be a generalized multivalued (α, ψ)-contraction on the set Y if there exists α : Y ×Y → [0,∞)
and ψ is a strictly increasing function satisfying the following conditions:

(i) Oe ∩ Y , θ,for all e ∈ Y .
(ii) For each e, c ∈ Y , we have

α(e, c)HF (Oe ∩ Y,Oc ∩ Y) ≤ ψ(R(e, c)), (4.1)

where
R(e, c) = max

{
dF (e, c), dF (e,Oe)+dF (c,Oc)

2 ,
dF (e,Oc)+dF (c,Oe)

2

}
. (4.2)

Theorem 5. Let (P, dF ) be an F -MS, Y ⊆P is F -complete in accordance with the metric derived from
the F -metric, denoted as dF , and let O : P→ CB(P) be a generalized multivalued (α, ψ)-contraction
on Y. Let us consider the fulfillment of the following axioms:

(i) O is a multivalued α-admissible mapping;
(ii) There exist e0 ∈ Y and e1 ∈ Oe0 ∩ Y such that α(e0, e1) ≥ 1;
(iii) O is continuous.

Then, O has a FP.

Proof. By the supposition (ii), there exist e0 ∈ Y and e1 ∈ Oe0 ∩ Y such that α(e0, e1) ≥ 1. If e0 = e1,
then e0 is the required fixed point, and we have nothing to prove. So, we suppose that e0 , e1. If
e1 ∈ Oe1 ∩ Y, then e1 is a fixed point. Let e1 < Oe1 ∩ Y . Now, by the inequality (4.1), we have

0 < α(e0, e1)HF (Oe0 ∩ Y,Oe1 ∩ Y)

≤ ψ

(
max

{
dF (e0, e1),

dF (e0,Oe0)+dF (e1,Oe1)
2 ,

dF (e0,Oe1)+dF (e1,Oe0)
2

})
≤ ψ

(
max

{
dF (e0, e1),

dF (e0,e1)+dF (e1,Oe1)
2 ,

dF (e0,Oe1)
2

})
≤ ψ (max {dF (e0, e1), dF (e1,Oe1)}) , (4.3)

because
dF (e0,e1)+dF (e1,Oe1)

2 ≤ max {dF (e0, e1), dF (e1,Oe1)} ,

and
dF (e0,Oe1)

2 ≤ max {dF (e0, e1), dF (e1,Oe1)} .

Suppose that max {dF (e0, e1), dF (e1,Oe1)} = dF (e1,Oe1). Then, by the inequality (4.3), we have

0 < dF (e1,Oe1 ∩ Y) ≤ α(e0, e1)HF (Oe0 ∩ Y,Oe1 ∩ Y)
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≤ ψ (dF (e1,Oe1))

< dF (e1,Oe1), (4.4)

a contradiction to the supposition. Thus, max {dF (e0, e1), dF (e1,Oe1)} = dF (e0, e1). Hence, by (4.3), we
have

0 < dF (e1,Oe1 ∩ Y) ≤ ψ (dF (e0, e1)) .

Now, for r > 1 by Lemma (2), there exists e2 ∈ Oe1 ∩ Y such that

0 < dF (e1, e2) < rdF (e1,Oe1 ∩ Y) ≤ rψ (dF (e0, e1)) . (4.5)

Applying ψ in the inequality (4.5), we have

0 < ψ (dF (e1, e2)) < ψ (rψ (dF (e0, e1))) .

Put r1 =
ψ(rψ(dF (e0,e1)))
ψ(dF (e1,e2)) , then r1 > 1. Now, since α(e0, e1) ≥ 1 and the mapping O is an α-admissible

mapping, we have α(e1, e2) ≥ 1. If e2 ∈ Oe2 ∩ Y, then e2 is an FP of mapping O. Let e2 < Oe2 ∩ Y. Now,
from (4.1), we have

0 < α(e1, e2)HF (Oe1 ∩ Y,Oe2 ∩ Y)

≤ ψ

(
max

{
dF (e1, e2),

dF (e1,Oe1)+dF (e2,Oe2)
2 ,

dF (e1,Oe2)+dF (e2,Oe1)
2

})
≤ ψ

(
max

{
dF (e1, e2),

dF (e1,e2)+dF (e2,Oe2)
2 ,

dF (e1,Oe2)
2

})
≤ ψ (max {dF (e1, e2), dF (e2,Oe2)}) , (4.6)

because
dF (e1,e2)+dF (e2,Oe2)

2 ≤ max {dF (e1, e2), dF (e2,Oe2)} ,

and
dF (e1,Oe2)

2 ≤ max {dF (e1, e2), dF (e2,Oe2)} .

Suppose that max {dF (e1, e2), dF (e2,Oe2)} = dF (e2,Oe2). Then, by the inequality (4.6), we have

0 < dF (e2,Oe2 ∩ Y) ≤ α(e1, e2)HF (Oe1 ∩ Y,Oe2 ∩ Y)
≤ ψ (dF (e2,Oe2))

< dF (e2,Oe2), (4.7)

a contradiction to the supposition. Thus, max {dF (e1, e2), dF (e2,Oe2)} = dF (e1, e2). Hence, by (4.6), we
have

0 < dF (e2,Oe2 ∩ Y) ≤ ψ (dF (e1, e2)) .

Now, for r1 > 1 by Lemma (2), there exists e3 ∈ Oe2 ∩ Y such that

0 < dF (e2, e3) < rdF (e2,Oe2 ∩ Y) ≤ r1ψ (dF (e1, e2)) = ψ (rψ (dF (e0, e1))) . (4.8)
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Applying ψ in the inequality (4.8), we have

0 < ψ (dF (e2, e3)) < ψ2 (rψ (dF (e0, e1))) .

Put r2 =
ψ2(rψ(dF (e0,e1)))
ψ(dF (e1,e2)) , then r2 > 1. Now, since α(e0, e1) ≥ 1 and the mapping O is an α-admissible

mapping, we have α(e2, e3) ≥ 1. If e3 ∈ Oe3 ∩ Y, then e3 is an FP of mapping O. Let e3 < Oe3 ∩ Y. Now,
from (4.1), we have

0 < α(e2, e3)HF (Oe2 ∩ Y,Oe3 ∩ Y)

≤ ψ

(
max

{
dF (e2, e3),

dF (e2,Oe2)+dF (e3,Oe3)
2 ,

dF (e2,Oe3)+dF (e3,Oe2)
2

})
≤ ψ

(
max

{
dF (e2, e3),

dF (e2,e3)+dF (e3,Oe2)
2 ,

dF (e2,Oe3)
2

})
≤ ψ (max {dF (e2, e3), dF (e3,Oe3)}) , (4.9)

because
dF (e2,e3)+dF (e3,Oe2)

2 ≤ max {dF (e2, e3), dF (e3,Oe3)} ,

and
dF (e2,Oe3)

2 ≤ max {dF (e2, e3), dF (e3,Oe3)} .

Suppose that max {dF (e2, e3), dF (e3,Oe3)} = dF (e3,Oe3). Then, by the inequality (4.9), we have

0 < dF (e3,Oe3 ∩ Y) ≤ α(e2, e3)HF (Oe2 ∩ Y,Oe3 ∩ Y)
≤ ψ (dF (e3,Oe3))

< dF (e3,Oe3), (4.10)

a contradiction to the supposition. Thus, max {dF (e2, e3), dF (e3,Oe3)} = dF (e2, e3). Hence, by (4.6), we
have

0 < dF (e3,Oe3 ∩ Y) ≤ ψ (dF (e2, e3)) .

Now, for r2 > 1, by Lemma (2), there exists e4 ∈ Oe3 ∩ Y such that

0 < dF (e3, e4) < r2dF (e3,Oe3 ∩ Y) ≤ r2ψ (dF (e2, e3)) = ψ2 (rψ (dF (e0, e1))) . (4.11)

Applying ψ in the inequality (4.8), we have

0 < ψ (dF (e3, e4)) < ψ3 (rψ (dF (e0, e1))) .

Continuing in this way, we generate a sequence {en} in Y such that en+1 ∈ Oen ∩ Y with en , en+1,
α(en, en+1) ≥ 1, and

dF (en+1, en+2) < ψn (rψ (dF (e0, e1))) (4.12)

for all n ∈ N ∪ {0}. Now, suppose that (⋏, h) ∈ F × [0,+∞) such that (D3) is satisfied. Let ϵ > 0 be
fixed. By (F2), there exists δ > 0 such that

0 < t < δ =⇒ ⋏(t) < ⋏(δ) − h. (4.13)
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Let n(ϵ) be some natural number such that 0 <
∑

n≥n(ϵ) ψ
n(dF (e0, e1)) < δ. Therefore, by the

inequalities (4.12) and (4.13), and the conditions (F1) and (F2), we have

⋏

m−1∑
i=n

dF (ei, ei+1)

 ≤ ⋏ m−1∑
i=n

ψi (rψ (dF (e0, e1)))


≤ ⋏

 ∑
n≥n(ϵ)

ψn (rψ (dF (e0, e1)))

 < ⋏(ϵ) − h (4.14)

for m > n ≥ n(ϵ). Utilizing the condition (D3) and the inequality (4.14), we get dF (en, em) > 0,
m > n ≥ n(ϵ) implying

⋏(dF (en, em)) ≤ ⋏

m−1∑
i=n

dF (ei, ei+1)

 + h < ⋏(ϵ),

which yields by (F1) that dF (en, em) < ϵ, m > n ≥ n(ϵ). This confirms the sequence {en} is F -Cauchy.
Given that (P, dF ) is F -complete, there is an element denoted by e∗ ∈ P such that {en} is F -convergent
to e∗. Now, by (F1), the continuity of the function dF and the mapping O, we have

⋏ (dF (e∗,Oe∗)) = lim
n→∞
⋏ (dF (en+1,Oe

∗)) ≤ lim
n→∞
⋏ (H (Oen,Oe∗)) = −∞,

which implies by (F2) that we have dF (e∗,Oe∗) = 0. Now, since O is closed, e∗ ∈ Oe∗. □

Theorem 6. Let (P, dF ) be an F -MS, Y ⊆P is F -complete in accordance with the metric derived from
the F -metric dF , and let O : P → CB(P) be a generalized (α, ψ)-contraction on Y. Let us consider
the fulfillment of the following axioms:

(i) O is a multivalued α-admissible mapping;
(ii) There exist e0 ∈ Y and e1 ∈ Oe0 ∩ Y such that α(e0, e1) ≥ 1;
(iii) α (en, en+1) ≥ 1 for any sequence {en} in Y converging to e, then α (en, e) ≥ 1, for each n ∈ N∪{0}.

Then, O has a fixed point.

Proof. Following the proof of Theorem 5, there exist a Cauchy sequence {en} in Y with en → e∗ as
n → ∞, and α (en, en+1) ≥ 1 for each n ∈ N ∪ {0}. Then, by the assumption (iii), we have α (en, e∗) ≥ 1
for each n ∈ N ∪ {0}. Assume that dF (e∗,Oe∗) , 0. Now, by (4.1), we have

0 < dF (en+1,Oe
∗ ∩ Y) ≤ α(en, e∗)HF (Oen ∩ Y,Oe∗ ∩ Y)

≤ ψ

(
max

{
dF (en, e∗),

dF (en,Oen)+dF (e∗,Oe∗)
2 ,

dF (en,Oe∗)+dF (e∗,Oen)
2

})
< max

{
dF (en, e∗),

dF (en,Oen)+dF (e∗,Oe∗)
2 ,

dF (en,Oe∗)+dF (e∗,Oen)
2

}
. (4.15)

Taking the limit as n→ ∞ in (4.15), we have

dF (e∗,Oe∗) ≤ dF (e∗,Oe∗ ∩ Y) ≤
dF (e∗,Oe∗)

2
,

which is impossible. Thus, dF (e∗,Oe∗) = 0. □
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Example 3. Let P = (−∞,−6) ∪ [0,+∞) be endowed with the F -metric defined by

dF (e, c) =
{

e(|e−c|), if e , c,
0, otherwise,

with ⋏(t) = −1
t and h =1. Then, (P,dF ) is F -complete F -MS. Define O : P→ CL(P) by

Oe =


[0, e3 ], if 0 ≤ e <3,
{0}, if e =3,

(−∞,−3] ∪ [x, x2], if e >3,

and α : P ×P→ [0,+∞) by

α(e, c) =
{

1, if e, c ∈[0, 3],
0, otherwise.

Let Y = [0,+∞). Then evidently, Oe∩ Y , ∅ for all e ∈ P. Let ψ(t) = t
2 for each t ≥ 0. To show that

O is a generalized multivalued (α, ψ)-contraction on Y, we consider these cases.
Case 1. If e, c ∈[0, 3), we have

α(e, c)HF (Oe ∩ Y,Oc ∩ Y) = e(| e3−
c
3 |) ≤ e( |e−c|2 ) = ψ(dF (e, c)) ≤ ψ(R(e, c)).

Case 2. If e ∈[0, 3) and c = 3, we have

α(e, c)HF (Oe ∩ Y,Oc ∩ Y) = e(| e3 |) ≤ ψ( dF (e,Oe)+dF (c,Oc)
2 ) ≤ ψ(R(e, c)).

Case 3. Otherwise, we have

α(e, c)HF (Oe ∩ Y,Oc ∩ Y) = 0 ≤ ψ(R(e, c)).

For α(e, c) ≥ 1, we have e, c ∈[0, 3]. Then, Oe ∩ Y =
[
0, e3

]
⊆ [0, 1] and Oc ∩ Y =

[
0, c3

]
⊆ [0, 1] . Thus,

α(u, v) ≥ 1, for every u ∈Oe ∩ Y and v ∈Oc ∩ Y. Moreover, for any sequence {en} in Y such that en → e
as n → ∞ and α(en, en+1) = 1 for every n ∈ N ∪ {0}, limα(en, e) = 1. Consequently, all the hypotheses
of Theorem 6 are satisfied, ensuring that O possesses a fixed point.

Corollary 9. Let (P,⪯, dF ) be an ordered F -MS, and let (Y,⪯) ⊆ P be an F -complete in accordance
with the metric derived from the F -metric dF . Let O : P → CB(P) be a multivalued mapping such
that Oe ∩ Y , ∅ for every e ∈ Y, and

HF (Oe ∩ Y,Oc ∩ Y) ≤ ψ(R(e, c)),

where
R(e, c) = max

{
dF (e, c), dF (e,Oe)+dF (c,Oc)

2 ,
dF (e,Oc)+dF (c,Oe)

2

}
for every e, c ∈ Y with e ⪯ c. Furthermore, let it be assumed that the subsequent conditions are met:

(i) There exist e0 ∈ Y and e1 ∈ Oe0 ∩ Y such that e0 ⪯ e1;
(ii) If e ⪯ c, then Oe ∩ Y ≺ Oc ∩ Y;
(iii) Either O is continuous or for en ⪯ en+1 for any {en} ⊆ Y converging to e, implying en ⪯ e for

each n ∈ N ∪ {0}.
Then, O has a FP.
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Proof. Define α : Y × Y → [0,+∞) by

α(e, c) =
{

1, if e ⪯ c,
0, otherwise.

By using the assumption (i) and the definition of the function α : Y × Y → [0,+∞), we have
α(e0, e1) = 1. Also, from the assumption (ii), we have that e ⪯ c implies Oe ∩ Y ≺ Oc ∩ Y; by using the
definition of the function α : Y × Y → [0,+∞) and the partial order ≺, we have that α(e, c) = 1 implies
α(u, v) = 1 for each u ∈ Oe ∩ Y and v ∈ Oc ∩ Y . Moreover, it is simple to check that the mapping O
is a generalized (α, ψ)-contraction on Y . Therefore, all the assertions of Theorems 5 and 6 are satisfied
and, hence, the mapping O has a fixed point. □

5. Applications

Delay differential equations (DDEs), also known as differential equations with retarded argument,
are a specific type of functional differential equation (FDE) where the current rate of change depends
on the system’s state at earlier times. Neutral DDEs serve as a common tool for characterizing
dynamic systems reliant on both current and past states. Instances of such systems span various
domains, encompassing biological models depicting the growth of single species [27], applications
in thermal processes like steam or water pipes, heat exchanges [28], ecological models in population
dynamics [29], and various engineering systems [28]. To explore neutral stochastic delay differential
systems, the reader is directed to references [16–20].

This section focuses on finding the solution to the following differential equation:

e
/(t) = −a(t)e(t) + b(t)g(e(t − j(t))) + c(t)e/(t − j(t)). (5.1)

The lemma proposed by Djoudi et al. [26] proves to be highly useful in establishing the validity of
our theorem.

Lemma 3. ( [26]) Suppose that j/(t) , 1, for all t ∈ R. Then, e(t) is a solution of (5.1) if

e(t) =
(
e(0) −

c(0)
1 − j/(0)

e(− j(0))
)
ρ−

∫ t
0 α( j)d j +

c(t)
1 − j/(t)

e(t − j(t))

−

∫ t

0
(h(u))e(u − j(u))) − b(u)g (e(u − j(u))) ρ−

∫ t
u α( j)d jdu, (5.2)

where

h(u) =
j//(u)c(u) +

(
c/(u) + c(u)a(u)

)
(1 − j/(u))

(1 − j/(u))2 . (5.3)

Now, let’s consider ϱ : (−∞, 0] → R as a continuous bounded initial function. Then, if e(t) =
e(t, 0, ϱ), it represents a solution of (5.1) when e(t) = ϱ(t) for t ≤ 0, and satisfies (5.1) for t ≥ 0. Let C
denote the set of ϖ : (−∞,+∞)→ (−∞,+∞) comprising continuous functions. Define Bϱ by

Bϱ = {ϖ ∈ C such that ϱ(t) = ϖ(t) if t ≤ 0, ϖ(t)→ 0 as t → ∞} .

Thus, Bϱ forms a Banach space under the supremum norm ∥·∥.
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Lemma 4. ( [10]) The space (Bϱ, ∥ · ∥) equipped with the distance function dF , defined by

dF (t, t∗) = ||t−t∗|| = sup
e∈I
|t(e) − t∗(e)|

for t, t∗ ∈ Bϱ, is an F -MS.

Theorem 7. Let O : Bϱ → Bϱ be a mapping defined by

(Oϖ)(t) =
(
ϖ(0) −

c(0)
1 − j/(0)

ϖ(− j(0))
)
ρ−

∫ t
0 α( j)d j +

c(t)
1 − j/(t)

ϖ(t − j(t))

−

∫ t

0
(h(u)ϖ(u − j(u)) − b(u)g (ϖ(u − j(u))))ρ−

∫ t
u α( j)d jdu, t ≥ 0 (5.4)

for all ϖ ∈ Bϱ. Let’s consider that these statements hold true:
(i) There exist µ ≥ 0 and ϱ ∈ Ψ so that∫ t

0
|h(u)(ϖ(u − j(u))) − ω(u − j(u))|ρ−

∫ t
u α( j)d jdu

≤
µ

2
ϱ

(
max

{
∥ϖ − ω∥ ,min

{
∥ϖ − Oϖ∥ ∥ω − Oω∥

1 + ∥ϖ − ω∥
,
∥ϖ − Oω∥ ∥ω − Oϖ∥

1 + ∥ϖ − ω∥

}})
, (5.5)

and ∫ t

0
|(b(u))g(ϖ(u − j(u))) − g(ω(u − j(u)))|ρ−

∫ t
u α( j)d jdu

≤
µ

2
ϱ

(
max

{
∥ϖ − ω∥ ,min

{
∥ϖ − Oϖ∥ ∥ω − Oω∥

1 + ∥ϖ − ω∥
,
∥ϖ − Oω∥ ∥ω − Oϖ∥

1 + ∥ϖ − ω∥

}})
(5.6)

for all ϖ,ω ∈ Bϱ.
Then, O has a fixed point.

Proof. Define α, η : C × C→ R by

α(ϖ,ω) = η(ϖ,ω) =
{

1, if ϖ,ω ∈ Bϱ,
0, otherwise.

Now, for ϖ,ω ∈ Bϱ such that α(ϖ,ω) = η(ϖ,ω) ≥ 1. It follows from (5.3) that O(ϖ),O(ω) ∈ Bϱ.
Therefore, α(O(ϖ),O(ω)) = η(O(ϖ),O(ω)) ≥ 1. Since, (5.4)–(5.6) hold, then for ϖ,ω ∈ Bϱ, we have

|(Oϖ)(t) − (Oω)(t)| ≤
∣∣∣∣∣ c(t)
1 − j/(t)

∣∣∣∣∣ ∥ϖ − ω∥
+

∫ t

0
|h(u)(ϖ(u − j(u))) − ω(u − j(u))|ρ−

∫ t
u α(s)dsdu

+

∫ t

0
|(b(u))g(ϖ(u − j(u))) − g(ω(u − j(u)))|ρ−

∫ t
u α(s)dsdu
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≤

∣∣∣∣∣ c(t)
1 − j/(t)

∣∣∣∣∣ ∥ϖ − ω∥ + µϱ
max


∥ϖ − ω∥ ,

min

 ∥ϖ−Oϖ∥∥ω−Oω∥
1+∥ϖ−ω∥ ,

∥ϖ−Oω∥∥ω−Oϖ∥
1+∥ϖ−ω∥





≤

{∣∣∣∣∣ c(t)
1 − j/(t)

∣∣∣∣∣ + µ} ϱ
max


∥ϖ − ω∥ ,

min

 ∥ϖ−Oϖ∥∥ω−Oω∥
1+∥ϖ−ω∥ ,

∥ϖ−Oω∥∥ω−Oϖ∥
1+∥ϖ−ω∥





≤ ϱ

max


∥ϖ − ω∥ ,

min

 ∥ϖ−Oϖ∥∥ω−Oω∥
1+∥ϖ−ω∥ ,

∥ϖ−Oω∥∥ω−Oϖ∥
1+∥ϖ−ω∥



 .

Hence,

dF (Oϖ,Oω) ≤ ψ

max

dF (ϖ,ω),min

 dF (ϖ,Oϖ)dF (ω,Oω)
1+dF (ϖ,ω) ,

dF (ϖ,Oω)dF (ω,Oϖ)
1+dF (ϖ,ω)





implies that O is a rational (αη-ψ)-contraction. Building upon Theorem 3, we can conclude that the
mapping O possesses a unique fixed point within the set Bϱ. This fixed point satisfies the differential
equation (5.1). □

6. Conclusions

In this research article, we have made significant contributions to the field of FP theory in F -
MS. By introducing innovative contraction conditions, we have established several new FP theorems.
Our principal result provides a unified framework for various existing theorems. Additionally, we
have presented a concrete example to illustrate the applicability of our findings. To demonstrate the
practical utility of our findings, we have applied our main results to the solution of synaptic DDEs in
neural networks. Future research will focus on extending these results to the domain of generalized
contractive mappings, with a particular emphasis on solving fractional differential inclusion problems.
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