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Abbreviations

The following abbreviations are used in this manuscript:
BVPs Boundary Value Problems
HHFDEs Hilfer-Hadamard Fractional-order Differential Equations
HFIs Hadamard Fractional Integrals
HHFDs Hilfer-Hadamard Fractional Derivatives
CFDs Caputo Fractional Derivatives
HFDs Hilfer Fractional Derivatives
HFDEs Hilfer Fractional Differential Equations
HFDs Hadamard Fractional Derivatives (HFDs)
CHFDs Caputo-Hadamard Fractional Derivatives (CHFDs)

1. Introduction

Fractional calculus extends classical calculus by generalizing derivatives and integrals from integer
orders to arbitrary orders. In this field, various definitions of integrals and derivatives exist, with the
Caputo and Riemann-Liouville (R-L) formulations being widely recognized. These formulations have
driven extensive research, extending differential equations from integer to fractional orders. Recently,
Hilfer introduced a generalized R-L derivative, known as the Hilfer derivative, which bridges the gap
between Caputo and R-L derivatives and has attracted significant attention. Recent studies have
investigated the Ulam stability and existence results of differential equations using fractional
Hadamard and Hilfer derivatives, marking a notable advancement in fractional calculus and opening
new avenues for mathematical exploration and application [2, 5, 8, 14].

The researchers focus on stability analysis of fractional differential equations using different types of
fractional derivatives and make an important contribution to the understanding of stability properties in
fractional calculus [1,6,25,26]. Beginning with studies on the stability of solutions to linear differential
equations with fractional Caputo derivatives [25], subsequent research investigated the existence and
Ulam stability of solutions to equations characterized by the Hilfer-Hadamard type [1] and extended
the analysis to include the new Caputo-Fabrizio fractional derivative and advance the discourse on
stability in fractional calculus [6]. In addition, studies in [26] investigated the Hyers-Ulam stability
of nonlinear differential equations subject to fractional integrable momentum, expanding the scope of
stability analysis in fractional calculus applications.

Fixed-point theorems are crucial for establishing both the existence and uniqueness of solutions in
various mathematical contexts. Their application also extends to examining the attractivity of
solutions within fractional calculus, facilitating advancements in both theoretical understanding and
practical applications across a broad range of scientific disciplines. For instance, the authors in [7]
studied the complex interplay between nonlinear Caputo fractional derivatives and nonlocal
Riemann-Liouville fractional integral conditions, offering new insights through fixed-point theorems.
Similarly, [24] expanded our understanding of positive solutions for fractional differential equations
with derivative terms, introducing a novel fixed-point theorem to address this challenging problem.
In [3], the authors explored the complexities of fractional boundary value problems, particularly
focusing on mixed boundary conditions, which are essential for modeling various physical
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phenomena. Additionally, [10] extended the applicability of mathematical tools, such as Mönch’s
fixed-point theorem, to analyze intricate systems of Hilfer-type fractional differential equations,
opening avenues for further theoretical developments. Lastly, [22] investigated the existence and
uniqueness of nonlocal boundary conditions in the context of Hilfer-Hadamard-type fractional
differential equations, bridging theoretical insights with practical applications.

The study by Fan et al. [11] investigates the synchronization of fractional-order multi-link
memristive neural networks (MNNs) with time delays, proposing a hybrid impulsive feedback control
strategy to achieve drive-response synchronization in these complex systems. This approach offers
valuable insights into the stability and synchronization dynamics in neural networks and chaotic
circuits. In contrast, Li et al. [18] focus on the stability analysis of fractional differential
equations (FDEs) with non-instantaneous impulses and multi-point boundary conditions, providing
new stability criteria for systems with delayed impulses. Their work has broad implications for
biological systems and engineering problems influenced by fractional dynamics. Both articles
contribute significantly to the understanding of control and stability in fractional-order systems, with
distinct applications in neural computation and biological modeling.

In 1892, Hadamard introduced the new concept of Hadamard fractional derivatives, using a
logarithmic function with an arbitrary exponent at its [9]. Building on this foundation, subsequent
research, exemplified by notable works such as [4, 16, 20], has explored various extensions, including
the study of Hilfer Hadamard-type fractional derivatives and Caputo-Hadamard fractional derivatives.
It is important to note that Hadamard fractional derivatives and Caputo-Hadamard fractional
derivatives are specific instances of the broader Hilfer-Hadamard type fractional derivatives
framework, distinguished by the parameter β with values of β = 0 and β = 1, respectively. This rich
line of research has led to investigations into the existence and properties of solutions to
Hilfer-Hadamard type fractional differential equations, particularly with respect to non-local
integro-multi-point boundary conditions.

Existence results for a Hilfer-Hadamard type fractional differential equations with nonlocal integro-
multipoint boundary conditions were derived in [21],

HHD
ϑ,β
1 x(t) = f (t, x(t)), t ∈ [1,T ],

x(1) = 0,
m∑

i=1

Xix(ξi) = λHIδx(η),
(1.1)

here ϑ ∈ (1, 2], β ∈ ⌊0, 1⌋, Xi, λ ∈ R, η, ξi ∈ (1,T ) (i = 1, 2, ...,m), HIδ is the HFI of order δ > 0,
f : [1,T ] × R→ R is a continuous function. Problem (1.1) represents a non-coupled system.

Integer order integro-differential equations find applications in various domains of science and
engineering, including circuit analysis. According to Kirchhoff’s second law, the total voltage drop
across a closed loop is equal to the applied voltage, denoted as E(t). This principle essentially stems
from the law of energy conservation. Consequently, an RLC circuit equation has the form

dI(t)
dt
+ RI(t) +

1
C

∫ t

0
I(s) ds = E(t).

This paper explores the practical application of fractional derivatives in modeling various electrical
circuits, including RC,RL, and RLC configurations, as well as power electronic devices and nonlinear
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loads. The RLC circuit serves as a fundamental component in the assembly of more intricate electrical
circuits and networks. Illustrated in Figure 1, it comprises a resistor with a resistance of R ohms, an
inductor with an inductance of L henries, and a capacitor with a capacitance of C farads, all arranged
in series with an electromotive force source (like a battery or a generator) providing a voltage of E(t)
volts at time t.

Figure 1. Diagram of a RLC circuit.

In [19], Malarvizhi et al. discussed the transient analysis of an RLC circuit in the RK4 order
method. In [12], Gomez-Aguilar et al.studied the electrical circuits RC and RL for the Atangana-
Beleanu-Caputo (ABC) fractional bi-order system:

ABCDβV(t) = δE(t) − δV.

In 2016 in [13], researchers derived analytical and numerical solutions of electrical circuits employing
fractional derivatives. By substituting traditional time derivatives with fractional derivatives like
Riemann-Liouville, Grünwald-Letnikov, Liouville-Caputo, and the recently introduced Caputo and
Fabrizio fractional definitions, the authors derived equations capturing the dynamic behavior of these
circuits. Motivated by [13], we have considered the following Hilfer-Hadamard fractional derivative
equation with the RLC model:

HHD
ϑ,β
1 I(t) =

E(t)
L
−
R

L
I(t) −

1
CL

∫ t

1
I(ς)dς, t ∈ J = ⌊1,T⌋, (1.2)

X(1) = 0, X(T) =
l∑
i=1

ηiX(ξi) +
k∑
j=1

ϱjI
vjX(ζj), vj > 0, ηi, ϱj ∈ R, ζj, ξi ∈ J . (1.3)

The Problems (1.2) and (1.3) exhibit nonlocal coupling with integral and multi-point boundary
conditions. The RLC circuit system is shown in Figure 1.

The primary contribution of this endeavor can be outlined as follows:
(1) The existence, uniqueness, and stability of the solution of the Hilfer-Hadamard fractional multi

point integro-differential equation for the RLC circuit model have been investigated via the fixed-point
approach.

(2) We apply a novel hypothesis to verify the existence, uniqueness, and Ulam-Hyers stability of
the solution to the RLC circuit Eqs (1.2) and (1.3). We additionally, the paper is structured as follows:
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Section 2 introduces definitions and properties of fractional derivatives, along with an investigation
into the existence of solutions for the boundary value problem. Section 3, we give the main results.
Sections 3.1 and 3.2 focus on the existence and uniqueness of solutions. Section 4 examines Ulam
stability, while Section 5 presents examples illustrating the developed theorems. Finally, Section 6
provides concluding insights.

2. Preliminaries

Definition 2.1. [17] The Hadamard fractional integral of order ϑ ∈ R for the functionX : ⌊a,∞)→ R
is defined as follows:

HIϑa+X(t) =
1

Γ(ϑ)

∫ t

b

(
log
t

a

)ϑ−1X(t)
a

da, a > b, (2.1)

provided the integral exists, where log(·) = loge(·).

Definition 2.2. [17] For a continuous function X : ⌊a,∞)→ R, the HFD of order ϑ > 0 is given by
HDϑ

a+X(t) = pn(HIn−ϑ
a+ X)(t), n = ⌊ϑ⌋ + 1, (2.2)

where pn = tn dn

dtn and ⌊ϑ⌋ represent the integer parts of the real number ϑ.

Lemma 2.1. [17] If ϑ, γ > 0 and 0 < a < b < ∞ then

(1)
(
HIϑa+

(
log
t

a

)γ−1)
(X) =

Γ(γ)
Γ(γ + ϑ)

(
log
t

a

)γ+ϑ−1
;

(2)
(
HDϑ

a+

(
log
t

a

)γ−1)
(X) =

Γ(γ)
Γ(γ − ϑ)

(
log
t

a

)γ−ϑ−1
.

In particular, if γ = 1, then the following is the case:(
HD

ϑ
a+

)
(1) =

1
Γ(1 − ϑ)

(
log
t

a

)−ϑ
, 0, 0 < ϑ < 1.

Definition 2.3. [15] For n − 1 < p < n and 0 ≤ q ≤ 1, the HHFD of order math f rakp and the type q
for f ∈ L′(a, b) is defined as

(HHIδ,γ
a+

) =(HIγ(n−δ)
a+
p
nHI

(n−δ)(1−γ)
a+

X)(t)

=(HIγ(n−δ)
a+
p
nHI

(n−q)
a+
X)(t)

=(HIγ(n−δ)
a+
p
nHD

q

a+
X)(t), q = δ + nγ − δγ,

where HI(·)
a+

and HD(·)
a+

are given in Definitions 2.1 and 2.2, respectively.

Lemma 2.2. [23] If φ ∈ L1(a, b), 0 < a < b < ∞, and
(
HI

n−q
a+ φ

)
(t) ∈ ACn

p[a, b], then

HDϑ
a+

(
HHD

δ,γ
a+ φ

)
(t) =HIqa+

(
HHD

q

a+φ
)
(t)

=φ(t) −
n−1∑
j=o

(p(n− j−1)(HDϑ
a+φ))(a)

Γ(q − j)

(
log
t

a

)q− j−1
,

where δ > 0, 0 ≤ γ ≤ 1 and q = δ + nγ − δγ, n = ⌊δ⌋ + 1. Observe that Γ(q − j) exists for all
j = 1, 2, · · · , n − 1 and q ∈ ⌊δ, n⌋.
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2.1. Problem formulation

Let us consider the general structure of the Hilfer-Hadamard fractional order RLC circuit integro-
differential equation with nonlocal boundary conditions:

HHDϑ,βX(t) = H1(t,X(t),H(X(ς))), t ∈ J = ⌊1,T⌋,

X(1) = 0, X(T) =
l∑
i=1

ηiX(ξi) +
k∑
j=1

ϱjI
vjX(ζj), vj > 0, ηi, ϱj ∈ R, ζj, ξi ∈ J ,

(2.3)

where HHDϑ,β is the Hilfer-Hadamard fractional derivative of order ϑ ∈ (1, 2), and type β ∈ ⌊0, 1⌋ and
ηi, ϱ j ∈ R parameter Ivj is the Riemann-Liouville fractional integral of order vj > 0, ζj ∈ ⌊1,T⌋, ϱj ∈
R, j = 1, · · · , k.

H1(t,X(t),
∫ t

a

F (t, ς,X(ς)dς)) =
E(t)
L
−
R

L
I(t) −

1
CL

∫ t

1
I(ς)dς, (2.4)

and

H(X(ς)) =
∫ t

a

F (t, ς,X(ς)dς). (2.5)

Using some fixed-point theorems, the existence and uniqueness results are established. For (2.3), we
employ Banach’s fixed-point and Schaefer’s fixed-point theorem for uniqueness and existence results.

This section is concerned with the existence and uniqueness of solutions for the nonlinear Hilfer -
Hadamard fractional derivative boundary value problem (1.3). First of all, we prove an auxiliary lemma
dealing with the linear variant of the boundary value problem (1.3), which will be used to transform
the problem at hand into an equivalent fixed-point problem. In the case n = [ϑ] + 1 = 2, we have
γ = ϑ + (2 − ϑ)β.

Lemma 2.3. Let h ∈ C(⌊1,T⌋,R) and that

Π =
(

logT
)γ−1
−

l∑
i=1

ηi

(
log ξi

)γ−1
−

k∑
j=1

ϱjI
vj
(

log ζj
)γ−1
, 0. (2.6)

Then, X is a solution of the following linear Hilfer-Hadamard fractional boundary value problem:
HHD

ϑ,β
1 X(t) = h(t), t ∈ J = ⌊1,T⌋,

X(1) = 0, X(T) =
l∑
i=1

ηiX(ξi) +
k∑
j=1

ϱjI
vjX(ζj), vj > 0, ηi, ϱj ∈ R, ζj, ξi ∈ J ,

(2.7)

which satisfies the following equation:

X(t) =

(
log t

)γ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1 h(ς)
ς

dς +
k∑
j=1

ϱjI
vj 1
Γ(ϑ)

∫ ξi

1

(
log

ζj

ς

)ϑ−1 h(ς)
ς

dς (2.8)

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1 h(ς)
ς

dς
]
+

1
Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1 h(ς)
ς

dς.
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Proof. Applying the Hadamard fractional integral operator of order ϑ from 1 to t on both sides of
Hilfer-Hadamard fractional differential equations in (2.7) and using Lemma 2.2, we find that

X(t) −
δ(HI

2−γ
1+ X)(1)
Γ(γ)

(log t)γ−1 −
δ(HI

2−γ
1+ X)(1)
Γ(γ)

(log t)γ−2 =H Iαh(t),

and we obtain,

X(t) = c0
(

log t
)γ−1
+ c1

(
log t

)γ−2
+

1
Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1 h(ς)
ς

dς, (2.9)

where c0 and c1 are arbitrary constants. Using the first boundary condition (X(1) = 0) in (2.9) yields
c1 = 0, since γ ∈ [ϑ, 2]. In consequence, (2.7) takes the following form:

X(T) =
l∑
i=1

ηiX(ξi) +
k∑
j=1

ϱjI
vjX(ζj), (2.10)

and using the notation (2.10), we obtain the following :

c0 =
1
Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1 h(ς)
ς

dς −
k∑
j=1

ϱjI
vj 1
Γ(ϑ)

∫ ξi

1

(
log

ζj

ς

)ϑ−1 h(ς)
ς

dς (2.11)

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1 h(ς)
ς

dς
]
.

Substituting the value of c0 in (2.9) results in Eq (2.8) as desired. By direct computation, one can obtain
the converse of the lemma. The proof is completed. □

3. Main results

Let E = C(⌊1,T⌋,R) be the Banach space endowed with the norm

||X|| := max
t∈⌊1,T⌋

|X(t)|.

Given Lemma 2.1, we introduce an operator F : E → E associated with the problem (2.3) as follows:

F (X)(t) =

(
log t

)γ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

+

k∑
j=1

ϱjI
vj 1
Γ(ϑ)

∫ ζi

1

(
log

ζj

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς, t ∈ ⌊1,T⌋. (3.1)
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In the sequel, we used the following notation:

Ω =

(
logT

)ϑ
Γ(ϑ + 1)

+

(
logT

)γ−1

|Π|

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

|ζ j|
(

log ζi

)ϑ+vj

Γ(ϑ + vj + 1)
+

(
logT

)ϑ
Γ(ϑ + 1)

]
. (3.2)

Here, we introduce some assumptions for the following sequels.

(Q1) The function H1 : J × E × E → E is completely continuous, and then there exists a function
µ ∈ L1(J ,R) such that:

|H1(t,X,Y)| ≤ µ(t), t ∈ J , X,Y ∈ E.

(Q2) The functionH1 is continuous, and there exist constants L1,L2 > 0 such that:

|H1(t,X1,Y1) −H1(t,X2,Y2)| ≤L1|X1 − X2| +L2|Y1 − Y2|,

∀ t ∈ J , Xi,Yi ∈ E, i = 1, 2.

(Q3) The functionH1 is continuous, and there exists a constantM > 0 such that:

|H1(t, ς,X1) −H1(t, ς,X2)| ≤ M|X1 − X2|, ∀ ∈ J , Xi ∈ E, i = 1, 2.

3.1. Existence results

In this subsection, we present different criteria for the existence of solutions for the problem (2.3).
First, we prove an existence result based on Krasnoselskii’s fixed-point theorem.

Theorem 3.1. Let H1 : ⌊1,T⌋ × R → R be a continuous function satisfying (2.3). In addition, we
assume that the following condition is satisfied:

(Q1) There exists a continuous function Φ ∈ C(⌊1,T⌋,R+ such that

|H1(t,X,Y)| ≤ Φ(t) ∈ ⌊1,T⌋ × R.

Then, the nonlinear Hilfer-Hadamard fractional boundary value problem (1.3) has at least one solution
on ⌊1,T⌋, provided that the following condition holds:

{ (
logT

)ϑ
Γ(ϑ + 1)

+

(
logT

)γ−1

|Π|

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

|ζ j|
(

log ζi

)ϑ+vj

Γ(ϑ + vj + 1)
+

(
logT

)ϑ
Γ(ϑ + 1)

]}
L < 1. (3.3)

Proof. By assumption (Q1), we can fix ρ ≥ Ω||Φ|| and consider a closed ball
Bρ = {X ∈ C(⌊1,T⌋,R) : ||X|| ≤ ρ}, where ||Φ|| = supt∈⌊1,T⌋ |Φ(t)| and Ω is given by (3.2). We verify the
hypotheses of Krasnoselskii’s fixed-point theorem by splitting the operator F defined by (3.1) on Bρ
to C(⌊1,T⌋,R) as F = F1 + F2, where F1 and F2 are defined by the following:

(F1X)(t) =
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς, t ∈ ⌊1,T⌋,
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(F2X)(t) =

(
log t

)γ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

+

k∑
j=1

ϱjI
vj 1
Γ(ϑ)

∫ ζi

1

(
log

ζj

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς
]
, t ∈ ⌊1,T⌋.

For any X1,X2 ∈ Bρ, we have the following:

|F1(X1)(t) + F2(X2)(t)| (3.4)

=

(
log t

)γ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1 |H1(t,X(t),H(X(ς)))(ς)|
ς

dς

+

k∑
j=1

ϱjI
vj 1
Γ(ϑ)

∫ ζi

1

(
log

ζj

ς

)ϑ−1 |H1(t,X(t),H(X(ς)))(ς)|
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1 |H1(t,X(t),H(X(ς)))(ς)|
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1 |H1(t,X(t),H(X(ς)))(ς)|
ς

dς,

≤

( ( logT
)ϑ

Γ(ϑ + 1)
+

(
logT

)γ−1

|Π|

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

|ζ j|
(

log ζi

)ϑ+vj

Γ(ϑ + vj + 1)
+

(
logT

)ϑ
Γ(ϑ + 1)

])
||Φ||,

≤ Ω||Φ|| ≤ ρ. (3.5)

Hence, ||F1(X1)(t) +F2(X2)(t)|| ≤ ρ, which shows that F1(X1)(t) +F2(X2)(t) ∈ Bρ. By condition (3.3),
it is easy to prove that the operator F2 is a contraction mapping. The operator F1 is continuous by the
continuity ofH1. Moreover,H1 is uniformly bounded on Bρ, since

||F1X|| ≤
(logT)ϑ

Γ(ϑ + 1)
||Φ||.

Finally, we prove the compactness of the operator F1. For t1, t2 ∈ ⌊1,T⌋, t1 < t2, we have the following
case:

|F1X(t2) − F1X(t1)| ≤
1

Γ(ϑ)

∫ t1

1

[(
log
t2

ς

)ϑ−1
−

(
log
t1

ς

)ϑ−1
]
|H1(t,X(t),H(X(ς)))(ς)|

ς
dς

+
1

Γ(ϑ)

∫ t2

t1

(
log
t2

ς

)ϑ−1 |H1(t,X(t),H(X(ς)))(ς)|
ς

dς

≤
||Φ||

Γ(ϑ + 1)

[
2(log t2 − log t1)ϑ + |(log t2)ϑ − (log t1)ϑ|

]
,

which tends to zero independently of X ∈ Bρ, as t1 → t2. Thus, F1 is equicontinuous. By the
application of the Arzela–Ascoli theorem, we deduce that operator F1 is compact on Bρ. Thus, the
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hypotheses of Krasnoselskii’s fixed-point theorem hold. In consequence, there exists at least one
solution for the nonlinear Hilfer-Hadamard fractional boundary value problem (2.5) on ⌊1,T⌋, which
completes the proof. □

Our next existence result is based on Schaefer’s fixed-point theorem.

Theorem 3.2. Assume that (Q1) is verified. Then (2.3) admit at least one solution on J .

Proof. We shall use Scheafer’s fixed-point theorem to prove that P has at least a fixed-point on E. It is
to note that P is continuous on E because of the continuity ofH1.

Now, we shall prove that P maps bounded sets into bounded sets in E. Taking r > 0, and (X) ∈
Br := {(X|X ∈ E : ||X||E ≤ X)}, then for each t ∈ ⌊1,T⌋, we have

P(X)(t) =

(
log t

)γ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

+

k∑
j=1

ϱjI
vj 1
Γ(ϑ)

∫ ζi

1

(
log

ζj

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς, t ∈ ⌊1,T⌋. (3.6)

Step 1. P is continuous.
Let Xn be a sequence such that Xn → X in E. For each t ∈ J , one has

|(P(Xn))(t) − (P(X))(t)|

=|
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1
(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))

dς
ς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))
dς
ς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))
dς
ς

]
+

1
Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))
dς
ς
|

≤
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1
|(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))|

dς
ς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1
|(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))|

dς
ς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1
|(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))|

dς
ς

]
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+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1
|(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))|

dς
ς

≤
(log t)ϑ−1

||Π||

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

||(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))||E

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
||(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))||E

+
(logT)ϑ

Γ(ϑ + 1)
||(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))||E

]
+

(logT)ϑ

Γ(ϑ + 1)
||(H1(ς,Xn(ς),H(Xn(ς))) −H1(ς,X(ς),H(X(ς))))||E.

Since the functionH1 is continuous, then we obtain

|(P(Xn))(t) − (P(X))(t)|

≤
(log t)ϑ−1

||Π||

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

||(H1(·,Xn(·),H(Xn(·))) −H1(·,X(·),H(X(·))))||E

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
||(H1(·,Xn(·),H(Xn(·))) −H1(·,X(·),H(X(·))))||E

+
(logT)ϑ

Γ(ϑ + 1)
||(H1(·,Xn(·),H(Xn(·))) −H1(·,X(·),H(X(·))))||E

]
+

(logT)ϑ

Γ(ϑ + 1)
||(H1(·,Xn(·),H(Xn(·))) −H1(·,X(·),H(X(·))))||E → 0, as n→ ∞.

Therefore, the operator P is continuous.
Step 2. P(Br) is bounded.

For each t ∈ J and X ∈ Br, we obtain that:

|(PX)(t)|

=

(
log t

)γ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

+

k∑
j=1

ϱjI
vj 1
Γ(ϑ)

∫ ζi

1

(
log

ζj

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς, t ∈ ⌊1,T⌋.

≤
(log t)ϑ−1

|Π|

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1 |µ(ς)|
ς

dς
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+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1 |µ(ς)|
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1 |µ(ς)|
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1 |µ(ς)|
ς

dς,

≤
||µ(ς)||E(log t)ϑ−1

|Π|

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
+

(logT)ϑ

Γ(ϑ + 1)

]
+

(logT)ϑ

Γ(ϑ + 1)
:= L. (3.7)

Thus, ||P(X)|| ≤ L.
Step 3. P(Br) is equi-continuous.

For 1 ≤ t1 < t2 ≤ T, and X ∈ Br, we obtain

|(PX)(t2) − (PX)(t1)|

≤
(log t1)ϑ−1 − (log t2)ϑ−1

|Π|

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1 |H1(ς,X(ς),H(X(ς)))|
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1 |H1(ς,X(ς),H(X(ς)))|
ς

dς
]

+
1

Γ(ϑ)

∣∣∣∣∣∣
∫ t1

1

((
log
t1

ς

)ϑ−1
−

(
log
t2

ς

)ϑ−1
)
|H1(ς,X(ς),H(X(ς)))|

ς
dς

∣∣∣∣∣∣
−

1
Γ(ϑ)

∣∣∣∣∣∣
∫ t2

t1

(
log
t2

ς

)ϑ−1 |H1(ς,X(ς),H(X(ς)))|
ς

dς

∣∣∣∣∣∣ ,
≤

∣∣∣∣∣∣ (log t1)ϑ−1 − (log t2)ϑ−1

|Φ|

∣∣∣∣∣∣ [ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
+

(logT)ϑ

Γ(ϑ + 1)

]
+

1
Γ(ϑ)

∣∣∣∣∣∣
∫ t1

1

((
log
t1

ς

)ϑ−1
−

(
log
t2

ς

)ϑ−1
)
|H1(ς,X(ς),H(X(ς)))|

ς
dς

∣∣∣∣∣∣
−

1
Γ(ϑ)

∣∣∣∣∣∣
∫ t2

t1

(
log
t2

ς

)ϑ−1 |H1(ς,X(ς),H(X(ς)))|
ς

dς

∣∣∣∣∣∣ .
As t2 → t1, the R.H.S. of the above inequality → 0. Consequently, we deduce that P is completely
continuous.
Step 4. The priori bounds.

We need to show that the set Λ = {X ∈ E : X = Ω(P(X));Ω ∈ (0, 1)} is bounded. For this, let
X ∈ Λ,X = Ω(P(X)) for some Ω ∈ (0, 1). Thus, for each t ∈ J , one has

(PX)(t) =Ω
{(

log t
)γ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς
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+

k∑
j=1

ϱjI
vj 1
Γ(ϑ)

∫ ζi

1

(
log

ζj

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς
}
, t ∈ ⌊1,T⌋. (3.8)

This implies, by (Q2), that:

|(PX)(t)|

=
(log t)ϑ−1

|Π|

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1 |H1(t,X(t),H(X(ς)))(ς)|
ς

dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1 |H1(ς,X(ς),H(X(ς)))|
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1 |H1(ς,X(ς),H(X(ς)))|
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1 |H1(ς,X(ς),H(X(ς)))|
ς

dς,

≤
(log t)ϑ−1

|Π|

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1 |µ(ς)|
ς

dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1 |µ(ς)|
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1 |µ(ς)|
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1 |µ(ς)|
ς

dς,

≤
(log t)ϑ−1

|Π|

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

||µ(ς)||E +
k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
||µ(ς)||E +

(logT)ϑ

Γ(ϑ + 1)
||µ(ς)||E

]
+

(logT)ϑ

Γ(ϑ + 1)
||µ(ς)||E := R. (3.9)

Thus, ||µ(ς)||E ≤ R.
Therefore, the set Λ is bounded. Hence, we deduce that P has a fixed-point that is a solution to the

presumed problem (2.3) as an outcome of Schaefer’s fixed-point theorem. □

3.2. Uniqueness results

The next theorem contains the second main result in this paper, which is the uniqueness of the
solution to the presumed problem (2.3).
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Theorem 3.3. Suppose that the conditions (Q2) and (Q3) are satisfied such that:

(L1 +L2)M
{ (

logT
)ϑ

Γ(ϑ + 1)
+

(
logT

)γ−1

|Π|

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

|ζ j|
(

log ζi

)ϑ+vj

Γ(ϑ + vj + 1)
+

(
logT

)ϑ
Γ(ϑ + 1)

]}
< 1. (3.10)

Then, the presumed problem (2.3) has a unique solution on J .

Proof. We consider the operator P : E → E defined as

P(X)(t) =

(
log t

)γ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

+

k∑
j=1

ϱjI
vj 1
Γ(ϑ)

∫ ζi

1

(
log

ζj

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς, t ∈ ⌊1,T⌋. (3.11)

We shall show that P is a contraction map. Let X,Y ∈ E, then one has for each t ∈ J

|(P(X))(t) − (P(Y))(t)|

=|
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1
(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))

dς
ς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))
dς
ς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))
dς
ς

]
+

1
Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))
dς
ς
|

≤
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1
(|H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς)))|)

dς
ς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1
|(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))|

dς
ς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1
|(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))|

dς
ς

]
+

1
Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1
|(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))|

dς
ς

≤
(log t)ϑ−1

||Π||

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

||(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))||E
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+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
||(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))||E

+
(logT)ϑ

Γ(ϑ + 1)
||(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))||E

]
+

(logT)ϑ

Γ(ϑ + 1)
||(H1(ς,X(ς),H(X(ς))) −H1(ς,Y(ς),H(Y(ς))))||E,

≤(L1 +L2M)|X(ς) − Y(ς)|

×

 (log t)ϑ−1

Π

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
+

(logT)ϑ

Γ(ϑ + 1)

]
+

(logT)ϑ

Γ(ϑ + 1)

 .
Therefore, we obtain

||(P(X))(t) − (P(Y))(t)||

≤(L1 +L2M)

 (log t)ϑ−1

Π

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
+

(logT)ϑ

Γ(ϑ + 1)

]
+

(logT)ϑ

Γ(ϑ + 1)

]
||X(ς) − Y(ς)||. (3.12)

Hence, given the condition (3.10) and the Banach contraction principle, P has a unique fixed-point.
Thus, the existence of a unique solution to the presumed problem (2.3). □

4. Ulam stability results

In this section we will discuss Ulam-Hyers and Ulam-Hyers–Rassias stability.

Definition 4.1. Equation (2.3) is UH stable if there exists a real number Cg > 0 such that for each
ϵ > 0 and each z ∈ C[J] solution of the inequality:

|Dϑ
0+Z(t) − g(t,Z(t),HZ(t))| ≤ ϵ, t ∈ J , (4.1)

there exists a solution Y ∈ C[J] of Eq (2.3) such that:

|Z(t) − Y(t)| ≤ Cgϵ, t ∈ J .

Definition 4.2. Equation (2.3) is generalized UH stable if there exists ψg ∈ C(R+,R+) with ψg(0) = 0,
such that for a solution z ∈ C[J] of the inequality:

|Dϑ
0+Z(t) − g(t,Z(t),HZ(t))| ≤ ϵ, t ∈ J , (4.2)

there exists a solution Y ∈ C[J] of Eq (2.3) such that:

|Z(t) − Y(t)| ≤ ψg(ϵ), t ∈ J .
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Definition 4.3. Equation (2.3) is UHS stable concerning ν ∈ C(J ,R+) if there exists a real number
cg,ν > 0 such that for each ϵ > 0 and for each ϵ > 0 and for each z ∈ C[J] solution of the inequality:

|Dϑ
0+Z(t) − g(t,Z(t),HZ(t))| ≤ ϵν(t), t ∈ J , (4.3)

there exists a solution Y ∈ C[J] of Eq (2.3) such that:

|Z(t) − Y(t)| ≤ cg,νν(t), t ∈ J .

Definition 4.4. Equation (2.3) is generalized UHS stable with respect to ν ∈ C(J ,R+) if there exists
cg,ν > 0 such that for each z ∈ C[J] solution of the inequality:

|Dϑ
0+Z(t) − g(t,Z(t),HZ(t))| ≤ ϵν(t), t ∈ J , (4.4)

there exists Y ∈ C[J] solution of Eq (2.3) such that:

|Z(t) − Y(t)| ≤ cg,νν(t), t ∈ J .

Remark 4.1. A function z ∈ C[J] is a solution of the inequality:

|Dϑ
0+Z(t) − g(t,Z(t),HZ(t))| ≤ ϵ, t ∈ J , (4.5)

if there exists a function w ∈ C[J] such that:

(1)|w(t)| ≤ ϵ, t ∈ J ,
(2)Dϑ

1+z(t) = g(t,Z(t),HZ(t)) + w(t), t ∈ J .

Remark 4.2. It is clear that:
(1) Definition (4.1)⇒ Definition (4.2).
(2) Definition (4.3)⇒ Definition (4.4).

Theorem 4.1. Assume that (Q1) and (3.10) are satisfied, then the presumed problem (2.3) is UH stable.

Proof. Let z ∈ C[J] be a solution of the inequality (4.1), and let Y ∈ C[J] be a unique solution of the
given system:

HHDϑ,βX(t) = H1(t,X(t),H(X(ς))), t ∈ J = ⌊1,T⌋,

X(1) = 0, X(T) =
l∑
i=1

ηiX(ξi) +
k∑
j=1

ϱjI
vjX(ζj), vj > 0, ηi, ϱj ∈ R, ζj, ξi ∈ J .

(4.6)

where 1 < ϑ < 2,
Given Remark 4.1, we have∣∣∣∣∣∣Z(t)−

(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,Z(t),H(Z(ς)))(ς)
ς

dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1H1(ς,Z(ς),H(Z(ς)))
ς

dς
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−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(ς,Z(ς),H(Z(ς)))
ς

dς
]

(4.7)

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(ς,Z(ς),H(Z(ς)))
ς

dς

∣∣∣∣∣∣ ≤ εtϑ

Γ(ϑ + 1)
.

Then, for each t ∈ J , we obtain

|Z(t) − X(t)|

≤

∣∣∣∣∣∣Z(t) −
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1H1(ς,X(ς),H(X(ς)))
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(ς,X(ς),H(X(ς)))
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(ς,X(ς),H(X(ς)))
ς

dς

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Z(t) −
(log t)ϑ−1

Π

[ k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1H1(ς,Z(ς),H(Z(ς)))
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(ς,Z(ς),H(Z(ς)))
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(ς,Z(ς),H(Z(ς)))
ς

dς

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Z(t) −
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1

×
(H1(ς,X(ς),H(X(ς)))

ς
−
H1(ς,Z(ς),H(Z(ς)))

ς

)
dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1

×
(H1(ς,X(ς),H(X(ς)))

ς
−
H1(ς,Z(ς),H(Z(ς)))

ς

)
dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1
(
H1(ς,X(ς),H(X(ς)))

ς
−
H1(ς,Z(ς),H(Z(ς)))

ς

)
dς

]
+

1
Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1
(
H1(ς,X(ς),H(X(ς)))

ς
−
H1(ς,Z(ς),H(Z(ς)))

ς

)
dς

∣∣∣∣∣∣
≤

εtϑ

Γ(ϑ + 1)
+ (L1 +L2M)
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×

 (log t)ϑ−1

Π

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
+

(logT)ϑ

Γ(ϑ + 1)

]
+

(logT)ϑ

Γ(ϑ + 1)

 |X(t) − Y(t)|,

≤
εtϑ

Γ(ϑ + 1)
+ Π1|X(t) − Y(t)|

≤
εTϑ

(1 − Π1)(ϑ + 1)
,

therefore,

|Z(t) − X(t)| ≤ cgε, (4.8)

where,

Π1 = (L1 +L2M)

 (log t)ϑ−1

Π

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
+

(logT)ϑ

Γ(ϑ + 1)

]
+

(logT)ϑ

Γ(ϑ + 1)

 . (4.9)

This shows that (2.3) is UH stable. □

Theorem 4.2. Assume that Q1–Q3 and (3.10) hold. Then, there exists an increasing function ν ∈

C1−σ[J] and a real number ζν > 0 such that:

|Z(t) − X(t)| ≤ ζνΦ(t), t ∈ J . (4.10)

Then (2.3) is UHR stable.

Proof. Let Z ∈ C1−σ⌊1,T⌋ be a solution of the inequality (4.3) and let X ∈ C1−σ(J) be the unique
solution of the given system:

HHDϑ,βX(t) = H1(t,X(t),H(X(ς))), t ∈ J = ⌊1,T⌋,

X(1) = 0, X(T) =
l∑
i=1

ηiX(ξi) +
k∑
j=1

ϱjI
vjX(ζj), vj > 0, ηi, ϱj ∈ R, ζj, ξi ∈ J ,

(4.11)

where 1 < ϑ < 2.
By Remark 4.1, we have

∣∣∣∣∣∣Z(t)−
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,Z(t),H(Z(ς)))(ς)
ς

dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1H1(ς,Z(ς),H(Z(ς)))
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(ς,Z(ς),H(Z(ς)))
ς

dς
]

(4.12)

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(ς,Z(ς),H(Z(ς)))
ς

dς

∣∣∣∣∣∣ ≤ εζνΦ(t).
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Then for each t ∈ J , we obtain

|Z(t) − X(t)|

≤

∣∣∣∣∣∣Z(t) −
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,X(t),H(X(ς)))(ς)
ς

dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1H1(ς,X(ς),H(X(ς)))
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(ς,X(ς),H(X(ς)))
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(ς,X(ς),H(X(ς)))
ς

dς

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Z(t) −
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1H1(t,Z(t),H(Z(ς)))(ς)
ς

dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1H1(ς,Z(ς),H(Z(ς)))
ς

dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1H1(ς,Z(ς),H(Z(ς)))
ς

dς
]

+
1

Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1H1(ς,Z(ς),H(Z(ς)))
ς

dς

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Z(t) −
(log t)ϑ−1

Π

[ l∑
i=1

ηi
1

Γ(ϑ)

∫ ξi

1

(
log

ξi

ς

)ϑ−1

×
(H1(ς,X(ς),H(X(ς)))

ς
−
H1(ς,Z(ς),H(Z(ς)))

ς

)
dς

+

k∑
j=1

ϱj
1

Γ(ϑ + vj)

∫ ζj

1

(
log

ζj

ς

)ϑ+vj−1

×
(H1(ς,X(ς),H(X(ς)))

ς
−
H1(ς,Z(ς),H(Z(ς)))

ς

)
dς

−
1

Γ(ϑ)

∫ T

1

(
log

T

ς

)ϑ−1
(
H1(ς,X(ς),H(X(ς)))

ς
−
H1(ς,Z(ς),H(Z(ς)))

ς

)
dς

]
+

1
Γ(ϑ)

∫ t

1

(
log
t

ς

)ϑ−1
(
H1(ς,X(ς),H(X(ς)))

ς
−
H1(ς,Z(ς),H(Z(ς)))

ς

)
dς

∣∣∣∣∣∣
≤εζνΦ(t) + (L1 +L2M)

×

 (log t)ϑ−1

Π

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
+

(logT)ϑ

Γ(ϑ + 1)

]
+

(logT)ϑ

Γ(ϑ + 1)


× |X(t) − Y(t)|,
≤ εζνΦ(t) + Π1|X(t) − Y(t)|,
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≤
εζνΦ(t)

(1 − Π1)(ϑ)
,

therefore,

|Z(t) − X(t)| ≤ cg,νεν(t). (4.13)

Hence, (2.3) is UHR stable. □

5. Examples

Example 5.1. Let us investigate nonlocal BVPs employing Hilfer-Hadamard fractional differential
equations given by the form:

HHDϑ,βX(t) =
cos2 t

(e−t+2)2|X(t)|
+

1
2

∫ t

1
e−1/2X(ς)dς t ∈ χ = ⌊1,T⌋,

X(1) = 0, X(T) =
l∑
i=1

ηiX(ξi) +
k∑
j=1

ϱjI
vjX(ζj), vj > 0, ηi, ϱj ∈ R, ζj, ξi ∈ J .

(5.1)

ϑ = 6/5, β = 1/2, γ = 1.6,T = 5, η1 = 1/15, η2 = 1/10, η3 = 2/15, ξ1 = 5/4, ξ2 = 3/2, ξ3 = 7/2,
ϱ1 = 6/29, ϱ2 = 17/50, ϱ3 = 3/25, ζ1 = 5/2, ζ2 = 5/3, ζ3 = 7/2,Π = 0.701548,L1 = L2 = 1/9,
M = 1/8;

Hence, the assumptions (Q2) and (Q3) hold. We check the condition,

≤ (L1 +L2)M

 (log t)ϑ−1

Π

[ l∑
i=1

|ηi|
(

log ξi

)ϑ
Γ(ϑ + 1)

+

k∑
j=1

ϱj
(log ζj)ϑ+vj

Γ(ϑ + vj)
+

(logT)ϑ

Γ(ϑ + 1)

]
+

(logT)ϑ

Γ(ϑ + 1)

 ≈ 0.2379 < 1.

(5.2)

Hence, the problem (5.1) has a unique solution on ⌊1, 2⌋.

Example 5.2. Consider the following boundary value problem for the Hilfer-Hadamard-type
fractional differential equation:



HHDϑ,βX(t) =
cos2 t

(e−t+2)2|X(t)|
+

1
2

∫ t

1
e−1/2X(ς)dς t ∈ χ = ⌊1,T⌋,

X(1) = 0, X(T) =
l∑
i=1

ηiX(ξi) +
k∑
j=1

ϱjI
vjX(ζj), vj > 0, ηi, ϱj ∈ R, ζj, ξi ∈ J .

(5.3)

ϑ = 6/5, β = 1/2, γ = 1.6,T = 5, η1 = 1/15, η2 = 1/10, η3 = 2/15, ξ1 = 5/4, ξ2 = 3/2, ξ3 = 7/2,

AIMS Mathematics Volume 9, Issue 10, 28741–28764



28761

ϱ1 = 6/29, ϱ2 = 17/50, ϱ3 = 3/25, ζ1 = 5/2, ζ2 = 5/3, ζ3 = 7/2,Π = 0.701548,L1 = L2 = 1/9;

and

|H1(t,X,Y)| =
1

32

(√
t + log t

) ( |X|
2 + |X|

)
+

(
|Y|

2 + |Y|

)
.

Clearly,

|H1(t,X,Y)| ≤
1
9

(√
t + 1

)
(|X| + |Y|)

and

|H1(t,X1,Y1) −H1(t,X2,Y2)| ≤L1|X1 − X2| +L2|Y1 − Y2|.

Therefore, by Theorem 3.1, the boundary value problem (1.2) has a unique solution on (1,T ] with L1

and L2 =
1
9 = 0.1111. We can show that Ω = 1.5635, LΩ = 0.1735485 < 1.

6. Conclusions

In this study, we have used the Hilfer-Hadamard derivative in conjunction with RLC circuits to
investigate various aspects of fractional calculus. Using these mathematical tools, we have
investigated the existence, uniqueness, and stability of solutions to fractional differential equations,
especially those relevant to RLC circuits. By focusing on the Hilfer-Hadamard derivative, we have
expanded our understanding of fractional calculus and its applicability in modeling complex systems
such as RLC circuits.

The work described in this article is novel and considerably adds to the established literature of
knowledge on the subject. When the parameters in problems (ηi, ϱ j) were specified, our results
conformed to a few special cases. Assume that we formulated the problem in Equation (2.3) by taking
ϱ j in the presented findings:X(1) = 0, X(T) =

k∑
j=1

ϱjI
vjX(ζj), vj > 0, ηi, ϱj ∈ R, ζj, ξi ∈ J , (6.1)

We can then solve the above problem (6.1) by using the methodology employed in the previous section.
Future research could focus on different concepts of stability and existence concerning a neutral time-
delay system/inclusion and a time-delay system/inclusion with finite delay.

Remark 6.1. The results presented in this paper extend the theory of fractional differential equations
by applying the Hilfer-Hadamard fractional derivative to RLC circuit models. This combination offers
deeper insights into both the theoretical and practical aspects of such circuits, particularly through
the establishment of existence, uniqueness, and stability results using advanced techniques like
Schaefer’s fixed-point theorem and Banach’s contraction principle. Additionally, the application of
Krasnoselskii’s fixed-point theorem could be a valuable enhancement to further investigate the
existence of solutions, particularly in the context of compact operators on Banach spaces. The
inclusion of the Ulam-Hyers and Ulam-Hyers-Rassias stability criteria strengthens the relevance of
these results in engineering applications. By employing both analytical techniques and numerical
methods, such as the two-step Lagrange polynomial interpolation method, the study not only verifies
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theoretical findings but also demonstrates practical feasibility. This work opens new directions for the
use of fractional calculus in modeling RLC circuits and provides a solid foundation for extending
these results to other engineering systems and boundary value problems. Including Krasnoselskii’s
fixed-point theorem can deepen the mathematical rigor of your work, particularly when dealing with
non-linear problems or specific functional spaces.
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