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Abstract: Let G be a graph. A dissociation set of G is a subset of vertices that induces a subgraph with
vertex degree at most 1. The dissociation polynomial of G is DG(λ) =

∑
D∈D(G) λ

|D|, whereD(G) is the
set of all dissociation sets of G. In this paper, we prove that for any cubic graph G and any λ ∈ (0, 1],

1
|V(G)|

ln DG(λ) ≤
1
4

ln DK4(λ)

with equality if and only if G is a disjoint union of copies of the complete graph K4. When λ = 1,
the value of DG(λ) is exactly the number of dissociation sets of G. Hence, for any cubic graph G on n
vertices, |D(G)| ≤ |D(K4)|n/4 = 11n/4.

Keywords: extremal graph theory; counting; cubic graphs; dissociation sets; graph polynomials
Mathematics Subject Classification: 05A17, 05C31, 05C69

1. Introduction

All graphs considered in this paper are simple, undirected and labeled. Let G be a graph. A subset
of vertices of G is called a dissociation set if it induces a subgraph with vertex degree at most 1. The
empty set is also thought to be a dissociation set of G. Let D(G) be the set of all dissociation sets
of G and |D(G)| be the total number of dissociation sets of G. The dissociation polynomial of G is
DG(λ) =

∑
D∈D(G) λ

|D|.
The concept of dissociation sets was introduced by Yannakakis [7] in 1981, and has been studied

extensively in the last four decades. It is also a natural generalization of the well known independent
set. Compared with the independent set, the study of dissociated set is more difficult; for example, the
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problem of finding a maximum dissociation set is NP-hard in bipartite graphs, while the problem of
finding a maximum independent set is polynomially solvable in bipartite graphs.

The extremal problems of counting the number of a given graph substructure of a graph of a given
type has got lots of attention in the last two decades [1, 4–6, 8]. In 2017, Davies et al. [2] introduced a
novel technique called the occupancy method and used this method to prove tight upper bounds on the
independence polynomial and matching polynomial of d-regular graphs. The occupancy method has
also been applied to other counting problems [2, 3, 6].

In this paper, we use the occupancy method to give a tight upper bound on the dissociation
polynomial of cubic graphs, and answer the question of which cubic graphs have the largest number of
dissociation sets.

We first introduce a probability distribution over all dissociation sets in G, parameterized by a real
number λ > 0, where each dissociation set D is chosen with probability,

Pr[D] =
λ|D|∑

D∈D(G) λ
|D| =

λ|D|

DG(λ)
.

We call the probability distribution the dissociation probability model. The dissociation occupancy
fraction of the dissociation probability model, denoted by βG(λ), is the expected fraction of vertices
of G contained in a random dissociation set D chosen from the dissociation probability model.
Specifically,

βG(λ) =
1

|V(G)|

∑
v∈G

Pr[v ∈ D] =
1

|V(G)|

∑
D∈D |D|λ|D|

DG(λ)

=
1

|V(G)|
·
λ · (DG(λ))′

DG(λ)
= λ ·

(
1

|V(G)|
ln DG(λ)

)′
. (1.1)

By (1.1) and the fact that DG(0) = 1, we have

1
|V(G)|

ln DG(λ) =

∫ λ

0

βG(t)
t

dt. (1.2)

The main contribution of this work is to prove a tight upper bound on the dissociation occupancy
fractions of cubic graphs for λ ∈ (0, 1].

Theorem 1.1. For any cubic graph G and any λ ∈ (0, 1],

βG(λ) ≤ βK4(λ),

with equality if and only if G is a disjoint union of copies of the complete graph K4.

By (1.2), we can directly obtain the following corollary:

Corollary 1.1. For any cubic graph G and any λ ∈ (0, 1],

1
|V(G)|

ln DG(λ) ≤
1
4

ln DK4(λ)

with equality if and only if G is a disjoint union of copies of the complete graph K4.
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The value of DG(1) is exactly the total number of dissociation sets of G. Note that DG∪H(λ) =

DG(λ) · DH(λ), where G ∪ H is a disjoint union of two graphs G and H. It follows from Corollary 1.1
that a disjoint union of n/4 copies of the complete graph K4 has the most dissociation sets of all cubic
graphs on n vertices. Hence, for any cubic graph G on n vertices,

|D(G)| ≤ |D(K4)|n/4 = 11n/4.

2. Proof of Theorem 1.1

The dissociation polynomial of the complete graph K4 is

DK4(λ) = 1 + 4λ + 6λ2,

and its dissociation occupancy fraction is

βK4(λ) =
1
4
·
λ (DK4(λ))′

DK4(λ)
=

λ + 3λ2

1 + 4λ + 6λ2 .

Let G be a cubic graph. We choose a vertex, v, uniformly from V(G) at random, and a dissociation
set D from the dissociation probability model. We say that the vertex, v, is occupied if v ∈ D, and is
otherwise unoccupied. The i-th neighborhood of v, denoted by Ni(v), is the set of vertices of G each of
which is at distance i from v. Clearly, N1(v) = N(v).

We divide the neighborhood N(v) of v into three vertex sets, A0, A1, and A2, as shown in Figure 1,
where the black vertices represent the vertices belonging to the dissociation set D. A vertex u ∈ N(v)
is called externally uncovered if none of the vertices in N(u) ∩ N2(v) are in D. The set A2 consists
of vertices of N(v) that are externally uncovered. A vertex u ∈ N(v) \ A2 is called partly externally
covered if only one vertex in (N(u)∩N2(v))∪ (N2(u)∩N3(v)) is in D, and the set A1 consists of vertices
in N(v) \ A2 that are partly externally covered. Let A0 := N(v) \ (A1 ∪ A2), where every vertex of A0 is
called an externally covered vertex. Let A′1 = (∪u∈A1 N(u)) ∩ N2(v) ∩ D.

It is worth pointing out that, although we have sampled a dissociation set D of G, it is best to think
of the information about which vertices in N(v) ∪ {v} belong to D as having not been revealed.

v

A0 A1 A2

A′1

Figure 1. Divide the neighborhood N(v) of v into three vertex sets A0, A1, and A2.

Then, we define a local view of the subgraph induced by {v} ∪ A1 ∪ A2 ∪ A′1 and record the
implementation of the local view as a configuration C, while denoting the dissociation polynomial
of C by DC(λ). Let H be the subgraph induced by A1 ∪ A2 and define DH(λ) as the dissociation
polynomial of H for the given configuration C. Let ai (i = 0, 1, 2) be the size of the set Ai (i = 0, 1, 2),
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and a′1 be the size of the set A′1. Clearly, a1
′ ≤ a1, a1 + a2 ≤ 3. We write C = Ci(a1

′, a1, a2) for a local
view of v with respect to D.

It is easy to check that, for cubic graphs, there is a total of 34 configurations up to symmetries,
which are pictured in Figure 2.

Let C be the set of all possible configurations C. Note that C4(0, 0, 3) is the only configuration that
can arise from the complete graph K4.

For every configuration C, let p(C) denote the probability that the configuration occurs, and βC(λ)
be the conditional probability that v is occupied in given configuration C. The dissociation occupancy
fraction of G can be written as:

βG(λ) =
1

|V(G)|

∑
v∈G

Pr[v ∈ D]

=
∑
C∈C

Pr[v ∈ D | C] · p(C)

=
∑
C∈C

βC(λ) · p(C).

We select a vertex u uniformly from the neighbors of v at random, and consider the following
conditional probabilities:

βv
t (C) = Pr[v ∈ D and dG[D](v) = t | C] and
βu

t (C) = Pr[u ∈ D and dG[D](u) = t | C],

where t ∈ {0, 1}.
The expressions for βC(λ), βv

0(C), βv
1(C), βu

0(C) and βu
1(C) and all configurations C ∈ C are evaluated

and listed in Appendix A.
By consistency conditions, we use the fact that, for any t ∈ {0, 1}, the probability that v is in D and

has degree t in the induced subgraph G[D] equals the probability that a random neighbor u of v is in D
and has degree t in G[D], that is,∑

C∈C

βv
t (C) · p(C) =

∑
C∈C

βu
t (C) · p(C), for t = 0, 1.

Hence, we have two constraints on the probability distribution on configurations.
Now, we write the following linear programming with decision variables p(C) and three constraints:

(LP) βmax(λ) = max
∑
C∈C

βC(λ)p(C)

s.t.
∑
C∈C

p(C) = 1∑
C∈C

p(C) · (βv
t (C) − βu

t (C)) = 0 for t = 0, 1

p(C) ≥ 0 ∀C ∈ C.
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v v v v v

C1(0, 0, 3) C2(0, 0, 3) C3(0, 0, 3) C4(0, 0, 3) C5(1, 1, 2)

v v v v v

C6(1, 1, 2) C7(1, 1, 2) C8(1, 1, 2) C9(1, 2, 1) C10(1, 2, 1)

v v v v v

C11(1, 2, 1) C12(1, 2, 1) C13(2, 2, 1) C14(2, 2, 1) C15(2, 2, 1)

v v v v v

C16(2, 2, 1) C17(1, 3, 0) C18(1, 3, 0) C19(2, 3, 0) C20(2, 3, 0)

v v v v v

C21(2, 3, 0) C22(3, 3, 0) C23(3, 3, 0) C24(0, 0, 2) C25(0, 0, 2)

v v v v v

C26(1, 1, 1) C27(1, 1, 1) C28(1, 2, 0) C29(1, 2, 0) C30(2, 2, 0)

v v v v

C31(2, 2, 0) C32(0, 0, 1) C33(1, 1, 0) C34(0, 0, 0)

Figure 2. All possible configurations that can arise from a cubic graph.
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The dual linear programming of LP is as follows:

(DP) βmax(λ) = min Λp

s.t. Λp +

1∑
t=0

Λt[βv
t (C) − βu

t (C)] ≥ βC(λ) ∀C ∈ C,

where Λp,Λ0,Λ1 are the decision variables of DP.
Our goal is to show that, when λ ∈ (0, 1], the optimal value of LP is βmax(λ) = βK4(λ). The solution

that p(C4(0, 0, 3)) = 1 and p(C) = 0 for all other configurations is clearly feasible to LP. It suffices
to find a feasible solution to DP with Λ∗p = βK4(λ) for λ ∈ (0, 1]. Define the slack function of every
configuration C as:

S C(λ,Λ0,Λ1) = βK4(λ) − βC(λ) +

1∑
t=0

Λt[βv
t (C) − βu

t (C)].

Claim 2.1. Let

Λ∗0(λ) =
3λ2

1 + 4λ + 6λ2 ,

Λ∗1(λ) =
3λ + 9λ2

2 + 8λ + 12λ2 .

Then, for every configuration C ∈ C and any λ ∈ (0, 1],

S C(λ,Λ∗0(λ),Λ∗1(λ)) ≥ 0.

Proof. Proof of Claim 2.1. The values of S C(λ,Λ∗0(λ),Λ∗1(λ)) for all configurations C ∈ C are calculated
and listed in Table 1. Let C1 := {C4,C25,C32,C34} and C2 := {C2,C5,C8,C13,C22}.

For every configuration C ∈ C1, as can be seen from Table 1, we have

S C(λ,Λ∗0(λ),Λ∗1(λ)) = 0,

for all λ > 0.
For every configuration C ∈ C2, we use an auxiliary function λ(t) = t

1+t which maps [0,+∞) to
[0, 1). Also shown in Table 1 is that S C(λ(t),Λ∗0(λ(t)),Λ∗1(λ(t))) is the ratio of two polynomials in t with
positive coefficients. Thus,

S C(λ,Λ∗0(λ),Λ∗1(λ)) > 0

for all λ ∈ (0, 1). It is easy to check that when λ = 1, S C(λ,Λ∗0(λ),Λ∗1(λ)) > 0. Thus, we have

S C(λ,Λ∗0(λ),Λ∗1(λ)) > 0

for all λ ∈ (0, 1].
For every configuration C ∈ C \ (C1 ∪ C2), S C(λ,Λ∗0(λ),Λ∗1(λ)) is the ratio of two polynomials in λ

with positive coefficients, it follows that

S C(λ,Λ∗0(λ),Λ∗1(λ)) > 0,

for all λ > 0.
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Table 1. The values of S C(λ,Λ∗0(λ),Λ∗1(λ)) for all configurations C ∈ C.

S C(λ,Λ∗0,Λ
∗
1) λ(t) = t

1+t

C1(0, 0, 3) 3λ3+4λ4

1+8λ+28λ2+49λ3+40λ4+6λ5

C2(0, 0, 3) 2λ3+2λ4−λ5

1+8λ+28λ2+49λ3+40λ4+6λ5
2t3+6t4+3t5

1+13t+70t2+191t3+259t4+132t5

C3(0, 0, 3) λ3+λ4

1+8λ+28λ2+48λ3+36λ4

C4(0, 0, 3) 0
C5(1, 1, 2) λ2+7λ3+5λ4−λ5

2+16λ+54λ2+90λ3+68λ4+12λ5
t2+10t3+22t4+12t5

2+26t+138t2+368t3+484t4+242t5

C6(1, 1, 2) λ2+6λ3+3λ4

2+16λ+52λ2+80λ3+48λ4

C7(1, 1, 2) λ2+4λ3+λ4

2+16λ+52λ2+80λ3+48λ4

C8(1, 1, 2) λ2+5λ3+λ4−3λ5

2+16λ+54λ2+90λ3+68λ4+12λ5
t2+8t3+14t4+4t5

2+26t+138t2+368t3+484t4+242t5

C9(1, 2, 1) λ4+4λ3+λ2

1+8λ+25λ2+36λ3+18λ4

C10(1, 2, 1) λ4+4λ3+λ2

1+8λ+25λ2+36λ3+18λ4

C11(1, 2, 1) 2λ2+7λ3+λ4

2+16λ+48λ2+64λ3+24λ4

C12(1, 2, 1) λ2+3λ3

1+8λ+23λ2+28λ3+6λ4

C13(2, 2, 1) λ2+4λ3+λ4−λ5

1+8λ+26λ2+41λ3+28λ4+6λ5
t2+7t3+12t4+5t5

1+13t+68t2+177t3+225t4+110t5

C14(2, 2, 1) λ2+4λ3+λ4

1+8λ+25λ2+36λ3+18λ4

C15(2, 2, 1) 2λ2+7λ3+λ4

2+16λ+50λ2+72λ3+36λ4

C16(2, 2, 1) λ2+3λ3

1+8λ+24λ2+32λ3+12λ4

C17(1, 3, 0) 3λ2+9λ3

2+16λ+44λ2+48λ3

C18(1, 3, 0) 3λ2+9λ3

2+16λ+44λ2+48λ3

C19(2, 3, 0) 3λ2+9λ3

2+16λ+48λ2+64λ3+24λ4

C20(2, 3, 0) 3λ2+9λ3

2+16λ+48λ2+64λ3+24λ4

C21(2, 3, 0) 3λ2+9λ3

2+16λ+46λ2+56λ3+12λ4

C22(3, 3, 0) 3λ2+9λ3−λ4−3λ5

2+16λ+50λ2+74λ3+44λ4+12λ5
3t2+18t3+26t4+8t5

2+26t+134t2+340t3+416t4+198t5

C23(3, 3, 0) 3λ2+9λ3

2+16λ+48λ2+64λ3+24λ4

C24(0, 0, 2) λ3+λ4

1+7λ+21λ2+30λ3+18λ4

C25(0, 0, 2) 0
C26(1, 1, 1) λ2+4λ3+λ4

2+14λ+40λ2+52λ3+24λ4

C27(1, 1, 1) λ2+3λ3

2+14λ+38λ2+44λ3+12λ4

C28(1, 2, 0) λ2

1+4λ+6λ2

C29(1, 2, 0) λ2

1+4λ+6λ2

C30(2, 2, 0) λ2+3λ3

1+7λ+19λ2+22λ3+6λ4

C31(2, 2, 0) λ2

1+4λ+6λ2

C32(0, 0, 1) 0
C33(1, 1, 0) λ2+3λ3

2+12λ+28λ2+24λ3

C34(0, 0, 0) 0
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Now, we have obtained a feasible solution to DP with Λ∗p = βK4(λ) for λ ∈ (0, 1] and proved that
βG(λ) ≤ βK4(λ) for all cubic graphs G and all λ ∈ (0, 1]. Next, we will prove that unions of copies of
the complete graph K4 are the only graphs that maximize βG(λ) among all cubic graphs.

Claim 2.2. Let G be a cubic graph with βG(λ) = βK4(λ), only the configuration C4(0, 0, 3) appears with
positive probability.

Proof. Proof of Claim 2.2. It can be seen from the proof of Claim 2.1 that for every configuration
C ∈ C \ C1 and any λ ∈ (0, 1],

S C(λ,Λ∗0(λ),Λ∗1(λ)) > 0.

It follows from complementary slackness that p(C) = 0 for every configuration C ∈ C \ C1. It suffices
to prove that p(C25) = p(C32) = p(C34) = 0.

Suppose that the random dissociation set chosen is the empty dissociation set. If p(C25) > 0, then
either p(C2) > 0 or p(C3) > 0. If p(C32) > 0, then either p(C1) > 0, or p(C2) > 0, or p(C3) > 0. If
p(C34) > 0, then either p(C1) > 0 or p(C2) > 0. In each case, we have a contradiction.

Therefore, the configuration C4(0, 0, 3) is the unique maximizer of LP, which implies that unions of
copies of the complete graph K4 are the only extremal graphs. We complete the proof of Theorem 1.1.

3. Conclusions

In this paper, we show that for λ ∈ (0, 1], unions of copies of the complete graph K4 are optimal
on the level of dissociation occupancy fraction among all cubic graphs, which implies that a union
of copies of the complete graph K4 maximizes the number of dissociation sets and the dissociation
polynomial for λ ∈ (0, 1] of a cubic graph on the same number of vertices.
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Appendix A. The expressions for βC(λ), βv
0(C), βv

1(C), βu
0(C) and βu

1(C), and all configurations
C ∈ C.

We write the expressions for βC(λ), βv
0(C), βv

1(C), βu
0(C) and βu

1(C):
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DC(λ) = λa1
′

· (λ + a2λ
2 + DH(λ)),

βC(λ) =
λa1

′

DC(λ)
· (λ + a2λ

2),

βv
0(C) =

λa1
′

DC(λ)
· λ,

βv
1(C) =

λa1
′

DC(λ)
· a2λ

2,

βu
0(C) =

1
3
·
λa1

′

DC(λ)
·
∑
u∈A2

∑
D∈D(H−N(u))

λ1+|D|,

βu
1(C) =

1
3
·
λa1

′

DC(λ)
· (

∑
u∈A1

∑
D∈D(H−N(u))

λ1+|D| +
∑
u∈A2

∑
x∈N(u)

1x<A1

∑
D∈D(A2\(N(u)∪N(x)))

λ2+|D|).

For all configurations C ∈ C, their accurate expressions are computed and listed as follows.

C1(0, 0, 3) : βC(λ) =
λ + 3λ2

1 + 4λ + 6λ2 + λ3 , βv
0(C) =

λ

1 + 4λ + 6λ2 + λ3 , βv
1(C) =

3λ2

1 + 4λ + 6λ2 + λ3 ,

βu
0(C) =

1
3
·

3λ + 6λ2 + 3λ3

1 + 4λ + 6λ2 + λ3 , βu
1(C) =

1
3
·

3λ2

1 + 4λ + 6λ2 + λ3 .

C2(0, 0, 3) : βC(λ) =
λ + 3λ2

1 + 4λ + 6λ2 + λ3 , βv
0(C) =

λ

1 + 4λ + 6λ2 + λ3 , βv
1(C) =

3λ2

1 + 4λ + 6λ2 + λ3 ,

βu
0(C) =

1
3
·

3λ + 4λ2 + λ3

1 + 4λ + 6λ2 + λ3 , βu
1(C) =

1
3
·

5λ2 + 2λ3

1 + 4λ + 6λ2 + λ3 .

C3(0, 0, 3) : βC(λ) =
λ + 3λ2

1 + 4λ + 6λ2 , βv
0(C) =

λ

1 + 4λ + 6λ2 , βv
1(C) =

3λ2

1 + 4λ + 6λ2 ,

βu
0(C) =

1
3
·

3λ + 2λ2

1 + 4λ + 6λ2 , βu
1(C) =

1
3
·

7λ2

1 + 4λ + 6λ2 .

C4(0, 0, 3) : βC(λ) =
λ + 3λ2

1 + 4λ + 6λ2 , βv
0(C) =

λ

1 + 4λ + 6λ2 , βv
1(C) =

3λ2

1 + 4λ + 6λ2 ,

βu
0(C) =

1
3
·

3λ
1 + 4λ + 6λ2 , βu

1(C) =
1
3
·

9λ2

1 + 4λ + 6λ2 .

C5(1, 1, 2) : βC(λ) =
λ + 2λ2

1 + 4λ + 5λ2 + λ3 , βv
0(C) =

λ

1 + 4λ + 5λ2 + λ3 , βv
1(C) =

2λ2

1 + 4λ + 5λ2 + λ3 ,

βu
0(C) =

1
3
·

2λ + 4λ2 + 2λ3

1 + 4λ + 5λ2 + λ3 , βu
1(C) =

1
3
·

λ + 4λ2 + λ3

1 + 4λ + 5λ2 + λ3 .

C6(1, 1, 2) : βC(λ) =
λ + 2λ2

1 + 4λ + 4λ2 , βv
0(C) =

λ

1 + 4λ + 4λ2 , βv
1(C) =

2λ2

1 + 4λ + 4λ2 ,

βu
0(C) =

1
3
·

2λ + 3λ2

1 + 4λ + 4λ2 , βu
1(C) =

1
3
·

λ + 3λ2

1 + 4λ + 4λ2 .

C7(1, 1, 2) : βC(λ) =
λ + 2λ2

1 + 4λ + 4λ2 , βv
0(C) =

λ

1 + 4λ + 4λ2 , βv
1(C) =

2λ2

1 + 4λ + 4λ2 ,

βu
0(C) =

1
3
·

2λ + λ2

1 + 4λ + 4λ2 , βu
1(C) =

1
3
·

λ + 5λ2

1 + 4λ + 4λ2 .

C8(1, 1, 2) : βC(λ) =
λ + 2λ2

1 + 4λ + 5λ2 + λ3 , βv
0(C) =

λ

1 + 4λ + 5λ2 + λ3 , βv
1(C) =

2λ2

1 + 4λ + 5λ2 + λ3 ,
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10030

βu
0(C) =

1
3
·

2λ + 2λ2

1 + 4λ + 5λ2 + λ3 , βu
1(C) =

1
3
·

λ + 6λ2 + 3λ3

1 + 4λ + 5λ2 + λ3 .

C9(1, 2, 1) : βC(λ) =
λ + λ2

1 + 4λ + 3λ2 , βv
0(C) =

λ

1 + 4λ + 3λ2 , βv
1(C) =

λ2

1 + 4λ + 3λ2 ,

βu
0(C) =

1
3
·

λ + 2λ2

1 + 4λ + 3λ2 , βu
1(C) =

1
3
·

2λ + 3λ2

1 + 4λ + 3λ2 .

C10(1, 2, 1) : βC(λ) =
λ + λ2

1 + 4λ + 3λ2 , βv
0(C) =

λ

1 + 4λ + 3λ2 , βv
1(C) =

λ2

1 + 4λ + 3λ2 ,

βu
0(C) =

1
3
·

λ + 2λ2

1 + 4λ + 3λ2 , βu
1(C) =

1
3
·

2λ + 3λ2

1 + 4λ + 3λ2 .

C11(1, 2, 1) : βC(λ) =
λ + λ2

1 + 4λ + 2λ2 , βv
0(C) =

λ

1 + 4λ + 2λ2 , βv
1(C) =

λ2

1 + 4λ + 2λ2 ,

βu
0(C) =

1
3
·

λ + λ2

1 + 4λ + 2λ2 , βu
1(C) =

1
3
·

2λ + 2λ2

1 + 4λ + 2λ2 .

C12(1, 2, 1) : βC(λ) =
λ + λ2

1 + 4λ + λ2 , βv
0(C) =

λ

1 + 4λ + λ2 , βv
1(C) =

λ2

1 + 4λ + λ2 ,

βu
0(C) =

1
3
·

λ

1 + 4λ + λ2 , βu
1(C) =

1
3
·

2λ + λ2

1 + 4λ + λ2 .

C13(2, 2, 1) : βC(λ) =
λ + λ2

1 + 4λ + 4λ2 + λ3 , βv
0(C) =

λ

1 + 4λ + 4λ2 + λ3 , βv
1(C) =

λ2

1 + 4λ + 4λ2 + λ3 ,

βu
0(C) =

1
3
·

λ + 2λ2 + λ3

1 + 4λ + 4λ2 + λ3 , βu
1(C) =

1
3
·

2λ + 5λ2 + 2λ3

1 + 4λ + 4λ2 + λ3 .

C14(2, 2, 1) : βC(λ) =
λ + λ2

1 + 4λ + 3λ2 , βv
0(C) =

λ

1 + 4λ + 3λ2 , βv
1(C) =

λ2

1 + 4λ + 3λ2 ,

βu
0(C) =

1
3
·

λ + 2λ2

1 + 4λ + 3λ2 , βu
1(C) =

1
3
·

2λ + 3λ2

1 + 4λ + 3λ2 .

C15(2, 2, 1) : βC(λ) =
λ + λ2

1 + 4λ + 3λ2 , βv
0(C) =

λ

1 + 4λ + 3λ2 , βv
1(C) =

λ2

1 + 4λ + 3λ2 ,

βu
0(C) =

1
3
·

λ + λ2

1 + 4λ + 3λ2 , βu
1(C) =

1
3
·

2λ + 4λ2

1 + 4λ + 3λ2 .

C16(2, 2, 1) : βC(λ) =
λ + λ2

1 + 4λ + 2λ2 , βv
0(C) =

λ

1 + 4λ + 2λ2 , βv
1(C) =

λ2

1 + 4λ + 2λ2 ,

βu
0(C) =

1
3
·

λ

1 + 4λ + 2λ2 , βu
1(C) =

1
3
·

2λ + 3λ2

1 + 4λ + 2λ2 .

C17(1, 3, 0) : βC(λ) =
λ

1 + 4λ
, βv

0(C) =
λ

1 + 4λ
, βv

1(C) = 0, βu
0(C) = 0, βu

1(C) =
1
3
·

3λ
1 + 4λ

.

C18(1, 3, 0) : βC(λ) =
λ

1 + 4λ
, βv

0(C) =
λ

1 + 4λ
, βv

1(C) = 0, βu
0(C) = 0, βu

1(C) =
1
3
·

3λ
1 + 4λ

.

C19(2, 3, 0) : βC(λ) =
λ

1 + 4λ + 2λ2 , β
v
0(C) =

λ

1 + 4λ + 2λ2 , βv
1(C) = 0,

βu
0(C) = 0, βu

1(C) =
1
3
·

3λ + 4λ2

1 + 4λ + 2λ2 .

C20(2, 3, 0) : βC(λ) =
λ

1 + 4λ + 2λ2 , βv
0(C) =

λ

1 + 4λ + 2λ2 , βv
1(C) = 0,

βu
0(C) = 0, βu

1(C) =
1
3
·

3λ + 4λ2

1 + 4λ + 2λ2 .

C21(2, 3, 0) : βC(λ) =
λ

1 + 4λ + λ2 , βv
0(C) =

λ

1 + 4λ + λ2 , βv
1(C) = 0,

βu
0(C) = 0, βu

1(C) =
1
3
·

3λ + 2λ2

1 + 4λ + λ2 .
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C22(3, 3, 0) : βC(λ) =
λ

1 + 4λ + 3λ2 + λ3 , βv
0(C) =

λ

1 + 4λ + 3λ2 + λ3 , βv
1(C) = 0,

βu
0(C) = 0, βu

1(C) =
1
3
·

3λ + 6λ2 + 3λ3

1 + 4λ + 3λ2 + λ3 .

C23(3, 3, 0) : βC(λ) =
λ

1 + 4λ + 2λ2 , βv
0(C) =

λ

1 + 4λ + 2λ2 , βv
1(C) = 0,

βu
0(C) = 0, βu

1(C) =
1
3
·

3λ + 4λ2

1 + 4λ + 2λ2 .

C24(0, 0, 2) : βC(λ) =
λ + 2λ2

1 + 3λ + 3λ2 , βv
0(C) =

λ

1 + 3λ + 3λ2 , βv
1(C) =

2λ2

1 + 3λ + 3λ2 ,

βu
0(C) =

1
3
·

2λ + 2λ2

1 + 3λ + 3λ2 , βu
1(C) =

1
3
·

2λ2

1 + 3λ + 3λ2 .

C25(0, 0, 2) : βC(λ) =
λ + 2λ2

1 + 3λ + 3λ2 , βv
0(C) =

λ

1 + 3λ + 3λ2 , βv
1(C) =

2λ2

1 + 3λ + 3λ2 ,

βu
0(C) =

1
3
·

2λ
1 + 3λ + 3λ2 , βu

1(C) =
1
3
·

4λ2

1 + 3λ + 3λ2 .

C26(1, 1, 1) : βC(λ) =
λ + λ2

1 + 3λ + 2λ2 , βv
0(C) =

λ

1 + 3λ + 2λ2 , βv
1(C) =

λ2

1 + 3λ + 2λ2 ,

βu
0(C) =

1
3
·

λ + λ2

1 + 3λ + 2λ2 , βu
1(C) =

1
3
·

λ + 2λ2

1 + 3λ + 2λ2 .

C27(1, 1, 1) : βC(λ) =
λ + λ2

1 + 3λ + 3λ2 , βv
0(C) =

λ

1 + 3λ + 3λ2 , βv
1(C) =

λ2

1 + 3λ + 3λ2 ,

βu
0(C) =

1
3
·

λ

1 + 3λ + 3λ2 , βu
1(C) =

1
3
·

λ + λ2

1 + 3λ + 3λ2 .

C28(1, 2, 0) : βC(λ) =
λ

1 + 3λ
, βv

0(C) =
λ

1 + 3λ
, βv

1(C) = 0, βu
0(C) = 0, βu

1(C) =
1
3
·

2λ
1 + 3λ

.

C29(1, 2, 0) : βC(λ) =
λ

1 + 3λ
, βv

0(C) =
λ

1 + 3λ
, βv

1(C) = 0, βu
0(C) = 0, βu

1(C) =
1
3
·

2λ
1 + 3λ

.

C30(2, 2, 0) : βC(λ) =
λ

1 + 3λ + λ2 , βv
0(C) =

λ

1 + 3λ + λ2 , βv
1(C) = 0,

βu
0(C) = 0, βu

1(C) =
1
3
·

2λ + 2λ2

1 + 3λ + λ2 .

C31(2, 2, 0) : βC(λ) =
λ

1 + 3λ
, βv

0(C) =
λ

1 + 3λ
, βv

1(C) = 0, βu
0(C) = 0, βu

1(C) =
1
3
·

2λ
1 + 3λ

.

C32(0, 0, 1) : βC(λ) =
λ + λ2

1 + 2λ + λ2 , βv
0(C) =

λ

1 + 2λ + λ2 , βv
1(C) =

λ2

1 + 2λ + λ2 ,

βu
0(C) =

1
3
·

λ

1 + 2λ + λ2 , βu
1(C) =

1
3
·

λ2

1 + 2λ + λ2 .

C33(1, 1, 0) : βC(λ) =
λ

1 + 2λ
, βv

0(C) =
λ

1 + 2λ
, βv

1(C) = 0, βu
0(C) = 0, βu

1(C) =
1
3
·

λ

1 + 2λ
.

C34(0, 0, 0) : βC(λ) =
λ

1 + λ
, βv

0(C) =
λ

1 + λ
, βv

1(C) = 0, βu
0(C) = 0, βu

1(C) = 0.
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