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linked concepts. The construction and refinement of classical inequalities for various classes of convex
and nonconvex functions have been extensively studied. In convex theory, Godunova-Levin functions
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functions. Based on Bhunia and Samanta’s total order relation, harmonically cr-A-Godunova-Levin
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can be introduced. (CR)-order relation enables us to derive some Hermite-Hadamard (H.H) inequality
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1. Introduction

The interval analysis discipline addresses uncertainty using interval variables in contrast to variables
in the form of points, the calculation results are reported as intervals, preventing mistakes that may
lead to false conclusions. Despite its long history, Moore [1], used interval analysis for the first time
in 1969 to analyze automatic error reports. This led to an improvement in calculation performance,
which attracted many scholars’ attention. Due to their ability to be expressed as uncertain variables,
intervals are commonly used in uncertain problems, such as computer graphics [2], decision-making
analysis [3], multi-objective optimization [4], and error analysis [5]. Consequently, interval analysis
has produced numerous excellent results, and interested readers can consult. [6-8].

Meanwhile, numerous disciplines, including economics, control theory, and optimization, use
convex analysis and many scholars have studied it, see [9-12]. Recently, generalized convexity of
interval-valued functions (ZVFS) has received extensive research and has been utilized in a large
number of fields and applications, see [13—16]. The (A, s)-convex and (A, s)-concave mappings
describe the continuity of 7VFS, as described by Breckner in [17]. Numerous inequalities have
recently been established for 7V¥S. By applying the generalized Hukuhara derivative to ZV¥'S,
Chalco-Cano et al. [18] derived some Ostrowski-type inclusions. Costa [19], established Opial type
inequalities for the generalized Hukuhara differentiable 7V¥'S. In general, we can define a classical
Hermite Hadamard inequality as follows:

f+u 1 . n(t) + n(u)
n( 5 )Su_—t[ n(v)deT. (1.1)

Considering this inequality was the first geometrical interpretation of convex mappings in
elementary mathematics, it has gained a lot of attention. The following are some variations and
generalizations of this inequality, see [20-23]. Initially in 2007, Varosanec [24] developed the notion
of h-convex. Several authors have contributed to the development of inequalities based on H.H using
h-convex functions , see [25-28]. The harmonically A-convex functions introduced by Noor [29], are
important generalizations of convex functions. Here are some recent results relating to harmonically
h-convexity, see [30-35]. At present, these results are derived from inclusion relations and interval
LU-order relationships, both of which have significant flaws because these are partial order relations.
It can be demonstrated the validity of the claim by comparing examples from the literature with those
derived from these old relations. In light of this, determining how to use a total order relation to
investigate convexity and inequality is crucial. As an additional observation, the interval differences
between endpoints are much closer in examples than in these old partial order relations. Because of
this, the ability to analyze convexity and inequalities using a total order relation is essential.
Therefore, we will focus our entire paper on Bhunia et al. [36], (CR)- order relation. Using cr-order,
Rahman [37], studied nonlinear constrained optimization problems with cr-convex functions. Based
on the notions of cr-order relation, Wei Liu and his co-authors developed a modified version of H.H
and Jensen-type inequalities for s-convex and harmonic A-convex functions by using center radius
order relation, see [38, 39].

Theorem 1.1 (See [38]). Let 1 : [t,u]l — R,*. Consider h : (0,1) — R* and h(}) # 0. Ifn € S HX(cr-
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h,[t,ul,R;") and n € IRy, then

1 2tu ut “ n(v) 1
2h (%)n(t + u) i ,[ V2 @y Zer [n(0) + ()] fo h(x)dx. (1.2)

In addition, a Jensen-type inequality was also proved with harmonic cr-A-convexity.

Theorem 1.2 (See [38]). Let d; € R*, z; € [t,ul, n : [t,u] — R;/". If h is super multiplicative and
non-negative function and n € S HX(cr-h, [t,ul, R;"). Then the inequality become as:

1 S (d:
—_ ﬁcr h — Zl) (1'3
U[DLk izldizi) ; (Dk)n( :

Using the A-GL function, Ohud Almutairi and Adem Kiliman have proven the following result in
2019, see [40].

Theorem 1.3. Let i : [t,u] — R. If 7 is h-Godunova-Levin function and h(%) # 0. Then

h<%) t+u 1 " U dx
2 77( 2 )Su_[v[ U(V)dVS[n(l‘)+r](u)]f(; TX) (1.4)

This study is unique in that it introduces a notion of interval-valued harmonical 2-Godunova-Levin
functions that are related to a total order relation, called Center-Radius order, which is novel in the
literature. By incorporating cr-interval-valued functions into inequalities, this article opens up a new
avenue of research in inequalities. In contrast to classical interval-valued analysis, cr-order
interval-valued analysis follows a different methodology. Based on the concept of center and radius,
we calculate intervals as follows: 7, = % and ¢, = %, respectively, where ¢ and ¢ are endpoints of
interval t.

Inspired by. [15, 34, 38, 39, 41], This study introduces a novel class of harmonically cr-A-GL
functions based on cr-order. First, we derived some H.H inequalities, then we developed the Jensen
inequality using this new class. In addition, the study presents useful examples in support of its
conclusions.

Lastly the paper is designed as follows: In section 2, preliminary information is provided. The key
problems are described in section 3. There is a conclusion at the end of section 6.

2. Preliminaries

Some notions are used in this paper that aren’t defined in this paper, see [38,41]. The collection of
intervals is denoted by R; of R, while the collection of all positive intervals can be denoted by R;. For
v € R, the scalar multiplication and addition are defined as

t+u=[t1]+[uul =[t+ut+ul

[vt, ut], if v> 0,
vt = v.[t,1] = {0}, if v=0,
[vt,vt],if v < 0,

AIMS Mathematics Volume 8, Issue 1, 1696-1712.



1699

respectively. Let r = [t,1] € Ry, 1. = % is called center of interval t and ¢, = ; is said to be radius of

interval t. In the case of interval t, this is the (CR) form

t= (HZ ;_E)—(t t)
= ) s D) = Cestr)-
An order relation between radius and center can be defined as follows.
Definition 2.1. (See [25]). Consider t = [t,1] = (1., t,), u = [u,u] = (u.,u,) € R;, then centre-radius
order (In short cr-order) relation is defined as

tc < U, tc * Uc,
1< US

e <Uet. = U.

Further, we represented the concept of Riemann integrable (in short /R) in the context of
IVFS [39]

Theorem 2.1 (See [39]). Let ¢ : [t,u] = R; be IVF given by n(v) = [Q(V),ﬁ(v)] for each v € [t,u]
and Q,ﬁ are IR over interval [t,u). In that case, we would call 1 is IR over interval [t, u), and

f u n(v)dv = [ f u ndv, f u ﬁ(v)dv].

All Riemann integrables (IR) Z7VF S over the interval should be assigned IR, ;.
Theorem 2.2 (See [39]). Letn,{ : [t,u] — R} given by n = 7,71, and & = [{, . Ifn ¢ € IRy, and

nw) <., {(v) Vv € [t,u], then
f n(v)dv <, f Lvdy.

See interval analysis notations for a more detailed explanation, see [38, 39].

Definition 2.2 (See [39]). Consider 4 : [0, 1] — R*. We say that i : [f,u] — R™ is known harmonically
h-convex function, or that p € S HX(h, [t,u],R"), if ¥ t;,u; € [t,u] and v € [0, 1], we have

Hu,
U(m) < h(n(ty) + h(1 = v)n(uy). (2.1)

If in (2.1) < replaced with > it is called harmonically #-concave function or n € S HV(h, [t, u], R").

Definition 2.3. (See [27]). Consider 4 : (0,1) — R*. We say that  : [t,u] — R* is known as
harmonically 4-GL function, or that n € SGHX(h, [t,u],R*), if ¥ t;,u; € [t,u] and v € (0, 1), we have

77( t ) < n(t) N n(up) .
vty + (1 = v)uy h(v)  h(l —-v)

(2.2)

If in (2.2) < replaced with > it is called harmonically #-Godunova-Levin concave function or n €
SGHV(h,[t,u],R").
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Now let’s look at the 7VF concept with respect to cr-hA-convexity.

Definition 2.4 (See [39]). Consider & : [0,1] — R*. We say that n = [7_7, nl : [t,u] — Rj is called
harmonically cr-h-convex function, or that 7 € S HX(cr-h, [t,u],R}), if V t;,u; € [t,u] and v € [0, 1],
we have

tuy
U(M) =er hWN(t1) + h(1 = v)n(uy). (2.3)

If in (2.3) <., replaced with >, it is called harmonically cr-h-concave function or
n € SHV(cr-h, [t,u],R)).

Definition 2.5. (See [39]) Consider & : (0,1) — R*. We say that n = [Q, nl : [t,u]l — R is called
harmonically cr-h-Godunova-Levin convex function, or that n € SGHX(cr-h, [t,u],R}), if ¥ t;,u; €
[t,u] and v € (0, 1), we have

( fi )< 77(11)+ n(uy) (2.4)

Mo+ A= ]~ h) T m(1 =)

If in (2.4) <., replaced with >, it is called harmonically cr-A-Godunova-Levin concave function or
n € SGHV(cr-h, [t,u],R}).

Remark 2.1.

(i) If h(v) = 1, in this case, Definition 2.5 becomes a harmonically cr-P-function [28].

(ii) If h(v) = ﬁ, in this case, Definition 2.5 becomes a harmonically cr h-convex function [28].

(iii) If h(v) = v, in this case, Definition 2.5 becomes a harmonically cr-Godunova-Levin function [28].
(iv) If h(v) = Vi in this case, Definition 2.5 becomes a harmonically cr-s-convex function [28].

(v) If h(v) = v*, in this case, Definition 2.5 becomes a harmonically cr-s-GL function [28].
3. Main results
Proposition 3.1. Define hy, h, : (0,1) — R* functions that are non-negative and

1 1
— < —,ve(0,1).
hz_l’llv 0,1

Ifn € SGHX(cr-hy, [t,ul,R;"), thenn € SGHX(cr-hy, [t,u], R;™).
Proof. Since n € SGHX(cr-h, [t,u],R;"), then for all ¢, u; € [t,u],v € (0, 1), we have

( hiu ) n(t1) n(uy)
n 5cr +
vt + (1 —v)uy hy(v) hy(1-v)

< n(t) N n(uy)
() (=)

Hence, n € SGHX(cr-hy, [t,u], R;™). O

Proposition 3.2. Let n : [t,u] — R; given by [n,n] = (., n,) . If n. and n, are harmonically h-GL over
(¢, u], then n is known as harmonically cr-h-GL function over [t, u].
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Proof. Since 7, and 7, are harmonically 4-GL over [¢, ], then for each v € (0, 1) and for all #,u; €
[z, u], we have

( tiuy ) net)  ne(ur)
Ne\—F——— =er + >
vt + (1 = v)u, h(v) h(l-v)

and

( hiu ) nr(tl) nr(ul)
nr 5cr + .
vt + (1 = v)uy h(v)  h(l-v)

Now, if

( tlul )¢ r]c(tl) + nc(ul)
T\ v =) ho) T RA =)

then for each v € (0, 1) and for all #, u; € [t, u],

( tlul )< 77c(t1) + nc(ul)
T\ + =)~ hy) T R1 =)

Accordingly,

( huy ) nc(tl) 776(”1)
TIC - < < ﬁcr + .
vty + (1 —v)uy h(v) h(l-v)

Otherwise, for each v € (0, 1) and for all ¢, u; € [¢, u],

fiuy n-(t)  n(u) fiuy n)  nu)
”’(wl - v)ul) =0 Thi-w (m - v)ul) = oy =)

Based on all the above, and Definition 2.1, this can be expressed as follows:

( i ) nt)  n)
MN—————| 3 +
vt + (1 = v)u, h(v) h(l1-v)

for each v € (0, 1) and for all ¢, u; € [¢, u].
This completes the proof. O
4. Hermite-Hadamard type inequality

This section developed the H.H inequalities for harmonically cr-4-GL functions.

Theorem 4.1. Consider h : (0,1) — R* and h(%) # 0. Let p : [t,u] — R/", ifn € SGHX(cr-
h,[t,ul,R;") and n € IRy, we have

[h (%)] 2tu tu “nv) U dx
2 f([ n u) Zer u— II 70’1/ Zer [n(0) + ﬂ(u)]ﬁ FX) 4.1)

Proof. Since n € SGHX(cr-h, [t,u],R;"), we have

hl 2tu - tu tu
2Mi+u _Crn(xt+(1—x)u M (1—x)t+xu'
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On integration over (0, 1), we have
1 2tu ! tu ! tu
h ~ <cr d d
(Z)U(t+u)_ [L n(xt+(1—x)u) x+[) n((l—x)t+xu) x]
! tu ! tu
= —d — |dx,
[fo Q(xt+(1—x)u) x+f0 Q((l—x)t+xu) x
: tu : tu
nl——|d n|l————\d
L n(xt+(1—x)u) x+£ n((l—x)t+xu) x]
2tu f nv) 2w f o),
dv, dv
u—-tJ, v? u-—t v?

= —Zdv. 4.2)

By Definition 2.5, we have

?7( u ) <. n() N n(u) .
xt+ (1 —x)u h(x)  h(l—x)

On integration over (0,1), we have

! tu U dx U dx
Ln(xt+(1—x)u)dxﬁcrn(t)£ W”(”)fo "l -x)

ut n) U dx

E t v—dV =<er [U(f) + n(”)]f(; M (43)

Accordingly,

Adding (4.2) and (4.3), results are obtained as expected

h(3) (20w (Uae)
. n(Hu)fcru_lft dv<cr[n<r)+n(u>]f =3

Remark 4.1.

(i) If h(x) = 1, in this case, Theorem 4.1 becomes result for harmonically cr- P-function:

1n(2”‘)scr ut f "ty < Int) + ).

2 \t+u u-—t

(ii) If h(x) = —, in this case, Theorem 4.1 becomes result for harmonically cr-convex function:

77( 2tu ) < ut f” @dv < [n(2) +77(u)].

t+u u—t V2 - 2

(iii) If h(x) = ﬁ, in this case, Theorem 4.1 becomes result for harmonically cr-s-convex function:

zs_ln(Ztu)<u ut fn(V) < [ +n@]

t+ul " Tu-t V2 - s+ 1
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Example 4.1. Let [f,u] = [1,2], h(x) = )lc, Y xe (0,1).n:[t,u] — R,/ is defined as

- 1
U(V): 74‘2,;4‘3 N
where
h3) (2| 4y [431 849
2> Nivu) ~M3) 7 |256 256 |
ut (o) fz 24— 1 fz 3+ 1 258 542
Lldy =2 dv, dv|=|=—=—,—],
u—tI A [1 Vo v ! Vo v 160° 160
U dx 47 113
t — ==, —.
o+ 0] [ o5 =5
As a result,

256" 256 160° 160 8 8

Thus, proving the theorem above.

[431 849] [258 542] [47 113]
ﬁcr 5cr o ° o |-

Theorem 4.2. Consider h : (0,1) — R* and h(}) # 0. Let n : [t,u] = R;", if n € SGX(cr-h, [t,ul, Ri")
and n € IR, we have

o[
4

2t 1 y
U(_u) 5cr A 5cr _f @dv ﬁcr AV
u—tJ,

t+u y2

1 1 ' d
<er {[77(1) +n(u)] [5 + E]}jo‘ Ti)’
2

A= [h(%)] 4tu N 4tu
T4 M) TN B

(Ztu )+17(t)+77(u)) flﬁ
Niru 2 o h(x)

where

B

Ny =

Proof. Consider [t, %], we have

77( 4tu ) - n (xz+(l112i)f%;) . n ((1—;)%;;%)
r+3u) 7 [a(3)] [ (3)]
Integration over (0, 1), we have

[h(%)]n( 4t ) L f o w

4 u+ 3t u—t V2

AIMS Mathematics Volume 8, Issue 1, 1696-1712.



1704

t+u

Similarly for interval [ >

, u], we have

1

[h(i)]n( 4tu )ﬁc ut f’ n(v)dv. 45

4 t+3u "u—t Jou V2

Adding inequalities (4.4) and (4.5), we get

1

[h (E)] 4tu 4ut ut “n(v)
A1 = 4 [n(u+3t)+n(t+3u)] Ser u—tf, V2 av.

Now

ut !
<. f 1) 4,
u—tJ, v

n(t) + 1) + 2n( 2nu )

1
5cr "
2

f U dx

0 h(x)

= AZ

() + () 1) n(u>} fl dx
0

> )l

LOETON f dx.
0 h(x)

)

1+ 1 fl dx
2 h(%) 0 h(x)

t+u

Scr

<er

[7(t) + n(w)]

<er {[n(t) +n(u))

Example 4.2. Thanks to example 4.1, we have

2 (3)] n( 21 ) _ n(z_t) _ [431 849]’

4 Nr+u 3] 2567256

AIMS Mathematics Volume 8, Issue 1, 1696-1712.
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1 8 8 6679 13801
sv=\nlz|+7(5)| = | 200> Zn0e |-
21°\5 7 4096 4096

) +n@ (‘_‘) fﬁ
2 3 ), nxy

1935 4465
A2: 1A =11 |
512 " 512

1 1 ' d 47 113
{["“) a3 m]}f road ke
2

431 849 - 6679 13801 - 258 542 - 1935 4465 - 47 113
256256 |~ [4096° 4096 | T 1607 160| =7 | 5127 512 |77 | 87 8 |

Ny =

Thus, we obtain

This proves the above theorem.

Theorem 4.3. Let n,¢ : [t,u] — R; ,hi,hy : (0,1) = R* such that hy,hy, # 0. If n € SGHX(cr
-hy, [t,ul,R/), £ € SGHX(cr-hy, [t,ul,R;") and n,{ € IRy, then, we have

ut

“n(MEv) ! 1 : 1
p— I 2 dv <. M(t, u)[) —hl(x)hz(x)dx + N(t,u) fo —hl(x)hz(l — x)dx, 4.6)

where

M(t,u) = n()@) + n(w)d(w), N(t, u) = n)(w) + n(w)d(2).
Proof. Conider n € SGHX(cr-hy, [t,ul,R;"), { € SGHX(cr-hy, [t,u], R;) then, we have

n( tu ) L0
tx+(1—x)u hi(x) hi(l-x)

§( tu )Scr {(1) N {(u) .
tx + (1 — x)u ho(x)  hy(1 —x)

Then,

( tu ) ( tu )
Nexvd—ou) v —on

/0O R (O CO R (C) (O, ()¢ (u)
T () D1 =x) (1= 0)ha(x) (1= 0)hy(1 = x)

Integration over (0,1), we have

: tu tu
\fo‘ n(tx+ (1- x)u)g(tx + (1 - x)u)dx
! tu tu
- [j; Q(tx+ (1- x)u)é(tx+ (1- x)u)dx’

AIMS Mathematics Volume 8, Issue 1, 1696-1712.
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1_( tu - tu )d
f(;n tx+(1—x)u)§(tx+(1—x)u o

| ut f ) f L) | } ut f nmee) o
- ;4 2 - 2
u-—1J; v u-—t V u-—t %

) f (L@ + neew) | f (1L + nee@)] |
b hi(x)ha(x) 0 hi(xX)hy (1 = x)

It follows that
ut f U(V)K(V)

u—t V2

! 1 ! 1
Ser M50 fo T NG fo G

Theorem is proved. O

Example 4.3. Let [7,u] = [1,2], hi(x) = hy(x) = % Y xe (0,1).n:[t,u] > R;" be defined as

- 1 11
nv) = 7+2’F+3 LL(v) = 7+1,;+2 )
Then,
ut f” n(v)((v) 282 5986
U1 V= 650 640
2, |31 629
M ”)f 1(X)h2() =M. z)f dx = [96’ % |

b e ~ vy = | L 397
N(t,u)jo‘ hl(x)hz(l—x)dx_N(l’z)L(x x)dx—[lz, 96]‘

28 5986] _ [31 6291 [1 307] [13 39
640" 640 | 77|96 96 1296 | (327 4|
This proves the above theorem.

Theorem 4.4. Let n,¢ : [t,u]l = R/, hi,hy : (0,1) = R* such that hi,h, # 0. If n € SGHX(cr-
hy, [t,ul,R/"), { € SGHX(cr-hy, [t,ul, R;") and n,{ € IRy, then, we have

hi (3)ha (4 )n(zm)g(zm)

2 t+u t+u
ut (") f‘ 1 Lo
<cr du + M(t,u) ——dx+ N(t,u) —  dx
W1 f y o (h(l - x) o M)
Proof. Since n € SGHX(cr-hy, [t,ul,R;"), { € SGHX(cr-ha, [t,u], R;"), we have

( 2t ) . 1 (i) N 7 ()

ST

AIMS Mathematics Volume 8, Issue 1, 1696-1712.
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g(ﬂ)ﬁrf(m—"_m)g(m),

m(z) o m()

- 1 ( tu ) ( tu )+ ( tu )( tu )
- h1(%)h2(%) g tx+ (1 = x)u ¢ tx+ (1 = x)u g t(1 — x) + xu ¢ t(1 = x) + xu
1

tu tu tu tu
+h ( )hz( ) T tx+ (1= xu ¢ (1= x)+xu M t(l—x)+xu)§ tx+ (1 —xu

1 1
2 2

m

l 1
§h25

tu tu tu
)/’lz (%) [ (tx+(1 —x)u)g(tx+(1 —x)u) +n(t(l - X) +xu)§(t(1 - X) +xu)

[( no | nw )( fw §(u>)+( n n(u))( (o cw )]
me =9\ =0 " @) =0 " o)k " w2

[T

- tu tu ) tu tu
- hy (%)hz(%) 1 tx + (1 —x)u)é’ tx+ (1 = x)u i t(1 = x) +ux J (1 —x) +ux
1

1 1 1 1
¥ )M(t’ “ (h1<x>h2<x> (= = x))N(” ”)]'

+

Iy (%)hz(%) [(hl(x)hZ(l -x) (1l = x)h(x)
Integration over (0, 1), we have
1 1
f (2tu) (zm)dx—[f (2tu) (2m)dx,f ﬁ(Zt )Z(Z”‘)dx]
0 t+u t+u t+u t+u 0 t+u t+u
o224
=1 t+u ¢ t+u *

2 ut (" () 2 fl 1 fl 1 }
cr d Mz, ————dx + N(t, ————dx|.
= el u—tft 2 V}W(;)h@)[ “0 )y mom ™V ) nomm ™

Multiply both sides by % above equation, we get required result

hy (%)hz(%)n( 21u )g( 21u )

2 t+u t+u

ut (M ML) : 1 : 1
=cr M—t‘[ 2 d/.l+M(l, I/t)~[0‘ de'i‘N(t, l/t)~[0‘ de

Example 4.4. Let [#,u] = [1,2], hi(x) = hy(x) = %, Yxe€ (0,1).n,:[t,u] > R, be defined as

-1 1
—+1,-+2].
v %

1
+2,—+3
V4

() =

) = _7

Then,

) 2 () o (4)(4) - [ 21,22,

3 3 512" 512
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ut f” n(v){(v)dv [& 5986]

u—t V2 640" 640
! 1 ! 31 629
M - dx=MQ,2 —x)dx = | —, —
(t’”)fo MO )fo(x ) [192’192]’
! 1 ! 1 307
N(t,uf—dszl,fozdx:[—,—].
) )y mome®™ =N | & 4%
It follows that
431 9339 _ [282 5986 .\ 31 629 .\ 1.307] _[123 761
512° 512 | = | 640° 640 192°192| "6 48 |~ |160° 40

This proves the above theorem.
5. Jensen type inequality

Theorem 5.1. Let d; € R*Y, z; € [t,u]. If h is non-negative and super multiplicative function or
n € SGHX(cr-h, [t,ul, R;"). Then the inequality become as :

77[ 1 )<. i{ﬂ(a)] (5.1)
D%{Zf:ldizi - i=1 h(di) ’ .

Dy

where D, = Zle d;.

Proof. If k = 2, inequality (5.1) holds. Assume that inequality (5.1) also holds for k — 1, then
[ 1 ) [ l )
MT < S |=1 14
DLk S dizi ,‘;—kkzk + 3 ;’—‘kzi

1
:n[g_iZk'i' D,’};] 5;:—11 %Zi]
@ (ZE 53)
Ta(k) o n(BY)
a1

<er
n(5) = »h(%)]h(’%—;)
1

SRRV Z'n(zi)}

2 ()
QIR

Dy

Therefore, the result can be proved by mathematical induction. O

Remark 5.1.
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(i) If h(x) = 1, in this case, Theorem 5.1 becomes result for harmonically cr- P-function:

st = 2

i=1

(ii) If h(x) = -, in this case, Theorem 5.1 becomes result for harmonically cr-convex function:

Y d
[ ledll)< Z k(Zl

i=1

(iii) If h(x) = (XL)“ in this case, Theorem 5.1 becomes result for harmonically cr-s-convex function:

e RN K
! DLkazldiZi = \Dx !

6. Conclusions

This study presents a harmonically cr-A-GL concept for 7V¥ S. Using this new concept, we study
Jensen and H.H inequalities for 7VFS. This study generalizes results developed by Wei
Liu [38,39] and Ohud Almutairi [34]. Several relevant examples are provided as further support for
our basic conclusions. It might be interesting to determine equivalent inequalities for different types
of convexity in the future. Under the influence of this concept, a new direction begins to emerge in
convex optimization theory. Using the cr-order relation, we will study automatic error analysis with
intervals and apply harmonically cr-A-GL functions to optimize problems. Using this concept, we aim
to benefit and advance the research of other scientists in various scientific disciplines.
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